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The Adomian-Padé technique is applied to examine two oscillating viscous flows, the Stokes’ second problem and the pressure-
driven pulsating flow.Main purposes for studying oscillating flows are not only to verify the accuracy of the approximation solution,
but also to provide a basis for analyzingmore problems by the presentmethodwith the help of Fourier analysis. Results show that the
Adomian-Padé approximation presents a very excellent behavior in comparison with the exact solution of Stokes’ second problem.
For the pulsating flow, only the Adomian decomposition method is required to perform the calculation as the fluid domain is finite
where the Padé approximant may not provide a better solution. Based on present results, more problems can be mathematically
solved by using the Adomian-Padé technique, the Fourier analysis, and powerful computers.

1. Introduction

The Adomian decomposition method has been widely stud-
ied and applied to solve mathematical problems [1]. It pro-
vides an efficient way to study a rather wide class of nonlinear
as well as stochastic equations without linearization, pertur-
bation, closure approximation, or discretizationmethods [2].
Themain idea of themethod is to decompose the key variable,
say, 𝑢, into an infinite series of 𝑢

𝑛
(𝑛 = 0, 1, 2, . . .) without

requirements of weak nonlinearity and small perturbation.
The first decomposed term 𝑢

0
is determined by the given

initial or boundary conditions. Then other decomposed
terms can be calculated by applying the integral operators to
the governing equation with the help of lower-order terms.
In recent years, there has been a great amount of efforts
on applying the Adomian decomposition method have been
applied to many fields [3–8] and some improvements of
algorithms were also presented [9–12].

As all decomposed terms except the first one are calcu-
lated by integration, the solution is usually expressed in a
form of a polynomial of the variable of integration (the tem-
poral or spatial variable). Therefore, the applicable range of
the Adomian decomposed solution will diverge quickly while
this integration variable grows. To overcome the weakness,

the Padé approximation is adopted to improve the accuracy
of the solution. The main idea of Padé approximant is to
transfer the original polynomial into a rational function of
the order [𝑚/𝑛] approximant [13]. In comparison of the form
of Taylor series, Padé approximant usually gives a larger valid
range of the derived solution. The Padé approximation has
been widely adopted to improve the accuracy of the Adomian
decomposed solution [14–16].

In this paper two cases of oscillating viscous flows will be
investigated by using the Adomian-Padé approximation.The
main reason why we study oscillating flows is that the present
study can provide a basis for analyzing more problems while
applying the Fourier analysis. The organization of this paper
is as follows. In Section 2, Stokes’ second problem describing
the flow induced by an oscillating plate below is examined.
Boundary conditions required for calculating the velocity
evolution of the whole domain are the velocity and its
gradient at the plate. The derived solution is compared with
the exact solution for verifying its validity. In Section 3 the
pressure-driven pulsating flow between two infinite parallel
plates is calculated by giving the oscillating pressure gradient
along the flow direction. The velocity at the center plane is
given as the beginning condition. Results in Sections 2 and 3
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show very excellent behaviors in comparison with their exact
solutions. Conclusion remarks are made in Section 4.

2. Stokes’ Second Problem

A viscous flow generated by an oscillating plate below is the
well-known Stokes’ second problem. The plate is located at
the plane 𝑦 = 0 and oscillates with the velocity 𝑢

0
cos 𝑡𝜔 in its

own plane.The kinematic viscosity of the fluid in the domain
𝑦 ≥ 0 is ]. The corresponding dimensionless variables are
assigned by

𝑈 =

𝑢

𝑢
0

,

𝑌 = 𝑦√

𝜔

]
,

𝑇 = 𝑡𝜔,

(1)

where 𝑈 is the velocity, 𝑌 the spatial parameter, and 𝑇 the
time. Hence the problem can be described with dimension-
less governing equation

𝜕𝑈

𝜕𝑇

=

𝜕
2

𝑈

𝜕𝑌
2
, (2)

and boundary conditions

𝑈 (𝑌 = 0, 𝑇) = cos𝑇,

𝑈 (𝑌 = ∞,𝑇) = 0.

(3)

The exact solution for (1) to (3) is (see [17, 18] for details)

𝑈 = exp(− 𝑌
√2

) cos(𝑇 − 𝑌
√2

) . (4)

It is noted that if the initial condition, 𝑈(𝑌, 𝑇 = 0) = 0, is
considered in this problem, the corresponding solution will
possess both steady-state and transient parts shown as [17]

𝑈 =

1

4

⋅ 𝑒
𝑖𝑇

{exp (−√𝑖𝑌) erfc( 𝑌
2√𝑇

− √𝑖𝑇)

+ exp (√𝑖𝑌) erfc( 𝑌
2√𝑇

+ √𝑖𝑇)} +

1

4

⋅ 𝑒
−𝑖𝑇

{exp (−√−𝑖𝑌) erfc( 𝑌
2√𝑇

− √−𝑖𝑇)

+ exp (√−𝑖𝑌) erfc( 𝑌
2√𝑇

+ √−𝑖𝑇)} ,

(5)

where erfc(𝑧) denotes the complementary error function
with the complex argument.

Now the Adomian-Padé method is applied to solve the
problem. First we define the operator

𝐿
𝑌
(⋅) ≡

𝜕
2

𝜕𝑌
2
(⋅) . (6)

Hence (2) can be represented as

𝐿
𝑌
𝑈 =

𝜕𝑈

𝜕𝑇

. (7)

Applying the inverse operator

𝐿
−1

𝑌
(⋅) = ∫

𝑌

0

∫

𝑌

0

(⋅) d𝑌 d𝑌 (8)

to (7) yields

𝑈 (𝑌, 𝑇) = 𝑈 (0, 𝑇) + 𝑈
𝑌
(0, 𝑇) ⋅ 𝑌 + ∫

𝑌

0

∫

𝑌

0

𝜕𝑈

𝜕𝑇

d𝑌 d𝑌. (9)

The first two terms in the right-hand side of (9) contain two
boundary conditions at the plate (𝑌 = 0). They play an
important role while applying the beginning conditions of
the Adomian approximation. They are given by (4) and its
derivative

𝑈 (0, 𝑇) = cos𝑇,

𝑈
𝑌
(0, 𝑇) = − cos(𝑇 + 𝜋

4

) .

(10)

Note that another boundary condition 𝑈(∞,𝑇) = 0 which
is not used in the Adomian analysis will be regarded as a
condition for examining the accuracy of the derived solution.
Now the velocity 𝑈 is assumed to be

𝑈 (𝑌, 𝑇) =

∞

∑

𝑛=0

𝑈
𝑛
(𝑌, 𝑇) . (11)

Substituting (11) into (9) gives the following relations:

𝑈
0
= 𝑈 (0, 𝑇) + 𝑈

𝑌
(0, 𝑇) ⋅ 𝑌

= cos𝑇 − 𝑌 cos(𝑇 + 𝜋
4

) ,

(12)

𝑈
𝑛+1
= ∫

𝑌

0

∫

𝑌

0

𝜕𝑈
𝑛

𝜕𝑇

d𝑌 d𝑌, 𝑛 ≥ 1. (13)

By calculating (13) term by term, we have

𝑈
1
= −

𝑌
2

2!

sin𝑇 + 𝑌
3

3!

sin(𝑇 + 𝜋
4

) ,

𝑈
2
= −

𝑌
4

4!

cos𝑇 + 𝑌
5

5!

cos(𝑇 + 𝜋
4

) ,

𝑈
3
= +

𝑌
6

6!

sin𝑇 − 𝑌
7

7!

sin(𝑇 + 𝜋
4

) ,

𝑈
4
= +

𝑌
8

8!

cos𝑇 − 𝑌
9

9!

cos(𝑇 + 𝜋
4

) ,

.

.

.

(14)

The coefficients of Padé [2/2] solution can be determined by
balancing 𝑈

04
= ∑
4

𝑛=0
𝑈
𝑛
and

𝑈 [2/2] =

𝑝
0
+ 𝑝
1
𝑌 + 𝑝

2
𝑌
2

1 + 𝑞
1
𝑌 + 𝑞
2
𝑌
2
. (15)
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Figure 1: Comparison of Padé [𝑛/𝑛] solutions (solid lines) and exact
solution (dash line) for Stokes’ second problem at 𝑇 = 0.

The results are

𝑝
0
= cos𝑇,

𝑝
1
=

5 cos𝑇 − cos 3𝑇 − 15 sin𝑇 + sin 3𝑇
4√2 (−3 + cos 2𝑇)

,

𝑝
2
= −

sin𝑇
12

+

cos𝑇 + 4 sin𝑇
6 (−3 + cos 2𝑇)

,

𝑞
1
=

−3√2 + 2 cos (2𝑇 + 𝜋/4)
4 (−3 + cos 2𝑇)

,

𝑞
2
=

4 + sin 2𝑇
12 (3 − cos 2𝑇)

.

(16)

By following similar processes shown above, higher-order
Padé approximants can be readily obtained with the help of
commercial software (e.g., Mathematica) and the details are
neglected herein. Figure 1 shows velocity profiles calculated
by the Adomian-Padé [2/2], [4/4], [6/6], and [8/8] solutions
and by the exact solution (4) for the case𝑇 = 0. Solid and dash
lines indicate the Padé [𝑛/𝑛] solutions and the exact solution,
respectively. It is seen that the higher-order Adomian-Padé
solutionwill result in amore accurate behavior in comparison
with the exact solution. Due to rapid and great progress of
calculating ability of computers, the applicable domain in
𝑌 will be efficiently expanded by much higher-order Padé
solutions. Solutions for 𝑇 = 𝜋/2 are plotted in Figure 2.
Results are similar to those demonstrated for Figure 1.

The present method can play an important role in practi-
cal cases. For example, if the boundary conditions at the plate
can bemeasured by currentmeters or other facilities, velocity
profile at any elevation 𝑌 can be mathematically calculated
without using the equipment tomeasure the flow speed at the
desired place.
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Figure 2: Comparison of Padé [𝑛/𝑛] solutions (solid lines) and exact
solution (dash line) for Stokes’ second problem at 𝑇 = 𝜋/2.

3. Pressure-Driven Pulsating Flow

Another oscillating flow, the pressure-driven pulsating flow,
is studied in this section. This flow describes that a fluid
bounded by two parallel plates located at 𝑦 = ±𝑎 is driven by
a time-dependent pressure gradient. The governing equation
is

𝜕𝑢

𝜕𝑡

= −

1

𝜌

𝜕𝑝

𝜕𝑥

+ ]
𝜕
2

𝑢

𝜕𝑦
2
, (17)

where 𝑝 is the pressure and

𝜕𝑝

𝜕𝑥

= 𝑝
0
cos 𝑡𝜔 (18)

is given. By introducing the following dimensionless vari-
ables:

𝑈 =

𝑢

𝑎𝜔

,

𝑌 =

𝑦

𝑎

,

𝑇 = 𝑡𝜔,

(19)

(17) can be rewritten as

𝜕𝑈

𝜕𝑇

= −(

𝑝
0

𝜌𝜔
2
𝑎

) cos𝑇 + ( ]
𝑎
2
𝜔

)

𝜕
2

𝑈

𝜕𝑌
2
, (20)

where 𝑝
0
/𝜌𝜔
2

𝑎 = 1 and ]/𝑎2𝜔 = 1 are assigned hereafter
for the purpose of simplification.The boundary conditions at
both plates are

𝑈 (𝑌 = ±1, 𝑇) = 0. (21)
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The exact solution for (20) and (21) is (see [18] for details)

𝑈 = Re{𝑖𝑒𝑖𝑇 [1 −
cosh ((1 + 𝑖) 𝑌/√2)

cosh ((1 + 𝑖) 1/√2)
]} ,

− 1 ≤ 𝑌 ≤ 1,

(22)

where Re denotes the real part of the complex. The velocity
and its gradient at the plane 𝑌 = 0 will be adopted as the
beginning conditions. They are

𝑈 (0, 𝑇) = sin𝑇[2 cosh
√1/2 cos√1/2

cosh√2 + cos√2
− 1]

− cos𝑇[2 sinh
√1/2 sin√1/2

cosh√2 + cos√2
] ,

𝑈
𝑌
(0, 𝑇) = 0,

(23)

where the former is obtained from (22) and the latter
indicates that the flow is symmetric with respect to 𝑌 = 0. It
is also noted that boundary conditions at both plates will be

seen as a condition for verifying the accuracy of the derived
solution. Applying (8) to (20) with the help of (23) leads to

𝑈 (𝑌, 𝑇) = 𝑈 (0, 𝑇) +

𝑌
2

2

cos𝑇 + ∫
𝑌

0

∫

𝑌

0

𝜕𝑈

𝜕𝑇

d𝑌 d𝑌. (24)

Now we substitute (11) into (24); the result is

𝑈
0
= 𝑈 (0, 𝑇) +

𝑌
2

2!

cos𝑇,

𝑈
1
=

𝑌
2

2!

𝑈
𝑇
(0, 𝑇) −

𝑌
4

4!

sin𝑇,

𝑈
2
=

𝑌
4

4!

𝑈
𝑇𝑇
(0, 𝑇) −

𝑌
6

6!

cos𝑇,

𝑈
3
=

𝑌
6

6!

𝑈
𝑇𝑇𝑇
(0, 𝑇) +

𝑌
8

8!

sin𝑇,

𝑈
4
=

𝑌
8

8!

𝑈
𝑇𝑇𝑇𝑇

(0, 𝑇) 𝑇 +

𝑌
10

10!

cos𝑇,

.

.

.

(25)

Using 𝑈
04

defined in previous section and balancing it with
𝑈[2, 2], the coefficients of 𝑈[2, 2] are solved:

𝑝
0
= −

sin𝑇 (cos√2 − 2 cosh√1/2 cos√1/2 + cosh√2) + 2 cos𝑇 sin√1/2 sinh√1/2

cosh√2 + cos√2
,

𝑝
1
= 0,

𝑝
2
=

sin𝑇 sin√1/2 sinh√1/2 + cos𝑇 cos√1/2 cosh√1/2
cosh√2 + cos√2

,

𝑞
1
= 0,

𝑞
2
=

− sin𝑇 cos√1/2 cosh√1/2 + cos𝑇 sin√1/2 sinh√1/2
12 (cosh√2 + cos√2)

.

(26)

Figure 3 presents a comparison of different approximation
solutions for the upper fluid domain (0 ≤ 𝑌 ≤ 1). Ratios of
𝑈[2/2] (solid lines) and𝑈

04
(dash lines) to the exact solution

𝑈 are plotted for times 𝑇 = 0 (thin lines) and 𝑇 = 𝜋/2 (bold
lines). It is seen that the polynomial solution 𝑈

04
behaves

slightly better than the Padé [2/2] solution; namely, the
former approximation is slightly closer to its exact solution
when 𝑌 approaches unity. The reason is that, in the range
of 0 ≤ 𝑌 ≤ 1, the Padé [2/2] solution may not give a more
excellent simulation than the truncated polynomial solution
𝑈
04
. This implies that higher-order Padé approximant may

be not required to improve the accuracy of the polynomial
solution for problems considered in a finite domain.

4. Conclusions

This paper presents the examination of Stokes’ second prob-
lem and the pressure-driven pulsating flow by applying
the Adomian-Padé technique. For Stokes’ second problem,
higher-order Adomian-Padé solution behaves very well in
comparison with the exact solution while the spatial param-
eter grows. For pressure-driven pulsating flow, the Adomian
approximation provides satisfactory results and the applica-
tion of the Padé approximant may be unnecessary for the
case of the finite domain. The above results demonstrate that
the method used in this paper can be applied to solve more
complicated problems with the help of the Fourier analysis
and powerful computers.
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