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This paper deals with the modeling of fault for analog circuits. A two-dimensional (2D) fault model is first proposed based on
collaborative analysis of supply current and output voltage. This model is a family of circle loci on the complex plane, and it
simplifies greatly the algorithms for test point selection and potential fault simulations, which are primary difficulties in fault
diagnosis of analog circuits. Furthermore, in order to reduce the difficulty of fault location, an improved fault model in three-
dimensional (3D) complex space is proposed, which achieves a far better fault detection ratio (FDR) against measurement error
and parametric tolerance. To address the problem of fault masking in both 2D and 3D fault models, this paper proposes an effective
design for testability (DFT) method. By adding redundant bypassing-components in the circuit under test (CUT), this method
achieves excellent fault isolation ratio (FIR) in ambiguity group isolation. The efficacy of the proposed model and testing method
is validated through experimental results provided in this paper.

1. Introduction

Over the past two decades, fault detection and diagnosis of
analog circuits become an important research area where
a number of corresponding theories and techniques have
been developed. Among the researches in this area, fault
dictionary is one of the most important methods that have
attracted great interests [1–5]. Various circuit variables (e.g.,
voltage, current, and frequency) have been used in fault
dictionary to obtain fault signatures [6–8]. In addition to the
commonly employed measurement of output voltage, supply
current testing has been applied widely in analog and mixed
signal integrated circuits (ICs) with excellent fault coverage,
especially for the catastrophic fault of CMOS ICs [9–11].

Despite the advantages of fault dictionary, there are
still persistent challenges, such as test point selection and
potential faults simulations, in applications of fault dictionary
method for fault diagnosis of analog circuits. Wang and Yang
proposed a slope fault mode, which not only reduces the
required number of test points to two but also simplifies
the potential fault simulation greatly [2]. However, the slope

fault model is only limited to dynamic circuits. To achieve
detection of parametric faults for analog circuits, Yang et al.
proposes a complex-circle based fault model [3]. Although
this proposed faultmodel is improved sequentially by optimal
testing frequency selection [12] and fault location [13], the
weakness of fault masking still remains. Moreover, a 3D
model based on transfer function was proposed in [14];
it extends the distances between fault loci and improves
the practicability for applications. Recently, Ma and Wang
achieved detecting catastrophic faults and parametric faults,
by analyzing the harmonic spectrum of output voltage and
supply current [11]. Following the ideas of these researches,
this paper proposes two improved fault models with satisfac-
tory FDR based on collaborative analysis of output voltage
and supply current. Moreover, to isolate ambiguity groups, a
design for testability (DFT) method is proposed to achieve
better fault isolation ratio (FIR) against the influence of
analog tolerance and measurement errors.

This paper is organized as follows. First, the theory of
collaborative fault model on 2D complex plane is introduced
in Section 2. An example of a Sallen-Key filter is also provided
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to illustrate the theory in this section. In order to reduce
the difficulty of fault location and isolation, an improved
fault model in 3D complex space is proposed in Section 3.
Furthermore, to deal with the ambiguity groups in the fault
model, an innovative method of DFT is demonstrated in
Section 4 to improve the FIR. Validation of the proposed
method is provided by PSPICE. Finally, conclusions and
future work are summarized in Section 5.

2. Collaborative Fault Model on
2D Complex Plane

2.1. Theorem of the 2D Collaborative Fault Model. A linear
time-invariant passive CUT 𝑁 is assumed to contain 𝑛

components 𝐹
𝑖
(1 ≤ 𝑖 ≤ 𝑛). 𝑁 is assumed to be stimulated

by a direct current (DC) power source 𝑈
𝑑𝑑

and a family of
alternating current (AC) signals 𝑈

𝑠𝑘
(1 ≤ 𝑘 ≤ 𝑚), where 𝑚 is

the number of AC signals. Then a (𝑚 + 1)-dimension vector
US is composed as follows:

US = (𝑈𝑑𝑑 𝑈
𝑠1

𝑈
𝑠2

⋅ ⋅ ⋅ 𝑈
𝑠𝑚) . (1)

Furthermore, a single component 𝑃 is assumed to be the
potential failure component in 𝑁, where

𝑃 ∈ {𝐹
𝑖
| 1 ≤ 𝑖 ≤ 𝑛} . (2)

The voltage across 𝑃 is defined as 𝑢
𝐹
. According to the

Substitution Theorem, a voltage source 𝑢
𝐹
can be used to

replace the component 𝑃 in the CUT.Therefore, both voltage
𝑢
𝐹
and vector US are regarded as the excitation of the CUT.

Then the collaborative output 𝐹
𝑐
(⋅) is defined as follows:

𝐹
𝑐 (𝑠, 𝑃) = (𝑈𝑜 𝐼

𝑑𝑑) (

𝑐
0

𝑐
1

) , (3)

where 𝑈
𝑜
is the output voltage of CUT, 𝐼

𝑑𝑑
is the power

supply current, and 𝑠 is the Laplacian operator. 𝑐
0
and 𝑐
1

are predefined coefficients. Furthermore, the corresponding
transfer function matricesH andHF are defined as

H = (

𝐻
1𝑑𝑑 (𝑠) 𝐻

11 (𝑠) ⋅ ⋅ ⋅ 𝐻
1𝑚 (𝑠)

𝐻
2𝑑𝑑 (𝑠) 𝐻

21 (𝑠) ⋅ ⋅ ⋅ 𝐻
2𝑚 (𝑠)

)

𝑇

,

HF = (𝐻1𝐹 (𝑠) 𝐻
2𝐹 (𝑠)) ,

(4)

where 𝐻
1𝑑𝑑

(𝑠), 𝐻
2𝑑𝑑

(𝑠), 𝐻
1𝑘

(𝑠) (1 ≤ 𝑘 ≤ 𝑚), 𝐻
2𝑘

(𝑠) (1 ≤ 𝑘 ≤

𝑚), 𝐻
1𝐹

(𝑠), and 𝐻
2𝐹

(𝑠) are transfer functions with respect to
𝑈
𝑜
and 𝐼
𝑑𝑑
. Then, 𝐹

𝑐
(⋅) can be expressed as

𝐹
𝑐 (𝑠, 𝑃) = (USH + 𝑢

𝐹
HF) (

𝑐
0

𝑐
1

) . (5)

In addition, according to the theories of circuit analysis,
𝑢
𝐹
can be further defined as

𝑢
𝐹

= 𝑢oc
𝑍
𝐹

𝑍
0
+ 𝑍
𝐹

, (6)

where 𝑢oc is open circuit voltage for the failure component 𝑃;
𝑍
0
is corresponding Thevenin equivalent impedance, while

𝑍
𝐹
is the impedance of 𝑃. According to the Thevenin’s

Theorem, 𝑢oc and 𝑍
0
are independent of 𝑍

𝐹
. Therefore,

𝐹
𝑐 (𝑠, 𝑃) = USH(

𝑐
0

𝑐
1

) + 𝑢ocHF (

𝑐
0

𝑐
1

)
𝑍
𝐹

𝑍
0
+ 𝑍
𝐹

. (7)

For any determinate frequency 𝜔, the Laplacian operator
𝑠 = 𝑗𝜔 is also an imaginary constant, where 𝑗 is imaginary
unit vector. In addition, without loss of generality, 𝑍

𝐹
can

be assumed to be a pure resistance 𝑅
𝐹
or reactance 𝑋

𝐹
.

Therefore, taking 𝑅
𝐹
as an example,

𝐹
𝑐 (𝑃) = USH(

𝑐
0

𝑐
1

) + 𝑢ocHF (

𝑐
0

𝑐
1

)
𝑅
𝐹

𝑍
0
+ 𝑅
𝐹

. (8)

With the following assumptions,

USH(

𝑐
0

𝑐
1

) = 𝑎
1
+ 𝑗𝑏
1
,

𝑢ocHF (

𝑐
0

𝑐
1

) = 𝑎
2
+ 𝑗𝑏
2
,

𝑍
0
= 𝑅
0
+ 𝑗𝑋
0
,

(9)

where 𝑎
1
, 𝑏
1
, 𝑎
2
, 𝑏
2
, 𝑅
0
, and 𝑋

0
are all real numbers, then

𝐹
𝑐 (𝑃) = (𝑎

1
+ 𝑗𝑏
1
) + (𝑎

2
+ 𝑗𝑏
2
)

𝑅
𝐹

(𝑅
0
+ 𝑗𝑋
0
) + 𝑅
𝐹

,

𝑅
0
+ 𝑗𝑋
0

𝑅
𝐹

=
[𝑎
2
(𝐹
𝑅
− 𝑎
1
) + 𝑏
2
(𝐹
𝐼
− 𝑏
1
)]

(𝐹
𝑅
− 𝑎
1
)
2
+ (𝐹
𝐼
− 𝑏
1
)
2

− 1

+ 𝑗
[−𝑎
2
(𝐹
𝐼
− 𝑏
1
) + 𝑏
2
(𝐹
𝑅
− 𝑎
1
)]

(𝐹
𝑅
− 𝑎
1
)
2
+ (𝐹
𝐼
− 𝑏
1
)
2

,

(10)

where

𝐹
𝑅

= Re [𝐹
𝑐 (𝑃)] ,

𝐹
𝐼
= Im [𝐹

𝑐 (𝑃)] .

(11)

If 𝑅
0
and 𝑋

0
are all equal to zero, the CUT is equal to an

ideal voltage source 𝑢oc corresponding to the component 𝑃.
This means that variation in 𝑍

𝐹
will not affect 𝑢

𝐹
and 𝐹

𝑐
(𝑃).

Thus, we have

𝑅
0

𝑅
𝐹

=
[𝑎
2
(𝐹
𝑅
− 𝑎
1
) + 𝑏
2
(𝐹
𝐼
− 𝑏
1
)]

(𝐹
𝑅
− 𝑎
1
)
2
+ (𝐹
𝐼
− 𝑏
1
)
2

− 1,

𝑋
0

𝑅
𝐹

=
[−𝑎
2
(𝐹
𝐼
− 𝑏
1
) + 𝑏
2
(𝐹
𝑅
− 𝑎
1
)]

(𝐹
𝑅
− 𝑎
1
)
2
+ (𝐹
𝐼
− 𝑏
1
)
2

.

(12)

Then

𝑅
0

𝑋
0

=
𝑎
2
(𝐹
𝑅
− 𝑎
1
) + 𝑏
2
(𝐹
𝐼
− 𝑏
1
) − (𝐹

𝑅
− 𝑎
1
)
2
− (𝐹
𝐼
− 𝑏
1
)
2

−𝑎
2
(𝐹
𝐼
− 𝑏
1
) + 𝑏
2
(𝐹
𝑅
− 𝑎
1
)

.

(13)
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Furthermore, (13) can be transformed into a formula of 2D
circle:

(𝐹
𝑅
− 𝑐
𝑟
)
2
+ (𝐹
𝐼
− 𝑐
𝑗
)
2

= 𝑟
𝑐

2
, (14)

𝑐
𝑟
=

−𝑏
2
𝑅
0
+ 2𝑎
1
𝑋
0
+ 𝑎
2
𝑋
0

2𝑋
0

,

𝑐
𝑗
=

𝑎
2
𝑅
0
+ 2𝑏
1
𝑋
0
+ 𝑏
2
𝑋
0

2𝑋
0

,

𝑟
𝑐

2
=

(𝑎
2

2
+ 𝑏
2

2
) (𝑅
0

2
+ 𝑋
0

2
)

4𝑋
0

2
,

(15)

where 𝑐
𝑟
and 𝑐
𝑗
are the real part and imaginary part of the

circle center coordinates, respectively. 𝑟
𝑐
is the radius. It is

confirmed that 𝑐
𝑟
, 𝑐
𝑗
, and 𝑟

𝑐
are independent of the parametric

change of the failure component𝑃.Therefore, fault loci fitting
requires a small amount of simulation on potential faults, for
both catastrophic faults and parametric faults. Alternatively,
if𝑍
𝐹
is assumed to be a pure reactance𝑋

𝐹
, similar conclusion

can be reached.
For a CUT with 𝑛 components 𝑃

𝑖
(1 ≤ 𝑖 ≤ 𝑛), fault

modeling is to determine the model parameters 𝑐
𝑟𝑖
, 𝑐
𝑗𝑖
, and

𝑟
𝑐𝑖
for each 𝑃

𝑖
according to (15), where parameters 𝑐

𝑟𝑖
, 𝑐
𝑗𝑖
,

and 𝑟
𝑐𝑖
are corresponding to 𝑐

𝑟
, 𝑐
𝑗
, and 𝑟

𝑐
, respectively. In

most actual analog cases, (14) is hard to derive from transfer
function directly. However, it is well known that three sets
of distinct data are sufficient to determine a circle. In this
regard, simulation is a simple method to establish the circle
model in (14). Therefore, in the modeling process, three sets
of distinct output data are obtained by parametric sweep
simulations, corresponding to three distinct values of each
component 𝑃

𝑖
. For the whole CUT, 𝑛 parametric sweep

simulations are needed. Three sets of distinct simulation
data for each component are assumed as 𝐹

0

𝑐
, 𝐹
1

𝑐𝑖
, and 𝐹

2

𝑐𝑖
.

Since 𝐹
0

𝑐
is assumed to be the fault free output, it fits in

with all components.The fault modeling process is illustrated
in Figure 1. In addition, the following equation is used to
calculate the parameters 𝑐

𝑟𝑖
, 𝑐
𝑗𝑖
, and 𝑟

𝑐𝑖
for component 𝑃

𝑖
(1 ≤

𝑖 ≤ 𝑛):

[Re (𝐹
0

𝑐
) − 𝑐
𝑟𝑖
]
2

+ [Im (𝐹
0

𝑐
) − 𝑐
𝑗𝑖
]
2

= 𝑟
𝑐𝑖

2
,

[Re (𝐹
1

𝑐𝑖
) − 𝑐
𝑟𝑖
]
2

+ [Im (𝐹
1

𝑐𝑖
) − 𝑐
𝑗𝑖
]
2

= 𝑟
𝑐𝑖

2
,

[Re (𝐹
2

𝑐𝑖
) − 𝑐
𝑟𝑖
]
2

+ [Im (𝐹
2

𝑐𝑖
) − 𝑐
𝑗𝑖
]
2

= 𝑟
𝑐𝑖

2
.

(16)

2.2. Example of a Sallen-Key Filter. Compared with the diffi-
culty of obtaining explicit mathematical expression, simula-
tion is a relatively easyway for faultmodeling. Todemonstrate
the method, a second-order Sallen-Key filter, as shown in
Figure 2, is adopted as an example of circuit under test (CUT).
By parameter sweeping simulationswith respect to the supply
current 𝐼

𝑑𝑑
and the output response 𝑈

𝑜
in PSPICE, the 2D

collaborative fault model can be achieved. The simulation
results are listed in Table 1, in which parametric ratio means
the ratio between failure value and nominal value for each

Start

End

Yes

No

Simulating two distinct output data F
1
ci and F

2
ci for component

Pi, by parametric sweep simulation

Calculating parameters cri, cji , and rci for component

Simulating and recording the fault free output F0
c

Parametric sweep simulation time i = 1

Pi according to (16)

i = i + 1, if i > n?

Figure 1: Flowchart of fault modeling.

R1

R2

R3 R4

C1

C2

OutU1

Vss

+

−

𝐔𝐒

Uo

Idd

Vdd

Figure 2: Second-order Sallen-key filter, where 𝑅1, 𝑅2, 𝑅3 and 𝑅4

are 10 kΩ, 𝐶1 and 𝐶2 are 4.7 nF.

component. Further results are also provided in Figure 3.The
stimulation is a 3 kHz, 1 V sine signal, and the parameter
sweeping range for each component is assumed to be from
𝑝
𝑖
×10
−4 to𝑝

𝑖
×10
4, where𝑝

𝑖
(1 ≤ 𝑖 ≤ 𝑛) is the fault-free value

of the 𝑖th component 𝐹
𝑖
. In addition, the simulation range

of 𝑅3 and 𝑅4 is reduced, because output power of the filter
is limited. As shown in Figure 3, all potential fault statuses
compose a family of loci on the complex plane, which is
called 𝐹

𝑖
-loci. Every 𝐹

𝑖
-locus corresponds to all the potential

fault statuses of a component, not only parametric faults but
also catastrophic faults. Furthermore,𝐹

𝑖
-loci converges in the

fault free point A and zero point B.
Note that in some cases, distances between some 𝐹

𝑖
-loci

are very small. In extreme cases, some 𝐹
𝑖
-loci may coincide

with each other, which results in ambiguity group. Since the
2D collaborative faultmodel is derived from transfer function
of CUT, ambiguity group may be an inevitable problem [15].
Table 2 lists the ambiguity groups of the Sallen-Key filter, and
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Table 1: Simulation results of 2D model for the Sallen-Key filter.

Parametric
ratio

Collaborative simulation results
𝐹
𝐶
(𝑅1) 𝐹

𝐶
(𝑅2) 𝐹

𝐶
(𝑅3) 𝐹

𝐶
(𝑅4) 𝐹

𝐶
(𝐶1) 𝐹

𝐶
(𝐶2)

0.01 0.7977 − 𝑗1.0218 1.7383 − 𝑗0.3307 — −0.0364 − 𝑗0.4066 1.1249 + 𝑗0.6892 0.2792 − 𝑗0.8047

0.05 0.7959 − 𝑗1.0537 1.7801 − 𝑗0.4091 — −0.0369 − 𝑗0.4382 1.2076 + 𝑗0.6979 0.2816 − 𝑗0.8265

0.08 0.7925 − 𝑗1.0777 1.8094 − 𝑗0.4733 — −0.0373 − 𝑗0.4627 1.2755 + 𝑗0.7012 0.2830 − 𝑗0.8264

0.1 0.7906 − 𝑗1.0949 1.8271 − 𝑗0.5187 — −0.0375 − 𝑗0.4794 1.3282 + 𝑗0.7019 0.2839 − 𝑗0.8519

0.4 0.7063 − 𝑗1.3735 1.7917 − 𝑗1.4096 — −0.0348 − 𝑗0.7801 2.4864 + 𝑗0.2002 0.2905 − 𝑗1.0578

0.7 0.4829 − 𝑗1.6766 0.9513 − 𝑗2.0720 0.7186 − 𝑗3.9260 −0.0105 − 𝑗1.2155 1.9996 − 𝑗2.3457 0.2565 − 𝑗1.3783

0.9 0.2312 − 𝑗1.8427 0.3137 − 𝑗2.0195 0.1476 − 𝑗2.2588 0.0354 − 𝑗1.6315 0.4333 − 𝑗2.2252 0.1647 − 𝑗1.7011

1.0 0.0767 − 𝑗1.8977 0.0767 − 𝑗1.8977 0.0767 − 𝑗1.8977 0.0767 − 𝑗1.8977 0.0767 − 𝑗1.8977 0.0767 − 𝑗.8977

1.1 −0.9320 − 𝑗1.9275 −0.1008 − 𝑗1.7530 0.0385 − 𝑗1.6543 0.1390 − 𝑗2.2194 −0.1113 − 𝑗1.6025 −0.0746 − 𝑗2.1441

1.3 −0.4407 − 𝑗1.8928 −0.3146 − 𝑗1.4630 0.0013 − 𝑗1.3453 0.3832 − 𝑗3.0993 −0.2476 − 𝑗1.1936 −0.6829 − 𝑗2.6877

1.5 −0.7474 − 𝑗1.7426 −0.4093 − 𝑗1.2169 −0.0151 − 𝑗1.1573 1.0301 − 𝑗4.5183 −0.2751 − 𝑗0.9275 −2.0075 − 𝑗2.9003

2 −1.1278 − 𝑗1.1435 −0.4420 − 𝑗0.8107 −0.0304 − 𝑗0.9029 15.264 − 𝑗3.1208 −0.2445 − 𝑗0.5844 −2.8027 + 𝑗0.5055

3 −0.9616 − 𝑗0.3874 −0.3514 − 𝑗0.4570 −0.0366 − 𝑗0.7040 — −0.1726 − 𝑗0.3330 −0.7652 + 𝑗0.6990

5 −0.5445 − 𝑗0.0583 −0.2246 − 𝑗0.2339 −0.0379 − 𝑗0.5686 — −0.1030 − 𝑗0.1748 −0.2644 + 𝑗0.3346

10 −0.2431 + 𝑗0.0129 −0.1143 − 𝑗0.1029 −0.0375 − 𝑗0.4793 — −0.0509 − 𝑗0.0800 −0.0979 + 𝑗0.1423

30 −0.0739 + 𝑗0.0104 −0.0383 − 𝑗0.0314 −0.0367 − 𝑗0.4248 — −0.0168 − 𝑗0.0252 −0.0273 + 𝑗0.0425

100 −0.0215 + 𝑗0.0036 −0.0115 − 𝑗0.0091 −0.0364 − 𝑗0.4067 — −0.0050 − 𝑗0.0074 −0.0078 + 𝑗0.0124

0 5 10

0

5

5

1

2

3

4

−5

−5
−10

Im
(F

C
)

Re(FC)

A

B

Figure 3: 2D collaborative fault model of the Sallen-Key filter. All
potential fault statuses of the filter compose a family of 𝐹

𝑖
-loci, and

𝐹
𝑖
-loci converge in the fault free point A and zero point B.

Figure 3 shows that while the 𝐹
𝑖
-loci of 𝑅1, 𝑅2, 𝐶1, and 𝐶2

are obviously different from others, fault status of 𝑅3 and 𝑅4

are located on the same locus.Thismeans that potential faults
of 𝑅3 and 𝑅4 cannot be isolated based on the fault model in
Figure 3; therefore, 𝑅3 and 𝑅4 fall into the same ambiguity
group {𝑅3, 𝑅4}.

3. Fault Modeling in 3D Complex Space

Based on the measurements of supply current and voltage
response at any test point, the 2D collaborative fault model

Table 2: Ambiguity groups of the Sallen-Key filter.

Ambiguity group Fault components
A 𝑅1

B 𝑅2

C 𝑅3, 𝑅4

D 𝐶1

E 𝐶2

transforms all potential failure statuses into a family of loci.
Therefore, both parametric faults and catastrophic faults can
all be detected and located. However, due to the limits of
component tolerance and measurement error, the 2D fault
model is difficult to apply in actual analog circuits. As
depicted in Figure 3, between point A and point B, the 𝑅2

and 𝐶1-loci are too close to be distinguished. Therefore, to
increase the practicability for actual applications, the 2D fault
model is extended into 3D complex space.

3.1. Theorem of 3D Collaborative Fault Model. The 2D func-
tion in (3) is a linear combination of supply current 𝐼

𝑑𝑑
and

voltage response 𝑈
𝑜
, based on the measurements of real part

Re(⋅) and imaginary part Im(⋅) of each complex variable.
𝐼
𝑑𝑑

and 𝑈
𝑜
are easier to measure in-circuit from limited

test points than other circuit variables, such as the input
admittance. Furthermore, the complex modulus (absolute
value) | ⋅ | is also employed to compose the 3D function. This
helps to increase the distance between 𝐹

𝑖
-loci fault models

and improve the FIR.
Similarly, the component 𝑃 in (2) is still assumed to be

the failure component. Therefore, by defining 𝑥, 𝑦, and 𝑧 as
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Table 3: Simulation results for 𝑅2 and 𝐶1 in 3D model.

Parametric ratio Simulation results of 𝑅2 Simulation results of 𝐶1

𝐹
𝑈
(𝑅2) 𝐹

𝐼𝐷𝐷
(𝑅2) 𝑐

1
𝐼
𝑑𝑑

𝐹
𝑈
(𝐶1) 𝐹

𝐼𝐷𝐷
(𝐶1) 𝑐

1
𝐼
𝑑𝑑

0.01 2.052 − 𝑗0.040 2.3371 −0.3137 − 𝑗0.2910 1.156 + 𝑗1.009 3.1270 −0.0276 − 𝑗0.3186

0.05 2.115 − 𝑗0.121 2.2642 −0.3349 − 𝑗0.2879 1.251 + 𝑗1.034 2.9564 −0.0380 − 𝑗0.3361

0.08 2.161 − 𝑗0.189 2.116 −0.3516 − 𝑗0.2843 1.328 + 𝑗1.051 2.8331 −0.0472 − 𝑗0.3498

0.1 2.190 − 𝑗0.238 2.1782 −0.3629 − 𝑗0.2812 1.382 + 𝑗1.061 2.7540 −0.0538 − 𝑗0.3591

0.4 2.323 − 𝑗1.263 1.8144 −0.5313 − 𝑗0.1466 2.804 + 𝑗0.713 1.6581 −0.3176 − 𝑗0.5127

0.7 1.491 − 𝑗2.184 1.8142 −0.5397 + 𝑗0.1120 2.743 − 𝑗2.293 1.3418 −0.7434 − 𝑗0.0527

0.9 0.752 − 𝑗2.248 2.0242 −0.4380 + 𝑗0.2285 0.929 − 𝑗2.460 1.8244 −0.4953 + 𝑗0.2348

1.0 0.457 − 𝑗2.155 2.1775 −0.3804 + 𝑗0.2573 0.457 − 𝑗2.155 2.1775 −0.3804 + 𝑗0.2573

1.1 0.226 − 𝑗2.024 2.3555 −0.3268 + 0.2710 0.185 − 𝑗1.854 2.5751 −0.2959 + 𝑗0.2515

1.3 −0.075 − 𝑗1.734 2.7645 −0.2396 + 𝑗0.2710 −0.051 − 𝑗1.413 3.3929 −0.1970 + 𝑗0.2194

1.5 −0.231 − 𝑗1.471 3.2227 −0.1781 + 𝑗0.2541 −0.134 − 𝑗1.114 4.2771 −0.1410 + 𝑗0.1865

2 −0.348 − 𝑗1.013 4.4787 −0.0945 + 𝑗0.2023 −0.166 − 𝑗0.716 6.5293 −0.0787 + 𝑗0.1314

3 −0.313 − 𝑗0.591 7.1763 −0.0386 + 𝑗0.1339 −0.133 − 𝑗0.414 11.0258 −0.0401 + 𝑗0.0814

5 −0.211 − 𝑗0.311 12.7565 −0.0133 + 𝑗0.0773 −0.084 − 𝑗0.220 20.3875 −0.0193 + 𝑗0.0451

10 −0.111 − 𝑗0.140 26.8834 −0.0036 + 𝑗0.0370 −0.043 − 𝑗0.101 43.6119 −0.0083 + 𝑗0.0214

30 −0.038 − 𝑗0.043 83.5634 −0.0006 + 𝑗0.0120 −0.014 − 𝑗0.032 136.5537 −0.0025 + 𝑗0.0069

100 −0.011 − 𝑗0.013 281.8780 −0.0001 + 𝑗0.0035 −0.004 − 𝑗0.009 461.8366 −0.0007 + 𝑗0.0020

the unit vectors in 3D complex space, a transformation
function 𝐹

1

3D(⋅) can be composed as follow [14]:

𝐹
1

3D (𝑃) = 𝑥 ⋅ Re [𝐹
𝑈 (𝑃)]

+ 𝑦 ⋅ Im [𝐹
𝑈 (𝑃)] + 𝑧 ⋅

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝐹
𝐼𝐷𝐷 (𝑃)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

,

(17)

where

𝐹
𝑈 (𝑃) = 𝑐

0
𝑈
𝑜
, (18)

𝐹
𝐼𝐷𝐷 (𝑃) =

1

(𝑐
1
𝐼
𝑑𝑑

)
, (19)

where 𝑐
0
and 𝑐
1
are still adjustment coefficients as in (3).

Taking the component pair𝑅2-𝐶1 as an example, the distance
𝐷
1

3D(⋅) between 𝑅2 and 𝐶1-loci is

𝐷
1

3D (𝑅2, 𝐶1)

= √[𝐷1
𝑥
(𝑅2, 𝐶1)]

2
+ [𝐷1
𝑦
(𝑅2, 𝐶1)]

2

+ [𝐷1
𝑧
(𝑅2, 𝐶1)]

2
,

(20)

where 𝐷
1

𝑥
(⋅), 𝐷1
𝑦
(⋅), and 𝐷

1

𝑧
(⋅) are distances corresponding to

each axe in 3D complex space:

𝐷
1

𝑥
(𝑅2, 𝐶1) =

󵄨󵄨󵄨󵄨Re [𝐹
𝑈 (𝑅2)] − Re [𝐹

𝑈 (𝐶1)]
󵄨󵄨󵄨󵄨 ,

𝐷
1

𝑦
(𝑅2, 𝐶1) =

󵄨󵄨󵄨󵄨Im [𝐹
𝑈 (𝑅2)] − Im [𝐹

𝑈 (𝐶1)]
󵄨󵄨󵄨󵄨 ,

𝐷
1

𝑧
(𝑅2, 𝐶1) =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝐹
𝐼𝐷𝐷 (𝑅2)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

−

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝐹
𝐼𝐷𝐷 (𝐶1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(21)

Although the distance 𝐷
1

3D(⋅) in (20) has been proved to
be better than that in 2D 𝐹

𝑖
-loci fault model [14], it is calcu-

lated based on voltage and input admittance, whose absolute

values are usually far greater than supply current. Therefore,
for an appropriate coefficient 𝑐

1
, the following inequality can

be guaranteed:
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝐹
𝐼𝐷𝐷 (𝑃)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨𝑐1𝐼𝑑𝑑

󵄨󵄨󵄨󵄨 < 1. (22)

In addition, a new distance 𝐷
2

𝑧
(⋅) is defined as follows:

𝐷
2

𝑧
(𝑅2, 𝐶1) =

󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝐹𝐼𝐷𝐷 (𝑅2)
󵄨󵄨󵄨󵄨 −

󵄨󵄨󵄨󵄨𝐹𝐼𝐷𝐷 (𝐶1)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨 ,

𝐷
2

𝑧
(𝑅2, 𝐶1) =

𝐷
1

𝑧
(𝑅2, 𝐶1)

1/
󵄨󵄨󵄨󵄨𝐹𝐼𝐷𝐷 (𝑅2)

󵄨󵄨󵄨󵄨 ⋅ 1/
󵄨󵄨󵄨󵄨𝐹𝐼𝐷𝐷 (𝐶1)

󵄨󵄨󵄨󵄨

> 𝐷
1

𝑧
(𝑅2, 𝐶1) .

(23)

Therefore, a new transformation function 𝐹
2

3D(⋅) for the
3D fault model can be defined as

𝐹
2

3D (𝑃) = 𝑥 ⋅ Re [𝐹
𝑈 (𝑃)] + 𝑦 ⋅ Im [𝐹

𝑈 (𝑃)] + 𝑧 ⋅
󵄨󵄨󵄨󵄨𝐹𝐼𝐷𝐷 (𝑃)

󵄨󵄨󵄨󵄨 .

(24)

Furthermore, the distance 𝐷
2

3D(⋅) is defined for the new
function 𝐹

2

3D(⋅). Taking 𝑅2 and 𝐶1 as an example, it can be
expressed as

𝐷
2

3D (𝑅2, 𝐶1)

= √[𝐷1
𝑥
(𝑅2, 𝐶1)]

2
+ [𝐷1
𝑦
(𝑅2, 𝐶1)]

2

+ [𝐷2
𝑧
(𝑅2, 𝐶1)]

2
.

(25)

3.2. Simulation Example of Sallen-Key Filter for the 3DModel.
For a given input of 1 V, 3 kHz sine signal, PSPICE results on
the Sallen-Key filter are obtained. The key part of simulation
results are listed in Table 3. The original simulation results
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Figure 4: Family of fault loci in 3D complex place for the Sallen-Key
filter. All𝐹

𝑖
-loci converge in the fault free point A, while some𝐹

𝑖
-loci

have tendency to an infinity point B.

include 𝑈
𝑜
and 𝐼

𝑑𝑑
, corresponding to all potential failure

status of each component, such as 𝑅2 and 𝐶1, and then all
the data in Table 3 is obtained according to (18) and (19).
Moreover, the simulation results are also illustrated integrally
in Figure 4. It shows that all 𝐹

𝑖
-loci converge in the fault free

point A, which is similar to the 2D 𝐹
𝑖
-loci. However, due

to the definition in (19), some 𝐹
𝑖
-loci tend to be an infinity

point B, instead of the determinate point B in 2D model. The
associated ambiguity groups are the same as shown inTable 2.

To validate the improvement of fault model 𝐹2
3D(⋅) in (24),

the 2D model proposed in Section 2 is used as a reference.
In addition, both the 3D model 𝐹

1

3D(⋅) proposed in [14],
and the complex-circle-based fault model proposed in [12,
13] are adopted for comparison. In the example of 𝑅2 and
𝐶1 in the Sallen-Key filter, distances between 𝑅2 and 𝐶1-
loci are provided in Table 4, according to each fault model,
respectively; the comparison range is from𝑝

𝑖
×10
−2 to𝑝

𝑖
×10
2,

where 𝑝
𝑖
is the fault-free value of 𝑅2 and 𝐶1. The results of

comparison between different methods are also illustrated in
Figure 5, in which the curve 𝑑1 is the distance of 𝑅2-𝐶1 in
the 3D model 𝐹2

3D(⋅), the curve 𝑑2 is the distance defined in
the 2Dmodel, the dash curve 𝑑3 is defined by 𝐹

1

3D(⋅) [14], and
dash curve 𝑑4 is related to complex-circle-based fault model
[12, 13]. As shown in Table 4, 𝑑3 is better than 𝑑4; however,
because the biggest gap between 𝑑3 and 𝑑4 is less than 2.2%,
𝑑4 is very close to 𝑑3 in Figure 5. Moreover, 𝑑1 is much better
than all the others. Since 𝑑3 is also based on the 3D model
in [14], it is taken as an ideal reference. On average, 𝑑1 is
9.6% bigger than 𝑑3, in the value range from 𝑝

𝑖
× 10
−2 to 𝑝

𝑖
.

Moreover, in the range from 𝑝
𝑖
to 𝑝
𝑖
×10
2, because 𝐼

𝑑𝑑
and𝑈

𝑜

tend to be zero, 𝑑1 increases continuously while 𝑑3 reduces,

Table 4: Distances between 𝑅2 and 𝐶1-loci with respect to different
fault models.

Parametric ratio 𝑑1 𝑑2 𝑑3 𝑑4

0.01 1.5896 1.1902 1.3836 1.3805
0.05 1.6000 1.2463 1.4463 1.4453
0.08 1.6180 1.2902 1.4971 1.4963
0.1 1.6342 1.3184 1.5324 1.5294
0.4 2.0396 1.7533 2.0343 2.0336
0.7 1.3426 1.0835 1.2716 1.2567
0.9 0.3408 0.2379 0.2814 0.2761
1.0 0 0 0 0
1.1 0.2808 0.1509 0.1787 0.1750
1.3 0.7061 0.2776 0.3288 0.3219
1.5 1.1175 0.3190 0.3778 0.3700
2 2.0800 0.3004 0.3553 0.3483
3 3.8577 0.2176 0.2570 0.2523
5 7.6327 0.1353 0.1596 0.1568
10 16.7287 0.0675 0.0795 0.0782
30 52.9903 0.0223 0.0263 0.0259
100 179.9586 0.0067 0.0079 0.0077
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Figure 5:Distances between𝑅2 and𝐶1-lociwith respect to different
fault models. Curve 𝑑1 is defined by the 3D model proposed in
Section 3, 𝑑2 is the 2D model proposed in Section 2, 𝑑3 is corre-
sponding to the 3Dmodel proposed in [14], and 𝑑4 is corresponding
to the complex-circle-based fault model proposed in [12, 13].

and the advantage of 𝑑1 is more significant. Thus, 3D fault
model 𝐹2

3D(⋅) results in better FIR against the measurement
errors and parametric tolerance.

4. DFT by Adding Switched
Bypass-Components

4.1. Theory of Improved DFT Method. A common theory
of ambiguity group in fault diagnosis has been proposed
in previous research [15]. If the sensitivities of some ana-
log components are linearly dependent on all frequencies,
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the change of these components cannot be distinguished, and
thus these components fall into an ambiguity group. Based
on this theory, components 𝑅

𝑎
and 𝑅

𝑏
in an analog CUT are

assumed to fall into the ambiguity groups {𝑅
𝑎
, 𝑅
𝑏
}; similar to

𝑅3 and 𝑅4 of the Sallen-Key filter in Figure 2, a linear ratio 𝑟

is defined as

𝑟 =
𝑅
𝑏

𝑅
𝑎

. (26)

In addition, 𝐻(𝑠) is assumed to be the transfer function
of CUT and it is a function of 𝑟 as

𝐻(𝑠) = 𝑓 (𝑟) , (27)

where 𝑠 is the Laplacian operator. Therefore,

𝜕𝐻 (𝑠)

𝜕𝑅
𝑎

=
𝜕𝑓

𝜕𝑟

𝜕𝑟

𝜕𝑅
𝑎

=
𝜕𝑓

𝜕𝑟
(−

𝑅
𝑏

𝑅
𝑎

2
) , (28)

𝜕𝐻 (𝑠)

𝜕𝑅
𝑏

=
𝜕𝑓

𝜕𝑟

𝜕𝑟

𝜕𝑅
𝑏

=
𝜕𝑓

𝜕𝑟

1

𝑅
𝑎

= −
1

𝑟

𝜕𝐻 (𝑠)

𝜕𝑅
𝑎

. (29)

Equation (29) shows the sensitivity dependence between
𝑅
𝑎
and 𝑅

𝑏
, which results in the ambiguity group {𝑅

𝑎
, 𝑅
𝑏
}.

Therefore, transforming the topological structure of CUT
and breaking the linear sensitivity dependence 𝑟 should be
an effective DFT method. One of the most common DFT
methods is bypassing and the traditional bypassing method
is based on reducing the capacitive effects [16–18]. However,
for the 3D model in complex space, keeping or increasing
the capacitive effects is expected to be a far more effective
method.

For the purpose of increasing the capacitive effects, 𝐶
𝑏
is

assumed to be added in CUT as a parallel branch of 𝑅
𝑏
, and

then the impedance 𝑍
𝑏
of the parallel branch is

𝑍
𝑏
=

𝑅
𝑏
× 1/𝑠𝐶

𝑏

𝑅
𝑏
+ 1/𝑠𝐶

𝑏

=
𝑅
𝑏

1 + 𝑠𝐶
𝑏
𝑅
𝑏

. (30)

Thus the new linear ratio 𝑟
󸀠 is defined as

𝑟
󸀠
=

𝑍
𝑏

𝑅
𝑎

=
𝑅
𝑏

𝑅
𝑎
(1 + 𝑠𝐶

𝑏
𝑅
𝑏
)
. (31)

So the corresponding transfer function 𝐻
󸀠
(𝑠) is defined

based on function 𝑓(⋅):

𝐻
󸀠
(𝑠) = 𝑓 (𝑟

󸀠
) ,

𝜕𝐻
󸀠
(𝑠)

𝜕𝑅
𝑎

=
𝜕𝑓

𝜕𝑟󸀠

𝜕𝑟
󸀠

𝜕𝑅
𝑎

=
𝜕𝑓

𝜕𝑟󸀠

𝑅
𝑏

(1 + 𝑠𝐶
𝑏
𝑅
𝑏
)

−1

𝑅
𝑎

2
,

𝜕𝐻
󸀠
(𝑠)

𝜕𝑅
𝑏

=
𝜕𝑓

𝜕𝑟󸀠

𝜕𝑟
󸀠

𝜕𝑅
𝑏

=
𝜕𝑓

𝜕𝑟󸀠

1

𝑅
𝑎

1

(1 + 𝑠𝐶
𝑏
𝑅
𝑏
)
2
,

𝜕𝐻
󸀠
(𝑠)

𝜕𝐶
𝑏

=
𝜕𝑓

𝜕𝑟󸀠

𝜕𝑟
󸀠

𝜕𝐶
𝑏

=
𝜕𝑓

𝜕𝑟󸀠

𝑅
𝑏

𝑅
𝑎

−𝑠𝑅
𝑏

(1 + 𝑠𝐶
𝑏
𝑅
𝑏
)
2
;

(32)

Start

Fault location based on dictionary I

Testing, is CUT out of fault free status?

End

Yes

No

Fault modeling for the original CUT by simulation and 
recording as dictionary I

Analyzing the parameter sensitivities dependence of 
CUT, DFT by adding redundant components in 

corresponding circuit branches

Switching on the redundant components, fault modeling, 
and recording as dictionary II

Bypassing the redundant components, CUT is in normal 
working mode

Is there any ambiguity group?

Yes

Switching on the redundant components, CUT is in test mode 

Fault location based on dictionary II

No

Figure 6: Flowchart of bypassing-based DFT and testing.

then

𝜕𝐻
󸀠
(𝑠) /𝜕𝑅𝑎

𝜕𝐻󸀠 (𝑠) /𝜕𝑅𝑏

=
−𝑅
𝑏
(1 + 𝑠𝐶

𝑏
𝑅
𝑏
)

𝑅
𝑎

,

𝜕𝐻
󸀠
(𝑠) /𝜕𝑅𝑎

𝜕𝐻󸀠 (𝑠) /𝜕𝐶𝑏

=
𝑠𝑅
𝑏
(1 + 𝑠𝐶

𝑏
𝑅
𝑏
)

𝑅
𝑎

,

𝜕𝐻
󸀠
(𝑠) /𝜕𝑅𝑏

𝜕𝐻󸀠 (𝑠) /𝜕𝐶𝑏

=
−1

𝑠𝑅
𝑏

2
.

(33)

As shown in (33), the parameter sensitivities for 𝑅
𝑎
, 𝑅
𝑏
,

and 𝐶
𝑏
are not linear obviously, which means that their

faults can be isolated. In a similar way, if 𝑅
𝑎
and 𝐶

𝑏
fall

into the same ambiguity group because their sensitivities are
linearly dependent, some 𝑅

𝑏
can be paralleled with 𝐶

𝑏
for

DFT purpose. Therefore, if the status of CUT is partitioned
into working mode and testing mode, the DFT and testing
flow proposed in previous can be illustrated in Figure 6.
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Figure 7: The Sallen-Key filter after adding switched bypass-
component𝐶3.𝐶3 is added for the purpose ofDFT, andMOS switch
𝑄1 is used to bypass 𝐶3 in filter mode.
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Figure 8: 3D fault model of the Sallen-key filter by DFT. Point
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tendency to an infinity point B.

4.2. Example and Simulation on Sallen-Key Filter. In the
Sallen-Key filter, not only the collaborative fault model on
2D Complex Plane but also the 𝐹

𝑖
-loci in 3D complex space

show that 𝑅3 and 𝑅4 fall into an ambiguity group, which is
also illustrated in Table 2. Therefore, for the purpose of DFT,
the switched bypass-component 𝐶3 is added by using a 𝑃-
channel MOS switch𝑄1 in Figure 7. When the control signal
𝑆1 = 1, 𝑄1 is turned off, the CUT is in common working
mode, and 𝐶3 is bypassed by 𝑄1. Otherwise, when 𝑆1 = 0,
the CUT is switched into testing mode and 𝐶3 is parallel to
𝑅4 because 𝑄1 is turned on.

With the input of 1 V, 3 kHz sine signal, PSPICE simula-
tion results in Figure 8 shows the 𝐹

𝑖
-loci of the Sallen-Key

Table 5: Updated ambiguity groups of the Sallen-Key filter by DFT.

Ambiguity group Fault components
A 𝑅1

B 𝑅2

C 𝑅3

D 𝑅4

E 𝐶1

F 𝐶2

G 𝐶3

filter after DFT, where 𝑅3 and 𝑅4-loci separate obviously.
All 𝐹
𝑖
-loci converge in the fault free point A, while points B

and C are the other two intersections, and point B is located
at infinity theoretically. Furthermore, the updated ambiguity
groups are listed in Table 5 and 𝑅3 and 𝑅4 belong to different
ambiguity groups. This means that adding switched bypass-
components is an effective method to improve the FIR.

In addition, compared with the DFT methods proposed
in [16–18], the improved method given in this paper is also
more effective to some extent. Both Sun [16] and Hong
[17] reduce capacitive effects by bypassing the capacitors in
original CUT, to achieve DFT in testing mode; however,
this method cannot isolate the ambiguity group like {𝑅3, 𝑅4}

in the Sallen-Key filter. The DFT method given in this
paper is based on the bypassing approach proposed in
[16]. It improves DFT method by adding some redundant
components in the CUT and bypassing these components
only in working mode. It offers appealing potential to
isolate some ambiguity groups compared with the methods
in [16, 17]. Moreover, isolation of both catastrophic faults
and parametric faults of analog circuits is possible with the
improved DFT method.

5. Conclusion

In order to cope with the difficulties of fault diagnosis in
analog circuits, a 2D fault model based on collaborative
supply current and output voltage is first proposed in this
paper. This 2D fault model is proved to be a family of circles
on complex plane and helps to simplify the simulation of
potential faults greatly. Then, the fault model is improved in
the 3D complex space, and a family of 𝐹

𝑖
-loci is obtained

to illustrate the potential faults of each analog component.
Since the distances between each 𝐹

𝑖
-locus are increased, the

3D model achieves a far better FIR against the measurement
error and parametric tolerance. The proposed fault models
are validated through examples on a Sallen-Key filter.

However, it is worth noting that ambiguity group is
still an inevitable problem. Therefore, to increase the FIR
sequentially, an improved bypassing-based DFT method is
introduced by using MOS switches and adding some redun-
dant components in the CUT. The simulation results show
that, except for few limited failure statuses, the parametric
and catastrophic faults in the analog CUT can be isolated
and the problem of ambiguity groups is well resolved with
improved FIR. The fault models on 2D complex plane and
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3D space are all based on the assumption of single fault; thus
the improved bypassing methods proposed in this paper are
also limited to single fault. In the presence of multifaults, this
fault model becomes complicated and thus further research
effort is needed in this area.
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