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This paper presents a new method on the problem of organically structured control based on state observation for a class of large-
scale systems with expanding construction. This problem is to design a local state feedback controller and an observer for a new
subsystem which is added to a large-scale system without changing the decentralized state feedback control laws of the original
construction, so that both the new subsystem and the resulting expanded system are robustly connectively stable. Firstly, based
on state observers, the mathematical model of a large-scale system with expanding construction is reestablished and analyzed.
In addition, the sufficient condition for robust decentralized connective stabilization of the expanded construction of large-scale
systems is deduced by taking an LMI approach, which is further relaxed by removing the square matrix condition on the output
matrix. This problem is transformed into solving an LMI problem. The new design method of an organically structured controller
and observer for the expanded construction is also given. Finally, the simulation examples show the effectiveness of the proposed
method.

1. Introduction

Structural changes of large-scale interconnected systems
occur in realworld applications, which have a negative impact
on stability of the systems. The question of how to reduce
these negative effects attracts close attention from many
scholars [1–4]. Siljak, who studied these stability problems
from the viewpoint of structural perturbations, proposed
the concept of connective stability [1] and introduced the
idea of organically structured control at a bionic angle [2].
Up to now, structural changes, such as situations in which
some subsystemsmay be disconnected and then reconnected,
have been considered in research, and organically structured
control methods have been given accordingly. Therefore,
structural control of large-scale interconnected systems has
become one of new research topics. However, the above-
mentioned structural changes do not cover all cases, such
as expanded construction in which new systems are added
to an original structure. The expanded construction, which
is often encountered, was first proposed in [5]. It discussed

the decentralized control problem by taking a frequency
domain approach. Due to the complexity of the frequency
domain design, [6, 7] provided sufficient conditions for
the solvability of the robust decentralized connective sta-
bilization problem by taking LMI theory and proposed an
organically structured control method for the expanded
construction of large-scale systems. However, all the existing
results are based on state feedback. Since not all states are
measurable, a state observer is necessary. Researches on
state estimation and the observer-based decentralized control
design have been well investigated in literature; see [8–13]
and the references therein.The observer-based decentralized
controller was derived for large-scale systems with expanding
construction in [14]. It is required that the output matrix 𝐶
of the added subsystems be a square matrix, which is very
restrictive.

In this paper, a mathematical model is reestablished for a
large-scale system with expanding construction. Comparing
with [14], an improved method is proposed for design-
ing an organically structured controller and observer of
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Figure 1: The basic structure of an expanded system.

the expanded construction. A new sufficient condition is
obtained for solving the observer-based decentralized control
design problem. Unlike [14], the restrictive condition on the
output matrix 𝐶 is no longer necessary. Some simulations
are given for a power system with expanding construction to
show the effectiveness of the proposed method.

The main contributions are as follows. (1) An observer-
based decentralized feedback controller is designed for a
class of large-scale systems with expanding structure. (2) A
sufficient condition for the existence of such controller is
derived, which is less restrictive than that in [14]. (3) A LMI-
based design approach is proposed to design such controller,
which is simpler than the frequency-domain method in [5].
(4) Such design method can be easily implemented for only
the newly added subsystem without changing the controllers
for the original subsystems no matter what design method
was used in the controller design for the original subsystems.

2. Mathematical Model of Large-Scale
Systems with Expanding Construction
Based on State Observation

Consider a class of large-scale systems with expanding con-
struction as in [5]. The basic structure of these systems is
shown in Figure 1.

In Figure 1, 𝑆
𝑁

is the original system structure which
is composed of 𝑁 subsystems, and 𝑆

𝑁+1
is the (𝑁 + 1)th

subsystem subsequently added to 𝑆
𝑁
. V
𝑁
= (V
1
, V
2
, . . . , V

𝑁
)
T

and 𝑤
𝑁
= (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑁
)
T, where V

𝑖
is the variable which

denotes the interconnection term of the 𝑖th subsystem from
the other subsystems, 𝑖 = 1, 2, . . . , 𝑁 + 1, while 𝑤

𝑖
is the

variable which represents the impact on the other subsystems
by the 𝑖th subsystem. The expanded system includes 𝑁 + 1
subsystems in total. The connective relations between the
subsystems are expressed by the connectivematrix 𝐸 = (𝐸

𝑖,𝑗
),

where 𝐸
𝑖,𝑗

represents the interconnection from the 𝑗th sub-
system to the 𝑖th subsystem. 𝐸

𝑖,𝑗
= 1 represents the fact that

there is an interconnection and 𝐸
𝑖,𝑗
= 0 means that there is

no interconnection. The connective relations of the original
system structure can be described as

𝐸
𝑁
=

[
[
[
[

[

0 𝐸
1,2

⋅ ⋅ ⋅ 𝐸
1,𝑁

𝐸
2,1

0 ⋅ ⋅ ⋅ 𝐸
2,𝑁

.

.

.
.
.
. d

.

.

.

𝐸
𝑁,1

𝐸
𝑁,2

⋅ ⋅ ⋅ 0

]
]
]
]

]

. (1)

In Figure 1, 𝐸
𝑁,𝑁+1

= [𝐸
T
1,𝑁+1

, 𝐸
T
2,𝑁+1

, . . . , 𝐸
T
𝑁,𝑁+1

]
T denotes

the new column of the interconnected matrix after the
new subsystem is added, while 𝐸

𝑁+1,𝑁
= [𝐸

𝑁+1,1
, 𝐸
𝑁+1,2

,

. . . , 𝐸
𝑁+1,𝑁

] represents the new row.The new interconnected
matrix is

𝐸
𝑁+1

=

[
[
[
[
[
[

[

0 𝐸
1,2

⋅ ⋅ ⋅ 𝐸
1,𝑁

𝐸
1,𝑁+1

𝐸
2,1

0 ⋅ ⋅ ⋅ 𝐸
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𝐸
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.
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.
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𝐸
𝑁,1

𝐸
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⋅ ⋅ ⋅ 0 𝐸
𝑁,𝑁+1

𝐸
𝑁+1,1

𝐸
𝑁+1,2

⋅ ⋅ ⋅ 𝐸
𝑁+1,𝑁

0

]
]
]
]
]
]

]

. (2)

Consider 𝑁 subsystems in the original structure, which
are controlled by state feedback with state observers. The
model of the structure is described as

�̇�
𝑖
= 𝐴
𝑖
𝑥
𝑖
+ 𝐵
𝑖
𝑢
𝑖
+ 𝐺
𝑖
V
𝑖
,

𝑦
𝑖
= 𝐶
𝑖
𝑥
𝑖
,

𝑤
𝑖
= 𝐻
𝑖
𝑥
𝑖
,

̇̃𝑥
𝑖
= 𝐴
𝑖
𝑥
𝑖
+ 𝐵
𝑖
𝑢
𝑖
+ 𝐿
𝑖
(𝐶
𝑖
𝑥
𝑖
− 𝐶
𝑖
𝑥
𝑖
) ,

𝑢
𝑖
= 𝐾
𝑖
𝑥
𝑖
,

(3)

with 𝑖 = 1, 2, . . . , 𝑁 and static interconnections as follows:

V
𝑖
=

𝑁

∑

𝑗=1,𝑗 ̸=𝑖

𝐸
𝑖,𝑗
𝑤
𝑗
, (4)

where 𝑥
𝑖
is the state vector of the 𝑖th subsystem, 𝑥

𝑖
is the state

observer vector, 𝑢
𝑖
is the control input vector, and 𝑦

𝑖
is the

output vector. 𝐴
𝑖
, 𝐵
𝑖
, 𝐶
𝑖
, 𝐺
𝑖
, 𝐻
𝑖
, 𝐾
𝑖
, and 𝐿

𝑖
are the constant

matrices with appropriate dimensions.
Setting 𝑒

𝑖
= 𝑥
𝑖
− 𝑥
𝑖
, the 𝑖th subsystem can then be written

as

�̇�
𝑖
= (𝐴

𝑖
+ 𝐵
𝑖
𝐾
𝑖
) 𝑥
𝑖
− 𝐵
𝑖
𝐾
𝑖
𝑒
𝑖
+ 𝐺
𝑖
V
𝑖
,

̇𝑒
𝑖
= (𝐴

𝑖
− 𝐿
𝑖
𝐶
𝑖
) 𝑒
𝑖
+ 𝐺
𝑖
V
𝑖
,

(5)

with the connective relations given in (4). Therefore, the
mathematical description of the𝑁 close-loop subsystems can
be denoted as 𝑆

𝑁
. Consider

[

̇
𝑋
𝑁

̇𝑒
𝑁

] = [
𝐴
𝑁
+ 𝐵
𝑁
𝐾
𝑁
+ 𝐺
𝑁
𝐸
𝑁
𝐻
𝑁

−𝐵
𝑁
𝐾
𝑁

𝐺
𝑁
𝐸
𝑁
𝐻
𝑁

𝐴
𝑁
− 𝐿
𝑁
𝐶
𝑁

]

× [
𝑋
𝑁

𝑒
𝑁

] ,

𝑦
𝑁
= 𝐶
𝑁
𝑋
𝑁
, (6)
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where 𝑋
𝑁
= (𝑥

T
1
, 𝑥

T
2
, . . . , 𝑥

T
𝑁
)
T is the state vector of the

original system, 𝑒
𝑁
= [𝑒

T
1
, 𝑒

T
2
, . . . , 𝑒

T
𝑁
]
T is the error vector, and

𝑦
𝑁
= (𝑦

T
1
, 𝑦

T
2
, . . . , 𝑦

T
𝑁
)
T is the output. The matrices 𝐴

𝑁
, 𝐵
𝑁
,

𝐶
𝑁
, 𝐺
𝑁
, and𝐻

𝑁
are defined as

𝐴
𝑁
= diag (𝐴

1
, 𝐴
2
, . . . , 𝐴

𝑁
) ,

𝐵
𝑁
= diag (𝐵

1
, 𝐵
2
, . . . , 𝐵

𝑁
) ,

𝐶
𝑁
= diag (𝐶

1
, 𝐶
2
, . . . , 𝐶

𝑁
) ,

𝐺
𝑁
= diag (𝐺

1
, 𝐺
2
, . . . , 𝐺

𝑁
) ,

𝐻
𝑁
= diag (𝐻

1
, 𝐻
2
, . . . , 𝐻

𝑁
) .

(7)

𝐾
𝑁
= diag(𝐾

1
, 𝐾
2
, . . . , 𝐾

𝑁
) is the controller gain matrix of

the original system.𝐿
𝑁
= diag(𝐿

1
, 𝐿
2
, . . . , 𝐿

𝑁
) is the observer

gain matrix of the original system.
Suppose that a new subsystem is added to the original

system 𝑆
𝑁
. Due to the newly added interconnections, the

mathematical description of the original closed-loop system
(6) can be modified as follows:

[

̇
𝑋
𝑁

̇𝑒
𝑁

] = [
𝐴
𝑁
+ 𝐵
𝑁
𝐾
𝑁
+ 𝐺
𝑁
𝐸
𝑁
𝐻
𝑁

−𝐵
𝑁
𝐾
𝑁

𝐺
𝑁
𝐸
𝑁
𝐻
𝑁

𝐴
𝑁
− 𝐿
𝑁
𝐶
𝑁

] [
𝑋
𝑁

𝑒
𝑁

]

+ [
𝐺
𝑁

𝐺
𝑁

] V
𝑁
,

𝑤
𝑁
= [𝐻

𝑁
0] [

𝑋
𝑁

̃
𝑋
𝑁

] ,

𝑦
𝑁
= [𝐶
𝑁

0] [
𝑋
𝑁

̃
𝑋
𝑁

] .

(8)

Suppose that the model of (𝑁 + 1)th subsystem (𝑆
𝑁+1

) is
described by (3) with 𝑖 = 𝑁 + 1. The connective relationships
between the newly added subsystem and the original system
can be expressed as

V
𝑁
= 𝐸
𝑁,𝑁+1

𝑤
𝑁+1
, V

𝑁+1
= 𝐸
𝑁+1,𝑁

𝑤
𝑁
. (9)

The original system and the newly added subsystem are
combined together to get the following closed-loop system.
Consider the following:

[
[
[
[
[
[
[
[
[

[

̇
𝑋
𝑁

̇𝑒
𝑁

�̇�
𝑁+1

̇𝑒
𝑁+1

]
]
]
]
]
]
]
]
]

]

=

[
[
[
[
[
[
[
[
[
[
[

[

𝐴
𝑁
+ 𝐵
𝑁
𝐾
𝑁

−𝐵
𝑁
𝐾
𝑁

0 0

0 𝐴
𝑁
− 𝐿
𝑁
𝐶
𝑁

0 0

0 0 𝐴
𝑁+1

+ 𝐵
𝑁+1
𝐾
𝑁+1

−𝐵
𝑁+1
𝐾
𝑁+1

0 0 0 𝐴
𝑁+1

− 𝐿
𝑁+1
𝐶
𝑁+1

]
]
]
]
]
]
]
]
]
]
]

]

[
[
[
[
[
[
[
[

[

𝑋
𝑁

𝑒
𝑁

𝑥
𝑁+1

𝑒
𝑁+1

]
]
]
]
]
]
]
]

]

+

[
[
[
[
[
[
[
[
[
[
[

[

𝐺
𝑁
𝐸
𝑁
𝐻
𝑁

0 𝐺
𝑁
𝐸
𝑁,𝑁+1

𝐻
𝑁+1

0

𝐺
𝑁
𝐸
𝑁
𝐻
𝑁

0 𝐺
𝑁
𝐸
𝑁,𝑁+1

𝐻
𝑁+1

0

𝐺
𝑁+1
𝐸
𝑁+1,𝑁

𝐻
𝑁

0 0 0

𝐺
𝑁+1
𝐸
𝑁+1,𝑁

𝐻
𝑁

0 0 0

]
]
]
]
]
]
]
]
]
]
]

]

[
[
[
[
[
[
[
[

[

𝑋
𝑁

𝑒
𝑁

𝑥
𝑁+1

𝑒
𝑁+1

]
]
]
]
]
]
]
]

]

,

(10)

which can be rewritten as

�̇� = [

_
𝐴𝑁 0
0

_
𝐴𝑁+1

]𝑋 + ℎ (𝑡, 𝑋, 𝐸)

= 𝐴𝑋 + ℎ (𝑡, 𝑋, 𝐸) ,

(11)

where

𝑋 = [𝑋
T
𝑁
, 𝑒

T
𝑁
, 𝑥

T
𝑁+1
, 𝑒

T
𝑁+1
]

T
,

_
𝐴𝑁 = [

𝐴
𝑁
+ 𝐵
𝑁
𝐾
𝑁

−𝐵
𝑁
𝐾
𝑁

0 𝐴
𝑁
− 𝐿
𝑁
𝐶
𝑁

] ,

_
𝐴𝑁+1 = [

𝐴
𝑁+1

+ 𝐵
𝑁+1
𝐾
𝑁+1

−𝐵
𝑁+1
𝐾
𝑁+1

0 𝐴
𝑁+1

− 𝐿
𝑁+1
𝐶
𝑁+1

] ,

ℎ (𝑡, 𝑋, 𝐸) =

[
[
[
[
[
[
[
[
[
[

[

𝐺
𝑁
𝐸
𝑁
𝐻
𝑁

0 𝐺
𝑁
𝐸
𝑁,𝑁+1

𝐻
𝑁+1

0

𝐺
𝑁
𝐸
𝑁
𝐻
𝑁

0 𝐺
𝑁
𝐸
𝑁,𝑁+1

𝐻
𝑁+1

0

𝐺
𝑁+1
𝐸
𝑁+1,𝑁

𝐻
𝑁

0 0 0

𝐺
𝑁+1
𝐸
𝑁+1,𝑁

𝐻
𝑁

0 0 0

]
]
]
]
]
]
]
]
]
]

]

𝑋.

(12)
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3. Organically Structured Control Design of
a System with Expanding Construction

Since the addition of new subsystems occurs during the
operation of the original construction, it is more realistic to
keep the decentralized control laws of the original subsystems
unchanged. For this reason, it is necessary that the control law
of the new subsystem is able to stabilize connectively both
itself and the resultant large-scale system without changing
the original decentralized control laws.Therefore, organically
structured control of large-scale systems with expanding
construction requires the control law of the newly added
subsystem to be designed separately. Here, we first define the
concept of connective stability and organically structured
control.

Definition 1 (see [1]). A large-scale interconnected system is
connectively stable if the equilibrium state of the system is
asymptotically stable when all structural perturbations take
place. The structural perturbations include the following two
cases. Case 1: new subsystems are added to the original
construction. Case 2: some subsystems are disconnected from
the large-scale system and then reconnected.

As a matter of fact, the problem of organically structured
control of the interconnected system is to ensure that the
decentralized control laws make the system connectively sta-
ble when the system structure is reconstructed. In this prob-
lem, an interconnected system can be treated as an organism
and thus is called organically structured control.

Definition 2 (see [2]). For an interconnected system includ-
ing a certain number of subsystems, the organically struc-
tured control problem is to design a decentralized control law
𝑢
𝑖
for each subsystem, so that the closed-loop system is con-

nectively stable when the system structure is reconstructed.

The main result of this paper is as follows.

Theorem 3. The expanded system (11) with state observers
can be robustly connectively stabilized when (𝑁 + 1)th sub-
system with a state observer is added to the original system
structure if there are symmetrical positive definite matrices
𝑃
𝑁
> 0, 𝑃

𝑁+1
> 0 as well as the matrices 𝑀

𝑁+1
, 𝑁
𝑁+1

and interconnected constraint matrices 𝑞
1
, 𝑞
2
, 𝑞
3
, so that the

problem

minimize 𝛾

[
[
[
[
[
[
[
[
[
[
[

[

Λ
𝑁

0 0 𝑃
𝑁

0 0 𝑞
T
1

𝑞
T
3

0 Λ̃
𝑁+1,1

Λ̃
𝑁+1,2

0 𝐼 0 𝑌
𝑁+1,1

𝑞
T
2

0
0 Λ̃

𝑁+1,3
Λ
𝑁+1,4

0 0 𝑃
𝑁+1,2

0 0
𝑃
𝑁

0 0 −𝜏𝐼 0 0 0 0
0 𝐼 0 0 −𝜏𝐼 0 0 0
0 0 𝑃

𝑁+1,2
0 0 −𝜏𝐼 0 0

𝑞
1
𝑞
2
𝑌
𝑁+1,1

0 0 0 0 −𝛾𝐼 0
𝑞
3

0 0 0 0 0 0 −𝛾𝐼

]
]
]
]
]
]
]
]
]
]
]

]

< 0

(13)

is feasible, where

Λ̃
𝑁+1,1

= 𝑌
𝑁+1,1

𝐴
T
𝑁+1

+ 𝐴
𝑁+1
𝑌
𝑁+1,1

+𝑀
T
𝑁+1
𝐵

T
𝑁+1

+ 𝐵
𝑁+1
𝑀
𝑁+1
,

Λ̃
𝑁+1,2

= − 𝐵
𝑁+1
𝐾
𝑁+1
,

Λ̃
𝑁+1,3

= − 𝐾
T
𝑁+1
𝐵

T
𝑁+1
,

Λ
𝑁+1,4

= 𝐴
T
𝑁+1
𝑃
𝑁+1,2

+ 𝑃
𝑁+1,2

𝐴
𝑁+1

− 𝐶
T
𝑁+1
𝑁

T
𝑁+1

− 𝑁
𝑁+1
𝐶
𝑁+1
.

(14)

The control law and observer gain of the newly added
subsystem can be determined by

𝐾
𝑁+1

= 𝑀
𝑁+1
𝑌
−1

𝑁+1,1
, 𝐿

𝑁+1
= 𝑃
−1

𝑁+1,2
𝑁
𝑁+1
. (15)

Proof. To design a controller and observer for organically
structured control of the expanded system, let us choose a
Lyapunov function 𝑉(𝑋) = 𝑋T

𝑃𝑋 with

𝑃 =
[
[
[

[

𝑃
𝑁,1

0 0 0
0 𝑃

𝑁,2
0 0

0 0 𝑃
𝑁+1,1

0
0 0 0 𝑃

𝑁+1,2

]
]
]

]

= [
𝑃
𝑁

0
0 𝑃
𝑁+1

] > 0.

(16)

Then

�̇� (𝑋) = 𝑋
T
(𝐴

T
𝑃 + 𝑃𝐴)𝑋 + ℎ

T
𝑃𝑋 + 𝑋

T
𝑃ℎ. (17)

If the system is stable, (17) is equivalent to

𝑃 > 0,

[
𝑋

ℎ
]

T
[
𝐴

T
𝑃 + 𝑃𝐴 𝑃

𝑃 0] [
𝑋

ℎ
] < 0.

(18)

Consider that the structural perturbation in (11) is bounded
quadratically; that is,

ℎ
T
(𝑡, 𝑋, 𝐸) ℎ (𝑡, 𝑋, 𝐸) ≤ 𝛼

2
𝑋

T
𝑄

T
𝑄𝑋, (19)

which is equivalent to the following matrix inequality:

[
𝑋

ℎ
]

T
[
−𝛼
2
𝑄

T
𝑄 0

0 𝐼
] [
𝑋

ℎ
] ≤ 0, (20)

where 𝛼 is the bounding parameter for the uncertain inter-
connection term of the expanded system and 𝑄 is the
interconnected constraint matrix given as

𝑄 =
[
[
[

[

𝑞
1
0 𝑞
2
0

𝑞
1
0 𝑞
2
0

𝑞
3
0 0 0

𝑞
3
0 0 0

]
]
]

]

= [
𝑞
1
𝑞
2
0

𝑞
3

0 0] ,

𝑞
1
= [
𝑞
1
0

𝑞
1
0] , 𝑞

2
= [
𝑞
2

𝑞
2

] , 𝑞
3
= [
𝑞
3
0

𝑞
3
0] .

(21)
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Using 𝑆-procedure to (18) and (20) and Schur complement
lemma, the following inequality is obtained:

𝑃 > 0,

[

[

𝐴
T
𝑃 + 𝑃𝐴 𝑃 𝑄

T

𝑃 −𝜏𝐼 0
𝑄 0 −𝛾𝐼

]

]

< 0,

(22)

with 𝜏 > 0 and 𝛾 = 1/𝜏𝛼2.
It is apparent that 𝑃

𝑁
and 𝑃

𝑁+1
are positive definite and

symmetrical matrices. The dimensions of 𝑃
𝑁
are the same

as the original-construction system with observers and the
dimensions of 𝑃

𝑁+1
are the same as the newly added sub-

system with observer. The original-construction subsystems
need not be designed, so only the newly added subsystem
needs to be designed. Then, substituting (11) for 𝐴 into (22),
we can obtain

𝐴
T
𝑃 + 𝑃𝐴 =

[
[

[

_
𝐴

T

𝑁
𝑃
𝑁
+ 𝑃
𝑁

_
𝐴𝑁 0 0

0 Λ
𝑁+1,1

Λ
𝑁+1,2

0 Λ
𝑁+1,3

Λ
𝑁+1,4

]
]

]

(23)

with

Λ
𝑁+1,1

= 𝐴
T
𝑁+1
𝑃
𝑁+1,1

+ 𝑃
𝑁+1,1

𝐴
𝑁+1

+ 𝐾
T
𝑁+1
𝐵
T
𝑁+1
𝑃
𝑁+1,1

+ 𝑃
𝑁+1,1

𝐵
𝑁+1
𝐾
𝑁+1
,

Λ
𝑁+1,2

= − 𝑃
𝑁+1,1

𝐵
𝑁+1
𝐾
𝑁+1
,

Λ
𝑁+1,3

= − 𝐾
T
𝑁+1
𝐵
T
𝑁+1
𝑃
𝑁+1,1

,

Λ
𝑁+1,4

= 𝐴
T
𝑁+1
𝑃
𝑁+1,2

+ 𝑃
𝑁+1,2

𝐴
𝑁+1

− 𝐶
T
𝑁+1
𝐿
T
𝑁+1
𝑃
𝑁+1,2

− 𝑃
𝑁+1,2

𝐿
𝑁+1
𝐶
𝑁+1
.

(24)

Therefore, (22) can be written as

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Λ
𝑁

0 0 𝑃
𝑁

0 0 𝑞
T
1

𝑞
T
3

0 Λ
𝑁+1,1

Λ
𝑁+1,2

0 𝑃
𝑁+1,1

0 𝑞
T
2

0

0 Λ
𝑁+1,3

Λ
𝑁+1,4

0 0 𝑃
𝑁+1,2

0 0

𝑃
𝑁

0 0 −𝜏𝐼 0 0 0 0

0 𝑃
𝑁+1,1

0 0 −𝜏𝐼 0 0 0

0 0 𝑃
𝑁+1,2

0 0 −𝜏𝐼 0 0

𝑞
1

𝑞
2

0 0 0 0 −𝛾𝐼 0

𝑞
3

0 0 0 0 0 0 −𝛾𝐼

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

< 0,

(25)

with Λ
𝑁
=

_
𝐴

T

𝑁
𝑃
𝑁
+ 𝑃
𝑁

_
𝐴𝑁.

Set 𝐹 = diag(𝐼, 𝑃−1
𝑁+1,1

, 𝐼, 𝐼, 𝐼, 𝐼, 𝐼, 𝐼) and 𝑌
𝑁+1,1

= 𝑃
−1

𝑁+1,1
.

Pre- and postmultiplying (25) by 𝐹 gives

𝐹

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

Λ
𝑁

0 0 𝑃
𝑁

0 0 𝑞
T
1

𝑞
T
3

0 Λ
𝑁+1,1

Λ
𝑁+1,2

0 𝑃
𝑁+1,1

0 𝑞
T
2

0

0 Λ
𝑁+1,3

Λ
𝑁+1,4

0 0 𝑃
𝑁+1,2

0 0

𝑃
𝑁

0 0 −𝜏𝐼 0 0 0 0

0 𝑃
𝑁+1,1

0 0 −𝜏𝐼 0 0 0

0 0 𝑃
𝑁+1,2

0 0 −𝜏𝐼 0 0

𝑞
1

𝑞
2

0 0 0 0 −𝛾𝐼 0

𝑞
3

0 0 0 0 0 0 −𝛾𝐼

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

𝐹

< 0

(26)

so that the following inequality can be obtained:

[
[
[
[
[
[
[
[
[
[
[

[

Λ
𝑁

0 0 𝑃
𝑁

0 0 𝑞
T
1

𝑞
T
3

0 Λ̃
𝑁+1,1

Λ̃
𝑁+1,2

0 𝐼 0 𝑌
𝑁+1,1

𝑞
T
2

0
0 Λ̃

𝑁+1,3
Λ
𝑁+1,4

0 0 𝑃
𝑁+1,2

0 0
𝑃
𝑁

0 0 −𝜏𝐼 0 0 0 0
0 𝐼 0 0 −𝜏𝐼 0 0 0
0 0 𝑃

𝑁+1,2
0 0 −𝜏𝐼 0 0

𝑞
1
𝑞
2
𝑌
𝑁+1,1

0 0 0 0 −𝛾𝐼 0
𝑞
3

0 0 0 0 0 0 −𝛾𝐼

]
]
]
]
]
]
]
]
]
]
]

]

< 0,

(27)

where

Λ̃
𝑁+1,1

= 𝑌
𝑁+1,1

𝐴
T
𝑁+1

+ 𝐴
𝑁+1
𝑌
𝑁+1,1

+ 𝑌
𝑁+1,1

𝐾
T
𝑁+1
𝐵
T
𝑁+1

+ 𝐵
𝑁+1
𝐾
𝑁+1
𝑌
𝑁+1,1

,

Λ̃
𝑁+1,2

= − 𝐵
𝑁+1
𝐾
𝑁+1
,

Λ̃
𝑁+1,3

= − 𝐾
T
𝑁+1
𝐵
T
𝑁+1
.

(28)

Note that (27) is not an LMI. However, by setting
𝐾
𝑁+1
𝑌
𝑁+1,1

= 𝑀
𝑁+1

and 𝑃
𝑁+1,2

𝐿
𝑁+1

= 𝑁
𝑁+1

so that

Λ̃
𝑁+1,1

= 𝑌
𝑁+1,1

𝐴
T
𝑁+1

+ 𝐴
𝑁+1
𝑌
𝑁+1,1

+𝑀
T
𝑁+1
𝐵
T
𝑁+1

+ 𝐵
𝑁+1
𝑀
𝑁+1
,

Λ
𝑁+1,4

= 𝐴
T
𝑁+1
𝑃
𝑁+1,2

+ 𝑃
𝑁+1,2

𝐴
𝑁+1

− 𝐶
T
𝑁+1
𝑁

T
𝑁+1

− 𝑁
𝑁+1
𝐶
𝑁+1
,

(29)

(27) can thus be transformed into an LMI. 𝐾
𝑁+1

and 𝐿
𝑁+1

can be determined by (17).
Because the changes of 𝐸

𝑖,𝑗
in 𝐸
𝑁,𝑁+1

and 𝐸
𝑁+1,𝑁

from
1 to 0 or 0 to 1 are considered in the constraints of
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the interconnected items, including random situations and
ℎ(𝑡, 𝑋, 𝐸) ≡ 0, the results obtained are connectively stable.

Therefore, the theorem has been proved.

Remark 4. Themethod deduced in this paper can be applied
to an expanded subsystem with any dimensionality. In
addition, the controllers for the subsystems in the original
structure can be permitted to use different control methods,
such as LQR and pole-placement. Therefore, the presented
method is more practical.

4. Application to Interconnected
Power System Expansion

Consider a class of multiarea interconnected power systems,
in which each area includes a hydroelectric power unit and a
thermal power unit.Themathematical model, state variables,
and output variables can be found from [15, 16]. This is a
deviation model of automatic generation control (AGC).The
𝑖th area-subsystem model 𝑆

𝑖
can be described as

�̇�
𝑖
= 𝐴
𝑖𝑖
𝑥
𝑖
+ 𝐵
𝑖
𝑢
𝑖
+ Γ
𝑖
𝜉
𝑖
+

𝑁

∑

𝑗=1,𝑗 ̸=𝑖

𝐴
𝑖𝑗
𝑥
𝑗
,

𝑦
𝑖
= 𝐶
𝑖
𝑥
𝑖
,

(30)

where 𝑥
𝑖
∈ 𝑅
𝑛𝑖 , 𝑢
𝑖
∈ 𝑅
𝑚𝑖 , 𝑦
𝑖
∈ 𝑅
𝑙𝑖 , 𝜉
𝑖
∈ 𝑅
𝑚𝑖 are the

state, control input, output, and uncertain disturbance input
of subsystems, respectively. Consider the following:

𝐴
𝑖𝑖
=

[
[
[
[

[

𝐴
𝑖

0 𝑎
𝑡𝑖

𝑑
T
𝑖

0 1

𝛼
1𝑖

𝑁

∑

𝑗=1,𝑗 ̸=𝑖

𝑚
T
𝑖𝑗

0 0

]
]
]
]

]

, 𝐴
𝑖𝑗
= [

[

0 0 0
0 0 0

−𝛼
1𝑖
𝑚

T
𝑗𝑖
0 0

]

]

,

𝐵
𝑖
= [

[

𝑏
𝑖

0

0

]

]

, Γ
𝑖
= [

[

𝑓
𝑖

0

0

]

]

, 𝐶
𝑖
= [

[

𝑐
𝑖
0 0

0 1 0

0 0 1

]

]

,

(31)

with

𝐴
1
=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−0.2 0 0 0 0 0 0 −4

4.75 −5 0 0 0 0 0 0

0 0.1667 −0.1667 0 0 0 0 0

0 0 2 −2 0 0 0 0

0 −0.08 −0.0747 −0.112 −3.994 10 −0.928 −9.1011

0 0 0 0 0.2 −0.5 0 0

0 0 0 0 1.3194 0 −1.3889 −0.2778

0 0.01 0.0093 0.014 −0.0632 0 0.116 −0.1124

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

𝑎
𝑡1
= 𝑎
𝑡2
= 𝑎
𝑡3
= [0 0 0 0 0.6667 0 0 −0.0833]

T
,

𝑑
T
1
= 𝑑

T
2
= [0 0 0 0 0 0 0 10] ,

𝑚
T
12
= 𝑚

T
21
= [0 0 0 0 0 0 0 22.2144] ,

𝐴
2
=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

−0.2 0 0 0 0 0 0 −4

4.75 −5 0 0 0 0 0 0

0 0.1667 −0.1667 0 0 0 0 0

0 0 2 −2 0 0 0 0

0 −0.1 −0.0933 −0.14 −4.096 10 −0.7442 −9.1079

0 0 0 0 0.2 −0.5 0 0

0 0 0 0 1.3194 0 −1.3889 −0.2778

0 0.0125 0.0117 0.0175 −0.0506 0 0.0928 −0.1115

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

𝐴
3
= 𝐴
2
, 𝐶

3
= 𝐶
2
,

𝑏
1
= [1.6 0 0 0 6 0 0 0]

T
,

𝑏
2
= [2 0 0 0 5 0 0 0]

T
,

𝑓
1
= 𝑎
𝑡1
, 𝑓

2
= 𝑎
𝑡2
, 𝑓

3
= 𝑎
𝑡3
,
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𝑐
1
= 𝑐
2
=
[
[

[

0 0.3 0.28 0.42 0 0 0 0

0 0 0 0 −1.52 0 2.78 0.217

0 0 0 0 0 0 0 1

]
]

]

,

𝑑
T
3
= [0 0 0 0 0 0 0 100] ,

𝑚
T
23
= 𝑚

T
32
= [0 0 0 0 0 0 0 20.1116] ,

𝑚
T
13
= 𝑚

T
31
= 𝑚

T
23
,

𝑏
3
= [2 0 0 0 5 0 0 0]

T
.

(32)

Note that 𝛼
1𝑖
= 1when the loads of each area are balanceable.

Here, the interconnected items𝐴
𝑖𝑗
can be written as the form

proposed in this paper, namely, 𝐴
𝑖𝑗
= 𝐺
𝑖
𝐸
𝑖,𝑗
𝐻
𝑗
, where

𝐺
𝑖
= [0 0 𝑚

T
𝑖𝑗
]
T
,

𝐻
𝑗
= [0 0 0 0 0 0 0 −1 0 0] .

(33)

𝐸
𝑖,𝑗

is the interconnection term in the connective mat-
rix.

Suppose that there are two areas 𝑆
1
and 𝑆
2
in the original

structural system, namely, 𝑖, 𝑗 = 1, 2. According to the
method described in this paper, the control gains𝐾

1
,𝐾
2
and

observer gains 𝐿
1
, 𝐿
2
can be designed as follows:

𝐾
1
= [−0.2132 −0.2370 −0.4067 −0.0468 0.4372 −1.4869 −1.0391 −0.6672 −0.3142 0.3892] ,

𝐾
2
= [−0.2996 −0.4646 −0.6467 −0.1100 0.5723 −1.5903 −1.2366 −5.0468 −0.4210 0.5712] ,

𝐿
1
=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

48.8856 0.0233 −4.0629 −0.0006 −0.0006

34.0635 0.0198 −0.0533 −0.0005 −0.0004

61.4801 0.0293 −0.0812 −0.0010 −0.0019

17.5001 0.0093 −0.0258 −0.0003 −0.0007

−1.1657 71.0700 −50.5970 −1.6831 −5.8912

−0.3476 26.7390 −15.8781 −0.6497 −2.5302

−0.6940 52.6061 −31.8463 −1.3029 −5.0800

0.1586 1.4854 32.3733 4.9883 24.0253

0.0016 0.0937 4.9914 32.8082 0.4984

0.0025 0.3659 24.0264 0.5016 32.8082

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

𝐿
2
=

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

48.8856 0.0301 −4.0722 −0.0000 0.0004

34.0635 0.0256 −0.0615 −0.0001 0.0002

61.4801 0.0383 −0.0898 0.0002 0.0017

17.5001 0.0122 −0.0285 0.0001 0.0006

−1.5023 71.0869 −51.5385 −1.7923 −5.8794

−0.4523 26.7272 −16.2416 −0.6926 −2.5286

−0.9027 52.5783 −32.5533 −1.3861 −5.0652

0.1803 1.5266 32.3654 4.9894 24.0240

−0.0002 0.0994 4.9891 32.8082 0.4961

−0.0022 0.3637 24.0282 0.5039 32.8082

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(34)
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Figure 2: Step load disturbance responses of the original subsystems.

The simulation with step load disturbance is shown in
Figure 2. The effects of the observers are shown in Figure 3.

In Figure 2, Δ𝑓
𝑖
is the frequency variation of each power

subsystem, and Δ𝑝𝑒
𝑖
is the inversion power variation. When

the connection 𝐸
1,2

varies from 1 to 0, the original system is
still stable with step load disturbance and the responses are
shown in Figure 4. So the original structural system is con-
nectively stable.

Now, a new subsystem 𝑆
3
is added to the original

structural system. There are three cases to be considered.

Case 1. The dimension of the added subsystem is the same as
the original subsystems.

Consider the case that a new subsystem 𝑆
3
of the same

dimensionality as the original subsystems is added to the

original structure composed of the two subsystems. Accord-
ing to the method described above, we choose 𝑞

𝑖
(𝑖 = 1, 2, 3)

as

𝑞
𝑖
=

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 −1 0 0

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

(35)
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Figure 3: Observation errors of the original subsystems.

and substitute the parameters of 𝑆
3
into the linear matrix

inequality (13) to find a solution. According to (15), the
control law𝐾

3
and the observer gain 𝐿

3
of the new subsystem

can be obtained as

𝐾
3
= [−0.6730 −0.5585 −1.2142 −0.3383 0.4430 −0.8414 −2.6698 −9.9940 −0.6792 2.9239]

𝐿
3
=

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

59.1012 0.0275 −4.0513 −0.0012 −0.0006

40.3382 0.0223 −0.0419 −0.0013 −0.0007

79.0068 0.0370 −0.0667 0.0007 0.0006

22.8802 0.0116 −0.0209 0.0003 0.0002

−1.6962 105.4925 −63.4223 −21.8307 −10.0700

−0.5370 40.7204 −21.2093 −8.5926 −4.2251

−0.9949 75.0621 −39.5195 −15.9553 −7.8495

0.1396 1.4414 41.3652 49.8938 30.0730

0.0002 0.9801 49.8935 41.7897 0.5000

−0.0001 0.4827 30.0731 0.5000 41.7897

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(36)
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Figure 4: Step load disturbance responses of the original subsystems when 𝐸
1,2

varies from 1 to 0.

Then the simulation of the whole system with step per-
turbation is performed and the results are shown in
Figures 5 and 6. From these figures, it can be seen that
both the new subsystem and the original structure system
are stable and the state observation errors converge to
zero.

In order to check the connective stability of the expanded
system, we cut off one of the interconnections between the
subsystems. For example, the connection𝐸

1,3
or 𝐸
2,3

is varied
from 1 to 0 and the simulation on the system with step
disturbance is repeated. The results are shown in Figures 7
and 8.

From Figures 5, 6, 7, and 8, we can see that the system is
still stable when the interconnection between the subsystems

is cut off, as the response curves have not basically changed.
Consequently the overall system is robustly connectively
stable with strong robustness. The results illustrate that the
proposed method can guarantee the steady operation of the
interconnected power system and also meet the require-
ments of decentralized load frequency control of power
systems.

Case 2. The dimension of the added subsystem is different
from the original subsystems.

The newly added subsystem 𝑆
3
is a six-dimensional

system with the form in (30). The matrices of the subsystem
can be found in [17].
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Figure 5: Step load disturbance responses of the original subsystems and the newly added subsystem.
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Figure 6: Observation errors of the original subsystems and the newly added subsystem.
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Figure 7: Step responses of the expanded system when 𝐸
1,3

varies from 1 to 0.
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Figure 8: Step responses of the expanded system when 𝐸
2,3

varies from 1 to 0.
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Figure 9: Continued.
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Figure 9: Step load disturbance responses and observation errors of the original subsystems and the newly added subsystem.
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Figure 10: Step responses of the expanded system when 𝐸
1,3

varies from 1 to 0.
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Figure 11: Continued.
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Figure 11: Step load disturbance responses and observation errors of the expanded system when two original-construction subsystems are
designed by LQG approach.

According to the method described in this paper, by
choosing 𝑞

𝑖
(𝑖 = 1, 2, 3) properly, the simulation on the whole

system with step perturbation is performed. The simulation
results are shown in Figure 9. When the connection 𝐸

1,3
is

varied from 1 to 0, the simulation with step disturbance is
repeated, as shown in Figure 10.

From these figures, it can be seen that both the new
subsystem and the original subsystems are stable and
connectively stable, and state observation errors are able to
converge to zero. So the proposed method is effective.

Case 3. The subsystems in original structure have different
controllers from the one in this paper.

In this paper, we have studied that the control design
approach for original-construction subsystems is the same as
the newly added subsystem, but the situation is often other-
wise. In practice, the controllers for the original-construction
subsystems were often designed before a new subsystem is
added, and the design method employed may be different
from the method presented in this paper. To illustrate the
applicability of the proposed method, the simulation results
are given for the case that the two original-construction
subsystems are controlled by LQG approach and the newly
added subsystem is controlled by the present method. The
step responses of the load disturbance are shown in Figure 11.
In order to check the connective stability of the expanded
system, the connection𝐸

2,3
is cut offwith the step disturbance

and the simulation results are shown in Figure 12.
From these figures, we can see that the method presented

in this paper is still effective when the original structure has
different controllers from the new subsystem. The overall
system is still connectively stable and has strong robustness.
The requirements of decentralized load frequency control of
power systems are met as well.

5. Conclusion

An organically structured control problem based on state
observation for a class of large-scale systems with expanding
construction has been studied in this paper. Making use of
stability theory, LMI approach, and split matrix algorithms,
the sufficient condition for robust decentralized connective
stabilization with observers has been derived for a class of
large-scale systems with expanding construction. A design
method for the controller and observer has been proposed.
This method can be used to design the decentralized control
law and the observer gain matrix of a new subsystem without
changing the control laws of the original structural systems,
so that the new subsystem with observer and the whole
expanded system are all connectively stable. The results have
been applied to the expansion of a class of interconnected
power systems. The simulation results show the effectiveness
of this method, and the resulting system has good robustness.
Since the proposed decentralized control design method in
this paper considers simultaneously the robustness for system
structure and the connective stability on the basis of not
changing the decentralized state feedback control laws of
the original construction, this paper can be used as the
theoretical basis for expansion of interconnected large-scale
system online.
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