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A survey of some modifications based on the classic Newton’s and the higher order Newton-like root finding methods for complex
polynomials is presented. Instead of the standard Picard’s iteration several different iteration processes, described in the literature,
which we call nonstandard ones, are used. Kalantari’s visualizations of root finding process are interesting from at least three points
of view: scientific, educational, and artistic. By combining different kinds of iterations, different convergence tests, and different
colouring we obtain a great variety of polynomiographs. We also check experimentally that using complex parameters instead of
real ones in multiparameter iterations do not destabilize the iteration process. Moreover, we obtain nice looking polynomiographs
that are interesting from the artistic point of view. Real parts of the parameters alter symmetry, whereas imaginary ones cause
asymmetric twisting of polynomiographs.

1. Introduction

Polynomial root-finding has played a key role in the history
ofmathematics. It is one of the oldest andmost deeply studied
mathematical problems. In 2000 BC Babylonians solved
quadratic equation (quadratics). Seventeen centuries later
Euclid solved quadratics with geometrical construction. In
1539 Cardan gave complete solution to cubics. In 1699 New-
ton introduced numerical iteration for root-finding. About
seventy years later Lagrange showed that polynomial of degree
5 or higher cannot be solved by themethods used for quadrat-
ics, cubics, and quartics. In 1799Gauss proved the Fundamen-
talTheorem of Algebra. 27 years later Abel proved the impos-
sibility of generally solving equations of degree higher than
4. General root-finding method has to be iterative and can
only be done approximately. Cayley in 1879 observed strange
and unpredictable chaotic behaviour of the roots approxima-
tion process while applying Newton’s method to the equation
𝑧
3
− 1 = 0 in the complex plane. The solution of Caley’s

problem was found in 1919 by Julia. Julia sets became an
inspiration for the great discoveries in 1970s, the Mandelbrot
set and fractals [1]. The last interesting contribution to the
polynomials root finding history was made by Kalantari [2],

who introduced the polynomiography. It defines the visual-
ization process of the approximation of the roots of complex
polynomials, using fractal and nonfractal images created via
the mathematical convergence properties of iteration func-
tions. An individual image is called a polynomiograph. Poly-
nomiography combines both art and science aspects. As a
method which generates nice looking graphics, it was
patented by Kalantari in USA in 2005 [3].

It is known that any complex polynomial 𝑝 of degree
𝑛 having 𝑛 roots, according to the Fundamental Theorem
of Algebra, can be uniquely defined by its coefficients
{𝑎
𝑛
, 𝑎
𝑛−1
, . . . , 𝑎

1
, 𝑎
0
}:

𝑝 (𝑧) = 𝑎𝑛𝑧
𝑛
+ 𝑎
𝑛−1
𝑧
𝑛−1

+ ⋅ ⋅ ⋅ + 𝑎
1
𝑧 + 𝑎
0

(1)

or by its zeros (roots) {𝑟
1
, 𝑟
2
, . . . , 𝑟

𝑛−1
, 𝑟
𝑛
}:

𝑝 (𝑧) = (𝑧 − 𝑟
1
) (𝑧 − 𝑟

2
) ⋅ ⋅ ⋅ ⋅ ⋅ (𝑧 − 𝑟

𝑛
) . (2)

Iterative roots finding process can be obviously applied to
both representations of 𝑝. The polynomiographs are gener-
ated as the result of this process’ visualization. The degree
of the polynomial defines the number of basins of attraction
(root’s basin of attraction is an area of the complex plane in
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which each point is convergent to the root using the root
findingmethod). Localizations of the basins can be controlled
by changing the roots positions on the complex plane manu-
ally.

Usually, polynomiographs are coloured based on the
number of iterations needed to obtain the approximation of
some polynomial root with a given accuracy and a chosen
iteration method. The description of polynomiography, its
theoretical background and artistic applications are described
in [2, 4].

Fractals and polynomiographs are generated by itera-
tions. Fractals are self-similar, have complicated and nons-
mooth structure, and are not dependent on a resolution. Poly-
nomiographs are different.Their shape can be controlled and
designed in a more predictable way in opposition to fractals.
Generally, fractals and polynomiographs belong to different
classes of graphical objects.

Summing up, polynomiography can be treated as a visu-
alization tool based on the root finding process. It has many
possible applications in education, math, sciences, art, and
design [2].

In [5] the authors used Mann and Ishikawa iterations
instead of the standard Picard iteration to obtain some
generalization of Kalantari’s polynomiography and presented
some polynomiographs for the cubic equation 𝑧3−1 = 0, per-
mutation, and double stochastic matrices. Latif et al. in [6],
using the ideas from [5], have used the 𝑆-iteration in poly-
nomiography. Earlier, the other types of iterations have been
used in [7] for superfractals and in [8] for fractals generated
by IFS. Julia sets and Mandelbrot sets [9] and the antifractals
[10] have been also investigated using Noor iteration instead
of the standard Picard iteration.

The paper is organised as follows. In Section 2 different
kinds of iterations are presented. Section 3 presents the
known root finding methods, starting from the known New-
ton’smethod up to the different generalizations of it. Section 4
treats different convergence tests used in iteration processes
together with their modifications. In Section 5 the colour-
ing methods of polynomiographs are introduced. Section 6
summarizes the theory of polynomiograph generation. As
a result the full algorithm of polynomiograph generation is
given. Section 7 presents many polynomiographs obtained
experimentally as the result of the proposed algorithm. In
Section 8 the time complexity of this algorithm is discussed.
Section 9 concludes the paper and shows the future direc-
tions.

2. Iterations

Obviously, the equation of the form 𝑓(𝑥) = 0 can be equiv-
alently transformed into a fixed point problem 𝑥 = 𝑇(𝑥),
where 𝑇 is some operator [11]. Then, by applying the
approximate fixed point theorem one can get information on
existence, or sometimes both on existence and uniqueness, of
the fixed point that is the solution of this equation.

Let (𝑋, 𝑑) be a complete metric space and 𝑇 : 𝑋 → 𝑋

a self-map on 𝑋. The set {𝑥∗ ∈ 𝑋 : 𝑇(𝑥
∗
) = 𝑥

∗
} is the set

of all fixed points of 𝑇. Many iterative processes have been

described for the approximation of fixed points in the ample
literature [12–19]. We recall below some iteration processes
known from the literature. Assume that each iteration process
starts from any initial point 𝑥

0
∈ 𝑋.

(i) The standard Picard iteration [20] introduced in 1890
is defined as

𝑥
𝑛+1

= 𝑇 (𝑥
𝑛
) , 𝑛 = 0, 1, 2, . . . . (3)

(ii) The Mann iteration [16] was defined in 1953 as

𝑥
𝑛+1

= (1 − 𝛼
𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
𝑇 (𝑥
𝑛
) , 𝑛 = 0, 1, 2, . . . , (4)

where 𝛼
𝑛
∈ (0, 1] for all 𝑛 ∈ N.

(iii) The Ishikawa iteration [13] was defined in 1974 as a
two-step process:

𝑥
𝑛+1

= (1 − 𝛼
𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
𝑇 (𝑦
𝑛
) ,

𝑦
𝑛
= (1 − 𝛽

𝑛
) 𝑥
𝑛
+ 𝛽
𝑛
𝑇 (𝑥
𝑛
) , 𝑛 = 0, 1, 2, . . . ,

(5)

where 𝛼
𝑛
∈ (0, 1] and 𝛽

𝑛
∈ [0, 1] for all 𝑛 ∈ N.

(iv) TheNoor iteration [17] was defined in 2000 as a three-
step process:

𝑥
𝑛+1

= (1 − 𝛼
𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
𝑇 (𝑦
𝑛
) ,

𝑦
𝑛
= (1 − 𝛽

𝑛
) 𝑥
𝑛
+ 𝛽
𝑛
𝑇 (𝑧
𝑛
) ,

𝑧
𝑛
= (1 − 𝛾

𝑛
) 𝑥
𝑛
+ 𝛾
𝑛
𝑇 (𝑥
𝑛
) , 𝑛 = 0, 1, 2, . . . ,

(6)

where 𝛼
𝑛
∈ (0, 1] and 𝛽

𝑛
, 𝛾
𝑛
∈ [0, 1] for all 𝑛 ∈ N.

(v) The Suantai iteration [19] was defined in 2005 as a
three-step iteration process with five parameters:

𝑥
𝑛+1

= (1 − 𝛼
𝑛
− 𝛽
𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
𝑇 (𝑦
𝑛
) + 𝛽
𝑛
𝑇 (𝑧
𝑛
) ,

𝑦
𝑛
= (1 − 𝑎

𝑛
− 𝑏
𝑛
) 𝑥
𝑛
+ 𝑎
𝑛
𝑇 (𝑧
𝑛
) + 𝑏
𝑛
𝑇 (𝑥
𝑛
) ,

𝑧
𝑛
= (1 − 𝛾

𝑛
) 𝑥
𝑛
+ 𝛾
𝑛
𝑇 (𝑥
𝑛
) , 𝑛 = 0, 1, 2, . . . ,

(7)

where 𝛼
𝑛
, 𝛽
𝑛
, 𝛾
𝑛
, 𝑎
𝑛
, 𝑏
𝑛
∈ [0, 1], 𝛼

𝑛
+ 𝛽
𝑛
∈ [0, 1], and

𝑎
𝑛
+ 𝑏
𝑛
∈ [0, 1] for all 𝑛 ∈ N and ∑∞

𝑛=0
(𝛼
𝑛
+ 𝛽
𝑛
) = ∞.

(vi) In 2007 Agarwal et al. in [21] introduced the 𝑆-
iteration:

𝑥
𝑛+1

= (1 − 𝛼
𝑛
) 𝑇 (𝑥

𝑛
) + 𝛼
𝑛
𝑇 (𝑦
𝑛
) ,

𝑦
𝑛
= (1 − 𝛽

𝑛
) 𝑥
𝑛
+ 𝛽
𝑛
𝑇 (𝑥
𝑛
) , 𝑛 = 0, 1, 2, . . . ,

(8)

where 𝛼
𝑛
∈ (0, 1] and 𝛽

𝑛
∈ [0, 1] for all 𝑛 ∈ N.

(vii) The SP iteration [18] was defined in 2011 as the
following three-step process:

𝑥
𝑛+1

= (1 − 𝛼
𝑛
) 𝑦
𝑛
+ 𝛼
𝑛
𝑇 (𝑦
𝑛
) ,

𝑦
𝑛
= (1 − 𝛽

𝑛
) 𝑧
𝑛
+ 𝛽
𝑛
𝑇 (𝑧
𝑛
) ,

𝑧
𝑛
= (1 − 𝛾

𝑛
) 𝑥
𝑛
+ 𝛾
𝑛
𝑇 (𝑥
𝑛
) , 𝑛 = 0, 1, 2, . . . ,

(9)

where 𝛼
𝑛
∈ (0, 1] and 𝛽

𝑛
, 𝛾
𝑛
∈ [0, 1] for all 𝑛 ∈ N.
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(viii) In 2012 Chugh et al. introduced the CR iteration in
[22]:

𝑥
𝑛+1

= (1 − 𝛼
𝑛
) 𝑦
𝑛
+ 𝛼
𝑛
𝑇 (𝑦
𝑛
) ,

𝑦
𝑛
= (1 − 𝛽

𝑛
) 𝑇 (𝑥

𝑛
) + 𝛽
𝑛
𝑇 (𝑧
𝑛
) ,

𝑧
𝑛
= (1 − 𝛾

𝑛
) 𝑥
𝑛
+ 𝛾
𝑛
𝑇 (𝑥
𝑛
) , 𝑛 = 0, 1, 2, . . . ,

(10)

where 𝛼
𝑛
, 𝛽
𝑛
, 𝛾
𝑛
∈ [0, 1] for all 𝑛 ∈ N and ∑∞

𝑛=0
𝛼
𝑛
=

∞.

(ix) In 2013 Khan iteration [15] was defined as the follow-
ing process:

𝑥
𝑛+1

= 𝑇 (𝑦
𝑛
) ,

𝑦
𝑛
= (1 − 𝛼

𝑛
) 𝑥
𝑛
+ 𝛼
𝑛
𝑇 (𝑥
𝑛
) , 𝑛 = 0, 1, 2, . . . ,

(11)

where 𝛼
𝑛
∈ (0, 1] for all 𝑛 ∈ N.

(x) In 2013 Karakaya et al. defined very general three-step
iteration process with five parameters in [14]:

𝑥
𝑛+1

= (1 − 𝛼
𝑛
− 𝛽
𝑛
) 𝑦
𝑛
+ 𝛼
𝑛
𝑇 (𝑦
𝑛
) + 𝛽
𝑛
𝑇 (𝑧
𝑛
) ,

𝑦
𝑛
= (1 − 𝑎

𝑛
− 𝑏
𝑛
) 𝑧
𝑛
+ 𝑎
𝑛
𝑇 (𝑧
𝑛
) + 𝑏
𝑛
𝑇 (𝑥
𝑛
) ,

𝑧
𝑛
= (1 − 𝛾

𝑛
) 𝑥
𝑛
+ 𝛾
𝑛
𝑇 (𝑥
𝑛
) , 𝑛 = 0, 1, 2, . . . ,

(12)

where 𝛼
𝑛
, 𝛽
𝑛
, 𝛾
𝑛
, 𝑎
𝑛
, 𝑏
𝑛
∈ [0, 1], 𝛼

𝑛
+ 𝛽
𝑛
∈ [0, 1], and

𝑎
𝑛
+ 𝑏
𝑛
∈ [0, 1] for all 𝑛 ∈ N and ∑∞

𝑛=0
(𝛼
𝑛
+ 𝛽
𝑛
) = ∞.

(xi) In 2014Gürsoy andKarakaya introduced the Picard-S
iteration in [23]:

𝑥
𝑛+1

= 𝑇 (𝑦
𝑛
) ,

𝑦
𝑛
= (1 − 𝛼

𝑛
) 𝑇 (𝑥

𝑛
) + 𝛼
𝑛
𝑇 (𝑧
𝑛
) ,

𝑧
𝑛
= (1 − 𝛽

𝑛
) 𝑥
𝑛
+ 𝛽
𝑛
𝑇 (𝑥
𝑛
) , 𝑛 = 0, 1, 2, . . . ,

(13)

where 𝛼
𝑛
∈ (0, 1] and 𝛽

𝑛
∈ [0, 1] for all 𝑛 ∈ N.

The standard Picard iteration is used in the Banach Fixed
Point Theorem [12] to obtain existence of the fixed point 𝑥∗
of the operator 𝑇. Fixed point approximation is found under
additional assumptions on the space 𝑋 that it has to be a
Banach one and the mapping 𝑇 has to be contractive. The
Mann [16], Ishikawa [13], and other iterations [12, 14, 15, 17–
19] allow the weakening of the assumptions on the mapping
𝑇 and generally allow the approximation of fixed points. The
dependencies among the presented types of iterations are
shown in Figure 1.

Karakaya
iteration

Suantai
iteration

SP
iteration

Khan
iteration

Noor
iteration

Ishikawa
iteration

Mann
iteration

Picard
iteration

S
iteration

Picard-S
iteration

CR
iteration

𝛽n = bn = 0
𝛼n ≠ 0

𝛽n = bn = 0
𝛼n ≠ 0

𝛽n ≠ 0

𝛽n ≠ 0
𝛾n = 0

𝛾n = 0
𝛼n = 1

𝛼n = 1
𝛽n ≠ 0
𝛾n = 0

𝛼n = 1
𝛽n ≠ 0
𝛼n = 1

𝛼n = 1

𝛼n = 1

𝛽n = 0
𝛽n = 0

𝛽n = 𝛾n = 0

Figure 1: The diagram of iterations’ dependencies.

Our further considerations will be conducted in the space
𝑋 = C that is obviously a Banach one. We take 𝑧

0
∈ C and

𝛼
𝑛
= 𝛼, 𝛽

𝑛
= 𝛽, 𝛾

𝑛
= 𝛾, 𝑎

𝑛
= 𝑎, and 𝑏

𝑛
= 𝑏 for all 𝑛 ∈ N

such that 𝛼 ∈ (0, 1], 𝛽, 𝛾, 𝑎, 𝑏 ∈ [0, 1], 𝛼 + 𝛽 ∈ (0, 1], and
𝑎+𝑏 ∈ [0, 1]. Naturally, if 𝛼+𝛽 ∈ (0, 1], then∑∞

𝑛=0
(𝛼
𝑛
+𝛽
𝑛
) =

∑
∞

𝑛=0
(𝛼 + 𝛽) = ∞.

3. Newton’s Root Finding Method
and Its Generalizations

At first, we recall the well-known Newton’s method for find-
ing roots of a complex polynomial. Then, following [2] some
generalizations, which use higher order iterations described
with the help of the Basic Family of Iterations and Euler-
Schröder Family of Iterations, will be presented. At the end of
this section a set of formulas for solving polynomial equation
with a complex variable will be given. In those formulas
the standard Picard iteration will be replaced by different
types of nonstandard iterations defined in Section 2.

3.1. The Standard Newton’s Method with Picard’s Iteration.
Let us denote any complex polynomial as 𝑝. The standard
Newton’s root finding procedure for𝑝 is given by the formula:

𝑧
𝑛+1

= 𝑁 (𝑧
𝑛
) , 𝑛 = 0, 1, 2, . . . , (14)

where

𝑁(𝑧) = 𝑧 −

𝑝 (𝑧)

𝑝

(𝑧)

, (15)

and 𝑧
0
∈ C is a starting point.
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3.2. The Basic Family of Iterations. Let deg𝑝 ≥ 2. Define a
sequence of functions 𝐷

𝑚
: C → C in the following way:

𝐷
0
(𝑧) = 1 and for𝑚 > 0 let

𝐷
𝑚
(𝑧) = det

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

𝑝

(𝑧)

𝑝

(𝑧)

2!

⋅ ⋅ ⋅

𝑝
(𝑚−1)

(𝑧)

(𝑚 − 1)!

𝑝
(𝑚)
(𝑧)

𝑚!

𝑝 (𝑧) 𝑝

(𝑧) d d

𝑝
(𝑚−1)

(𝑧)

(𝑚 − 1)!

0 𝑝 (𝑧) d d
.
.
.

.

.

.

.

.

. d d
𝑝

(𝑧)

2!

0 0 ⋅ ⋅ ⋅ 𝑝 (𝑧) 𝑝

(𝑧)

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(16)

The elements of the Basic Family of Iterations are then defined
as

𝐵
𝑚 (𝑧) = 𝑧 − 𝑝 (𝑧)

𝐷
𝑚−2

(𝑧)

𝐷
𝑚−1

(𝑧)

, 𝑚 = 2, 3, . . . . (17)

Let us see how the first three elements of the Basic Family
look like:

𝐵
2
(𝑧) = 𝑧 −

𝑝 (𝑧)

𝑝

(𝑧)

,

𝐵
3 (𝑧) = 𝑧 −

2𝑝

(𝑧) 𝑝 (𝑧)

2𝑝

(𝑧)
2
− 𝑝

(𝑧) 𝑝 (𝑧)

,

𝐵
4
(𝑧) = 𝑧 −

6𝑝

(𝑧)
2
𝑝 (𝑧) − 3𝑝


(𝑧) 𝑝 (𝑧)

2

𝑝

(𝑧) 𝑝 (𝑧)

2
+ 6𝑝

(𝑧)
3
− 6𝑝

(𝑧) 𝑝

(𝑧) 𝑝 (𝑧)

.

(18)

One can easily see that 𝐵
2
is Newton’s method, whereas 𝐵

3
is

Halley’s method.
By using functions 𝐷

𝑚
in [2], Kalantari defined the

Parametric Basic Family:

𝐵
𝑚,𝜆 (𝑧) = 𝑧 − 𝜆𝑝 (𝑧)

𝐷
𝑚−2

(𝑧)

𝐷
𝑚−1

(𝑧)

, (19)

where 𝑚 = 2, 3, . . . and 𝜆 ∈ C. Let us note that for 𝜆 = 1 the
Parametric Basic Family reduces to the Basic Family.

3.3. Euler-Schröder’s Family of Iterations. Now, let us drawour
attention to Euler-Schröder’s Family of Iterations. The initial
elements of this family have the following form:

𝐸
2
(𝑧) = 𝑧 −

𝑝 (𝑧)

𝑝

(𝑧)

,

𝐸
3
(𝑧) = 𝐸

2
(𝑧) + (

𝑝(𝑧)

𝑝

(𝑧)

)

2
𝑝

(𝑧)

2𝑝

(𝑧)

,

𝐸
4
(𝑧) = 𝐸

3
(𝑧) − (

𝑝(𝑧)

𝑝

(𝑧)

)

3

(

𝑝

(𝑧)

6𝑝

(𝑧)

−

𝑝

(𝑧)

2𝑝
2
(𝑧)

) ,

𝐸
5
(𝑧) = 𝐸

4
(𝑧) + (

𝑝(𝑧)

𝑝

(𝑧)

)

4

⋅ (

𝑝
𝐼𝑉
(𝑧)

4!𝑝

(𝑧)

−

5𝑝

(𝑧) 𝑝

(𝑧)

12𝑝
2
(𝑧)

+

5𝑝
3
(𝑧)

8𝑝
3
(𝑧)

) .

(20)

One can easily see that 𝐸
2
is Newton’s method.The construc-

tion of the other elements of the family can be found in [2].

3.4. Root Finding Methods with Nonstandard Iterations. Let
us denote by 𝐺 one of the operators: 𝑁 representing the
standard Newton’s method, 𝐵

𝑖
for 𝑖 = 2, 3, . . . or 𝐵

𝑚,𝜆
for 𝑖 =

2, 3, . . ., 𝜆 ∈ C or 𝐸
𝑖
for 𝑖 = 2, 3, . . . representing elements of

the Basic, Parametric Basic, and Euler-Schöder’s Families of
Iterations, respectively. And let us replace the standard Picard
iteration by one of the nonstandard iterations described in
Section 2. Then we get the following formulas for finding
roots of complex polynomial 𝑝 iteratively:

(i) The generalized Newton’s method with the Mann
iteration (4):

𝑧
𝑛+1

= (1 − 𝛼) 𝑧
𝑛
+ 𝛼𝐺 (𝑧

𝑛
) , 𝑛 = 0, 1, 2, . . . , (21)

where 𝛼 ∈ (0, 1].

(ii) The generalized Newton’s method with the Ishikawa
iteration (5):

𝑧
𝑛+1

= (1 − 𝛼) 𝑧
𝑛
+ 𝛼𝐺 (V

𝑛
) ,

V
𝑛
= (1 − 𝛽) 𝑧

𝑛
+ 𝛽𝐺 (𝑧

𝑛
) , 𝑛 = 0, 1, 2, . . . ,

(22)

where 𝛼 ∈ (0, 1] and 𝛽 ∈ [0, 1].

(iii) The generalized Newton’s method with the Noor
iteration (6):

𝑧
𝑛+1

= (1 − 𝛼) 𝑧
𝑛
+ 𝛼𝐺 (V

𝑛
) ,

V
𝑛
= (1 − 𝛽) 𝑧

𝑛
+ 𝛽𝐺 (𝑤

𝑛
) ,

𝑤
𝑛
= (1 − 𝛾) 𝑧

𝑛
+ 𝛾𝐺 (𝑧

𝑛
) , 𝑛 = 0, 1, 2, . . . ,

(23)

where 𝛼 ∈ (0, 1] and 𝛽, 𝛾 ∈ [0, 1].
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(iv) The generalized Newton’s method with the Suantai
iteration (7):

𝑧
𝑛+1

= (1 − 𝛼 − 𝛽) 𝑧
𝑛
+ 𝛼𝐺 (V

𝑛
) + 𝛽𝐺 (𝑤

𝑛
) ,

V
𝑛
= (1 − 𝑎 − 𝑏) 𝑧

𝑛
+ 𝑎𝐺 (𝑤

𝑛
) + 𝑏𝐺 (𝑧

𝑛
) ,

𝑤
𝑛
= (1 − 𝛾) 𝑧

𝑛
+ 𝛾𝐺 (𝑧

𝑛
) , 𝑛 = 0, 1, 2, . . . ,

(24)

where 𝛼 ∈ (0, 1], 𝛽, 𝛾, 𝑎, 𝑏 ∈ [0, 1] and 𝛼 + 𝛽 ∈ (0, 1],
𝑎 + 𝑏 ∈ (0, 1].

(v) The generalizedNewton’smethodwith the 𝑆-iteration
(8):

𝑧
𝑛+1

= (1 − 𝛼)𝐺 (𝑧
𝑛
) + 𝛼𝐺 (V

𝑛
) ,

V
𝑛
= (1 − 𝛽) 𝑧

𝑛
+ 𝛽𝐺 (𝑧

𝑛
) , 𝑛 = 0, 1, 2, . . . ,

(25)

where 𝛼 ∈ (0, 1] and 𝛽 ∈ [0, 1].
(vi) The generalized Newton’s method with the SP itera-

tion (9):

𝑧
𝑛+1

= (1 − 𝛼) V
𝑛
+ 𝛼𝐺 (V

𝑛
) ,

V
𝑛
= (1 − 𝛽)𝑤

𝑛
+ 𝛽𝐺 (𝑤

𝑛
) ,

𝑤
𝑛
= (1 − 𝛾) 𝑧

𝑛
+ 𝛾𝐺 (𝑧

𝑛
) , 𝑛 = 0, 1, 2, . . . ,

(26)

where 𝛼 ∈ (0, 1] and 𝛽, 𝛾 ∈ [0, 1].
(vii) The generalized Newton’s method with the CR itera-

tion (10):

𝑧
𝑛+1

= (1 − 𝛼) V𝑛 + 𝛼𝐺 (V𝑛) ,

V
𝑛
= (1 − 𝛽)𝐺 (𝑧

𝑛
) + 𝛽𝐺 (𝑤

𝑛
) ,

𝑤
𝑛
= (1 − 𝛾) 𝑧

𝑛
+ 𝛾𝐺 (𝑧

𝑛
) , 𝑛 = 0, 1, 2, . . . ,

(27)

where 𝛽, 𝛾 ∈ [0, 1] and 𝛼 ∈ (0, 1], because if 𝛼 ̸= 0,
then ∑∞

𝑛=0
𝛼
𝑛
= ∑
∞

𝑛=0
𝛼 = ∞.

(viii) The generalized Newton’s method with the Khan
iteration (11):

𝑧
𝑛+1

= 𝐺 (V
𝑛
) ,

V
𝑛
= (1 − 𝛼) 𝑧

𝑛
+ 𝛼𝐺 (𝑧

𝑛
) , 𝑛 = 0, 1, 2, . . . ,

(28)

where 𝛼 ∈ (0, 1].
(ix) The generalized Newton’s method with the Karakaya

iteration (12):

𝑧
𝑛+1

= (1 − 𝛼 − 𝛽) V
𝑛
+ 𝛼𝐺 (V

𝑛
) + 𝛽𝐺 (𝑤

𝑛
) ,

V
𝑛
= (1 − 𝑎 − 𝑏)𝑤

𝑛
+ 𝑎𝐺 (𝑤

𝑛
) + 𝑏𝐺 (𝑧

𝑛
) ,

𝑤
𝑛
= (1 − 𝛾) 𝑧

𝑛
+ 𝛾𝐺 (𝑧

𝑛
) , 𝑛 = 0, 1, 2, . . . ,

(29)

where 𝛼 ∈ (0, 1], 𝛽, 𝛾, 𝑎, 𝑏 ∈ [0, 1] and 𝛼 + 𝛽 ∈ (0, 1],
𝑎 + 𝑏 ∈ (0, 1].

(x) The generalized Newton’s method with the Picard-S
iteration (13):

𝑧
𝑛+1

= 𝐺 (V
𝑛
) ,

V
𝑛
= (1 − 𝛼)𝐺 (𝑧𝑛) + 𝛼𝐺 (𝑤𝑛) ,

𝑤
𝑛
= (1 − 𝛽) 𝑧

𝑛
+ 𝛽𝐺 (𝑧

𝑛
) , 𝑛 = 0, 1, 2, . . . ,

(30)

where 𝛼 ∈ (0, 1] and 𝛽 ∈ [0, 1].

The sequence {𝑧
𝑛
}
∞

𝑛=0
(or orbit of the point 𝑧

0
) either

converges or does not to a root of𝑝. If the sequence converges
to a root 𝑧∗ then we say that 𝑧

0
is attracted to 𝑧∗.The set of all

starting points 𝑧
0
for which {𝑧

𝑛
}
∞

𝑛=0
converges to 𝑧∗ is called

the basin of attraction of 𝑧∗. The boundaries among basins
usually are fractals in nature.

All the above presented iteration processes are convergent
to the roots of polynomial𝑝. Only the speed and the character
of the convergence are different and the basins of attraction to
roots of 𝑝 look different for different kinds of iterations used.

The application of nonstandard iterations perturbs the
shape of polynomial basins and makes the polynomiographs
look more “fractal.”The aim of using more general iterations,
instead of the Picard iteration, was not to improve the speed
of convergence but to create images that are interesting from
the aesthetic point of view.

4. Convergence Tests

In the numerical algorithms that are based on iterative
processesweneed a stop criterion for the process, that is, a test
that tells us that the process has converged or it is very near
to the solution. This type of test is called a convergence test.
Usually, in the iterative process that use a feedback, like the
root finding methods, the standard convergence test has the
following form:





𝑧
𝑛+1

− 𝑧
𝑛





< 𝜀, (31)

where 𝑧
𝑛+1

, 𝑧
𝑛
are two successive points in the iteration

process and 𝜀 > 0 is a given accuracy.
In 1988 Pickover in [24] proposed a different convergence

test for Halley’s root finding method. By changing the stan-
dard convergence test (31) with











𝑧
𝑛+1






2
−




𝑧
𝑛






2



< 𝜀. (32)

Pickover obtained new and diverse shapes of the poly-
nomiographs. Later, Gdawiec in [25] introduced methods of
creating new convergence tests, which we will briefly present
in the rest of this section.

When we look at (31) we can note that the calculation of
the modulus is equivalent to the computation of the distance
(in the complex plane) between the two elements. So, oneway
of changing the test is the use of different metrics in C. We
know that the complex plane C is isometric with R2, where
the isometry 𝜙 : C → R2 is given by [26]

𝜙 (𝑧) = (R (𝑧) ,I (𝑧)) , (33)
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for every 𝑧 ∈ C, and where R(𝑧) and I(𝑧) denote the real
and imaginary part of 𝑧, respectively. Using the isometry we
can define metric 𝑑 : C × C → [0, +∞) using metric 𝜌 :
R2 ×R2 → [0, +∞) in the following way [26]:

𝑑 (𝑧
1
, 𝑧
2
) = 𝜌 (𝜙 (𝑧

1
) , 𝜙 (𝑧

2
)) , (34)

where 𝑧
1
, 𝑧
2
∈ C. For instance, we can use some well-known

metrics defined in R2 [26]:

(i) the taxicab metric

𝜌 ((𝑥
1
, 𝑦
1
) , (𝑥
2
, 𝑦
2
)) =





𝑥
1
− 𝑥
2





+




𝑦
1
− 𝑦
2





, (35)

(ii) the supremummetric

𝜌 ((𝑥
1
, 𝑦
1
) , (𝑥
2
, 𝑦
2
)) = max {


𝑥
1
− 𝑥
2





,




𝑦
1
− 𝑦
2





} , (36)

(iii) the 𝑙
𝑝
metric

𝜌 ((𝑥
1
, 𝑦
1
) , (𝑥
2
, 𝑦
2
)) = [





𝑥
1
− 𝑥
2






𝑝
+




𝑦
1
− 𝑦
2






𝑝
]

1/𝑝

, (37)

where 1 ≤ 𝑝 ≤ +∞.

Moreover, we can use different facts about metric spaces to
create new metrics. For instance, let (𝑋, 𝜌) be a metric space;
then [26]

(i) if 𝑓 : 𝑋 → 𝑋 is injective, then

𝜂 (𝑥, 𝑦) = 𝜌 (𝑓 (𝑥) , 𝑓 (𝑦)) (38)

is a metric on𝑋;
(ii) if 𝑓 : 𝑋 → R is a function, then

𝜂 (𝑥, 𝑦) = 𝜌 (𝑥, 𝑦) +




𝑓 (𝑥) − 𝑓 (𝑦)






(39)

is a metric on𝑋.

If we are interested in generating diverse patterns using
polynomiography, we can take a function that does not fulfil
some of the metric axioms, for example, 𝑙

𝑝
for 𝑝 ∈ (0, 1)

does not fulfil the triangle inequality. We can also omit the
assumption about the injectivity of 𝑓 in (38). For instance, if
we take the complex plane C with the modulus metric and
𝑓(𝑧) = |𝑧|

2, which of course is not injective, we obtain

𝜂 (𝑧
1
, 𝑧
2
) =











𝑧
1






2
−




𝑧
2






2



. (40)

Whenwe look at (40), thenwe can see that this is the function
used by Pickover in (32).

Another way tomodify the tests is to add some weights in
the metric function. The weights could cause that the metric
function will lose the properties of the metric. For instance, if
we use (38) for creation of the test we can add weights 𝜉

1
, 𝜉
2
∈

R in the following way:

𝜂 (𝑥, 𝑦) = 𝜌 (𝜉
1
𝑓 (𝑥) , 𝜉

2
𝑓 (𝑦)) . (41)

If 𝜉
1
̸= 𝜉
2
, then we lose the symmetry property of the metric.

All the tests discussed so far were based on a singlemetric
function, but we can create tests using several terms that use
metric functions or modified metric functions; for example,





𝜉
1
R (𝑧
𝑛+1

− 𝑧
𝑛
)




< 𝜀
1
∨




𝜉
2
I (𝑧
𝑛+1

− 𝑧
𝑛
)




< 𝜀
2
,





𝜉
1
R (𝑧
𝑛+1

− 𝑧
𝑛
)





2
< 𝜀
1
∧




𝜉
2
I (𝑧
𝑛+1

− 𝑧
𝑛
)





2
< 𝜀
2
,

(42)

where 𝜉
1
, 𝜉
2
∈ R and 𝜀

1
, 𝜀
2
> 0.

In theMandelbrot and Julia sets we use the escape criteria
to stop the iterative process. In this criteria we check if the
computed value is greater than the given threshold value 𝑅 >
0 [27]. Based on the idea of escape criteria we can create dif-
ferent tests in polynomiography.The examples of this kind of
tests are as follows:





𝑧
𝑛+1

− 𝑧
𝑛





+




arg (𝑧

𝑛+1
) − arg (𝑧

𝑛
)




> 𝑅,












1





𝑧
𝑛+1






2
−

1





𝑧
𝑛






2












+











𝑧
𝑛+1






2
−




𝑧
𝑛






2



> 𝑅,

𝜉
1





R (𝑧
𝑛+1

− 𝑧
𝑛
)




> 𝑅 ∧ 𝜉

2





I (𝑧
𝑛+1

− 𝑧
𝑛
)




> 𝑅,

(43)

where arg(𝑧) is an argument of the complex number 𝑧, and
𝜉
1
, 𝜉
2
∈ R.

5. Colouring Methods

After satisfying the convergence test in the iteration process
of the root-findingmethod for a considered starting point we
need to determine the colour for that point. The method of
colour determination for a given point is called the colouring
method. We briefly introduce three basic colouring methods
[2] in this section.

In the first method we need to know all the roots
{𝑟
1
, 𝑟
2
, . . . , 𝑟

𝑛
} of the polynomial 𝑝. So, if we want to use the

method, it is comfortable to use the polynomial representa-
tion by its roots (2), because we do not need to compute the
roots. Each root 𝑟

𝑖
of the polynomial gets a distinct colour 𝑐

𝑖
.

So, after the iteration process we take the obtained approx-
imation of the root 𝑧

𝑚
and find the closest root of 𝑝 using

the modulus metric. Having the closest root we colour the
starting point with the colour that corresponds to this root.
In this way we obtain visualization of the polynomial basins
of attraction introduced in Section 3.4.

Unlike the first method, the second colouring method
does not need the information about the roots, so we can use
any of the two polynomial representation methods (coeffi-
cients, roots). In this method we deal with a colour map, that
is, the table of different colours. After the iteration process
we take the number of iteration 𝑚 at which the process has
stopped and map it to an index of colour in the colour map.
If the number of colours in the colour map is equal to the
maximum number of iterations, then we have one-to-one
correspondence between iterations and colours. In the other
case we need to use some mapping. Most often the linear
interpolation is used; that is, a mapping 𝐿 : {0, 1, . . . ,𝑀} →
{0, 1, . . . , 𝐶 − 1}, where 𝑀 is the maximum number of
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Input: 𝑝 ∈ C[𝑍]—polynomial, 𝐴 ⊂ C—area,𝑀—maximum number of iterations, 𝐼
𝑞
—iteration method

for some Generalized Newton Method, 𝑞 ∈ C𝑁—parameters of the iteration 𝐼
𝑞
.

Output: Polynomiograph for the area 𝐴.
(1) for 𝑧

0
∈ 𝐴 do

(2) 𝑖 = 0

(3) while 𝑖 ≤ 𝑀 do
(4) 𝑧

𝑖+1
= 𝐼
𝑞
(𝑧
𝑖
)

(5) if 𝑐𝑜𝑛V𝑒𝑟𝑔𝑒𝑛𝑐𝑒𝑇𝑒𝑠𝑡(𝑧
𝑖
, 𝑧
𝑖+1
) = 𝑡𝑟𝑢𝑒 then

(6) break
(7) 𝑖 = 𝑖 + 1

(8) determine the colour for 𝑧
0

Algorithm 1: Polynomiograph generation.

iterations and 𝐶 is the number of colours in the colour map,
of the following form:

𝐿 (𝑚) = ⌊(𝐶 − 1)

𝑚

𝑀

⌋ . (44)

By using this method we are able to visualize the speed of
convergence of the root-finding method. The use of specific
colourmaps often reveals a hidden unrepeatable beauty of the
root finding visualization process.

In [28] Pickover used this method to create contour lines
that helps to visually emphasize different regions of behaviour
of the considered function (root-finding method for a given
polynomial). For this purpose he used two colours (black,
white) and a mapping function 𝑃 : {0, 1, . . . ,𝑀} → {0, 1}

of the following form:
𝑃 (𝑚) = 𝑚 mod 2. (45)

The last colouring method combines the features of the
two previous ones. It visualizes, at the same time, basins
of attractions and speed of convergence of the root-finding
method. In this method, like in the first one, we need to know
the roots {𝑟

1
, 𝑟
2
, . . . , 𝑟

𝑛
} of the polynomial 𝑝 and each root get

a distinct colour {𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑛
}. After stopping the iteration

process we take the obtained approximation of the root 𝑧
𝑚

and we find the closest root of 𝑝 using the modulus metric.
Now, we set the colour of the starting point to the colour of
the closest root and we use the iteration number𝑚 to set the
shade of that colour. To have ease in operating on the colours
they should be represented in the HSB (Hue, Saturation,
Brightness) colour space. In this space hue represents the
colour’s type (the root colour) and saturation represents the
shade of the colour.Moreover, we can use linear interpolation
to map the iteration number to the saturation, what would be
difficult if we have used the RGB (Red, Green, Blue) colour
space. In this way, visualization shows the basins of attraction
by using distinct colours and shows the speed of convergence
represented by the shade of the colour.

6. Polynomiograph Generation

In the previous sections we introduced several parts of the
polynomiograph generation method. Putting them together

we obtain algorithm that is presented as a pseudocode in
Algorithm 1.

The input for the algorithm consists of the polynomial 𝑝
given by equation (1) or (2), the area of the complex plane
𝐴 for which the polynomiograph is generated, and the maxi-
mum number of iterations which will be made for each point
in𝐴.The last input parameter is the iterationmethod 𝐼

𝑞
from

Section 3.4 for a chosen root-finding method. The index 𝑞 is
a vector of parameters of the iterationmethod, that is, 𝑞 ∈ C𝑁,
where𝑁 is the number of parameters of the iteration. For the
Picard’smethod the iteration 𝐼 is used instead of 𝐼

𝑞
.Moreover,

some convergence test and a colouring method have to be
fixed.

In Section 3.4 the parameters used in the iterations were
real numbers, but when we look at Algorithm 1 we see that
they are complex. According to the authors’ knowledge the
iterations with complex parameters have not been studied so
far. The experiments carried out for this type of iterations
show that the generated polynomiographs form interesting
patterns, what will be shown in Section 7.2.

In this algorithm, for each point 𝑧
0
in the considered area

𝐴, this point is iterated by the method 𝐼
𝑞
. If the convergence

test is satisfied, then it is assumed that the generated sequence
converges to a root of 𝑝 and the iteration is stopped. In the
other case the algorithm goes to the next iteration. If the
maximum number of iterations𝑀 is reached, it is assumed
that the generated sequence does not converge to any root of
𝑝. At the end a colour is given to the considered point by using
a fixed method of colouring.

7. Examples of Polynomiographs

In this section some examples of the polynomiographs
obtained by using the methods described in the previous
sections are presented. First, we show the use of different
iterations with both the real and complex parameters. Next,
the influence of the convergence tests on the polynomio-
graph’s shape will be presented. The last example shows the
use of different colour maps. In all examples we use the same
colouring method—the second method from Section 5 with
different colour maps.
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7.1. Polynomiographs with Real-Valued Parameters of Itera-
tions. Figure 2 presents examples of the polynomiographs
with the use of the following parameters: 𝑝

1
(𝑧) = 𝑧

7
+ 𝑧
2
− 1,

𝑀 = 15, standard convergence test with 𝜀 = 0.001, 𝐴 =

[−1.5, 1.5]
2, the Newton’s root finding method (𝐵

2
, 𝐸
2
). The

parameters used in the iterations were fixed as follows:

(b) Mann: 𝛼 = 0.9,
(c) Ishikawa: 𝛼 = 0.35, 𝛽 = 0.85,
(d) Noor: 𝛼 = 0.75, 𝛽 = 0.39, 𝛾 = 0.07,
(e) Suantai: 𝛼 = 0.25, 𝛽 = 0.75, 𝛾 = 0.01, 𝑎 = 0.25,

𝑏 = 0.75,
(f) 𝑆: 𝛼 = 0.45, 𝛽 = 0.5,
(g) SP: 𝛼 = 0.45, 𝛽 = 0.3, 𝛾 = 0.1,
(h) CR: 𝛼 = 0.1, 𝛽 = 0.4, 𝛾 = 0.8,
(i) Khan: 𝛼 = 0.15,
(j) Karakaya: 𝛼 = 0.7, 𝛽 = 0.2, 𝛾 = 0.85, 𝑎 = 0.1, 𝑏 = 0.7,
(k) Picard-S: 𝛼 = 0.9, 𝛽 = 0.6.

In Figure 2 one can see that different iteration processes
produce unique polynomiographs that are different compar-
ing to the polynomiograph obtained with the standard Picard
iteration and to each other. In each polynomiograph one can
find seven main areas with different shapes and with fractal
boundaries. Moreover, looking at the colours and shapes of
the polynomiographs one can see that the use of different
iteration processes change the speed of convergence of the
root findingmethod, for somepoints the convergence is faster
and for some others it is slower. The speed depends on the
iteration and the parameters used. All images, that are very
decorative, have visible symmetries what is a consequence of
placing the roots in a symmetrical way. The symmetry
introduces the order which stress the static appearance of
polynomiographs.

The second example (Figure 3) presents the polynomio-
graphs generated with the use of the following parameters:
𝑝
2
(𝑧) = 𝑧

4
+4,𝑀 = 40, the standard convergence test with 𝜀 =

0.001, 𝐴 = [−2, 2]2, 𝐸
3
root finding method. The parameters

used in the iterations were fixed as follows:

(b) Mann: 𝛼 = 0.5,
(c) Ishikawa: 𝛼 = 0.1, 𝛽 = 0.1,
(d) Noor: 𝛼 = 0.35, 𝛽 = 0.7, 𝛾 = 0.4,
(e) Suantai: 𝛼 = 0.01, 𝛽 = 0.2, 𝛾 = 0.01, 𝑎 = 0.3, 𝑏 = 0.1,
(f) 𝑆: 𝛼 = 0.99, 𝛽 = 0.01,
(g) SP: 𝛼 = 0.1, 𝛽 = 0.99, 𝛾 = 0.01,
(h) CR: 𝛼 = 0.8, 𝛽 = 0.45, 𝛾 = 0.8,
(i) Khan: 𝛼 = 0.75,
(j) Karakaya: 𝛼 = 0.9, 𝛽 = 0.01, 𝛾 = 0.01, 𝑎 = 0.9, 𝑏 =
0.01,

(k) Picard-S: 𝛼 = 0.75, 𝛽 = 0.99.

In the polynomiographs for 𝑝
2
one can see that different

iteration processes produce eight main areas with very subtle
fractal boundaries. Moreover, one obtains very diverse and
different patterns in comparison to the polynomiograph with
the standard Picard iteration.We can also observe that the use
of different iterations has impact on the speed of convergence.
For instance, for the Karakaya or Picard-S iteration one can
see that the red areas that occur for the Picard iteration have
shrunk and the light blue areas changed the colour to navy
blue. This means that in those areas the convergence is faster.
The change of speed depends on the iteration used and the
value of its parameters.

7.2. Polynomiographs with Complex-Valued Parameters of Iter-
ations. Figure 4 presents the examples of polynomiographs
with the same parameters as in Figure 2; that is, 𝑝

1
(𝑧) =

𝑧
7
+ 𝑧
2
− 1, 𝑀 = 15, the standard convergence test with

𝜀 = 0.001,𝐴 = [−1.5, 1.5]2, the Newton’s root findingmethod
(𝐵
2
, 𝐸
2
). The only change is the addition of imaginary part to

the values of the iteration parameters:

(a) Mann: 𝛼 = 0.9 + 0.3i,
(b) Ishikawa: 𝛼 = 0.35, 𝛽 = 0.85 + i,
(c) Noor:𝛼 = 0.75−0.26i,𝛽 = 0.39−0.26i, 𝛾 = 0.07−0.5i,
(d) Suantai:𝛼 = 0.25,𝛽 = 0.75+0.1i, 𝛾 = 0.01, 𝑎 = 0.25+i,

𝑏 = 0.75 + 0.3i,
(e) 𝑆: 𝛼 = 0.45 + 0.5i, 𝛽 = 0.5,
(f) SP: 𝛼 = 0.45, 𝛽 = 0.3 − 0.5i, 𝛾 = 0.1 + 0.25i,
(g) CR: 𝛼 = 0.1, 𝛽 = 0.4 + 0.15i, 𝛾 = 0.8 + 0.13i,
(h) Khan: 𝛼 = 0.15 − i,
(i) Karakaya: 𝛼 = 0.7, 𝛽 = 0.2, 𝛾 = 0.85 − i, 𝑎 = 0.1 − i,
𝑏 = 0.7 − i,

(j) Picard-S: 𝛼 = 0.9 + i, 𝛽 = 0.6 − 0.5i.

The use of a nonzero imaginary part of the parameters,
generally, adds the clockwise or the anticlockwise rotations
to the polynomiographs. The angle of rotation is dependent
on the value and the sign of the imaginary part. In the
case of the multiparameter iterations some of the parameters
(their imaginary parts) have global and some have only local
influence on the shape of the polynomiograph. The effect is
easily seen in Figure 4 by comparison with Figure 2. Swirls
and twists present in the polynomiographs from Figure 4
make those images look more dynamical and live in opposite
to the polynomiographs from Figure 2. The imaginary parts
of the parameters have also the influence on the speed of con-
vergence, which can be easily seen, for instance, in Figure 4(i)
by comparison with Figure 2(j).

The next example (Figure 5) presents polynomiographs
generated with the use of the same parameters as in Figure 3,
that is, 𝑝

2
(𝑧) = 𝑧

4
+ 4, 𝑀 = 40, the standard convergence

test with 𝜀 = 0.001, 𝐴 = [−2, 2]
2, 𝐸
3
root finding method.

The only change is the addition of the imaginary parts to the
values of iteration parameters:
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(a) Picard (b) Mann (c) Ishikawa

(d) Noor (e) Suantai (f) 𝑆

(g) SP (h) CR (i) Khan

15 14 12 10 8 6 4 2 0

(j) Karakaya

15 14 12 10 8 6 4 2 0

(k) Picard-S

Figure 2: Examples of polynomiographs for 𝑝
1
with real-valued parameters of iterations.
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(a) Picard (b) Mann (c) Ishikawa

(d) Noor (e) Suantai (f) 𝑆

(g) SP (h) CR (i) Khan

40 36 32 28 24 20 16 12 8 4 0

(j) Karakaya

40 36 32 28 24 20 16 12 8 4 0

(k) Picard-S

Figure 3: Examples of polynomiographs for 𝑝
2
with real-valued parameters of iterations.
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(a) Mann (b) Ishikawa (c) Noor

(d) Suantai (e) 𝑆 (f) SP

(g) CR (h) Khan (i) Karakaya

15 14 12 10 8 6 4 2 0

(j) Picard-S

Figure 4: Examples of polynomiographs for 𝑝
1
with complex-valued parameters of iterations.
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(a) Mann (b) Ishikawa (c) Noor

(d) Suantai (e) 𝑆 (f) SP

(g) CR (h) Khan (i) Karakaya

40 36 32 28 24 20 16 12 8 4 0

(j) Picard-S

Figure 5: Examples of polynomiographs for 𝑝
1
with complex-valued parameters of iterations.
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(a) SP (b) Khan (c) Picard-S

15 14 12 10 8 6 4 2 0

(d) 𝑆

15 14 12 10 8 6 4 2 0

(e) CR

15 14 12 10 8 6 4 2 0

(f) Suantai

Figure 6: Examples of different convergence tests application for 𝑝
1
, the iterations with: real-valued parameters (a, b, and c) and complex-

valued parameters (d, e, and f).

(a) Mann: 𝛼 = 0.5 + 0.5i,
(b) Ishikawa: 𝛼 = 0.1 + 0.11i, 𝛽 = 0.1 − 0.23i,
(c) Noor: 𝛼 = 0.35 − 0.21i, 𝛽 = 0.7 + 0.8i, 𝛾 = 0.4 + 0.8i,
(d) Suantai: 𝛼 = 0.01 − 0.33i, 𝛽 = 0.2, 𝛾 = 0.01 + 0.2i,

𝑎 = 0.3 + 0.16i, 𝑏 = 0.1,
(e) 𝑆: 𝛼 = 0.99 + 0.1i, 𝛽 = 0.01 + 0.35i,
(f) SP: 𝛼 = 0.1 + 0.61i, 𝛽 = 0.99 + 0.41i, 𝛾 = 0.01 + 0.93i,
(g) CR: 𝛼 = 0.8 − 0.7i, 𝛽 = 0.45 − 0.45i, 𝛾 = 0.8 + i,
(h) Khan: 𝛼 = 0.75 + 0.7i,
(i) Karakaya: 𝛼 = 0.9 + 0.75i, 𝛽 = 0.01, 𝛾 = 0.01, 𝑎 =
0.9 − 0.34i, 𝑏 = 0.01 − 0.7i,

(j) Picard-S: 𝛼 = 0.75 − i, 𝛽 = 0.99 + 0.73i.

As in the previous example, in this case the addition of
imaginary parts to the iterations’ parameters causes those
swirls and twists to appear in the polynomiographs from
Figure 5. This makes the polynomiographs more dynamic
and vivid in comparison to those from Figure 3. When
one looks at the colours of the polynomiographs one can
observe that in some cases the speed of convergence has

increased in some areas (e.g., Figure 5(b)) and in some cases
it has decreased (e.g., Figure 5(g)) in comparison to the
polynomiographs from Figure 3.

7.3. Polynomiographs with Different Convergence Tests. In the
next examples we present the use of different convergence
tests. The tests that were used are as follows:

(1) ||𝑧
𝑛+1
|
2
− |𝑧
𝑛
|
2
| < 𝜀 (Pickover’s test),

(2) |0.01(𝑧
𝑖+1
− 𝑧
𝑖
)| + |0.029|𝑧

𝑖+1
|
2
− 0.03|𝑧

𝑖
|
2
| < 𝜀,

(3) |0.05/|𝑧
𝑖+1
|
2
− 0.045/|𝑧

𝑖
|
2
| < 𝜀,

(4) |0.04R(𝑧
𝑖+1
− 𝑧
𝑖
)| < 𝜀 ∨ |0.05I(𝑧

𝑖+1
− 𝑧
𝑖
)| < 𝜀,

(5) |0.4R(𝑧
𝑖+1
− 𝑧
𝑖
)|
2
< 𝜀 ∧ |I(𝑧

𝑖+1
− 𝑧
𝑖
)|
2
< 𝜀

and in all cases 𝜀 = 0.001.
Figure 6 presents the examples of the use of different con-

vergence tests in the polynomiographs for 𝑝
1
(𝑧) = 𝑧

7
+𝑧
2
−1.

Figures 6(a), 6(b), and 6(c) were obtained with the use of
the parameters that have been used to generate Figures 2(g),
2(i), and 2(k) but with the use of the tests 1, 2, 4, respectively.
On the other hand, Figures 6(d), 6(e), and 6(f) were obtained
with the use of the parameters that have been used to generate
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(a) Noor (b) Picard-S (c) Ishikawa

40 36 32 28 24 20 16 12 8 4 0

(d) Mann

40 36 32 28 24 20 16 12 8 4 0

(e) CR

40 36 32 28 24 20 16 12 8 4 0

(f) Suantai

Figure 7: Examples of different convergence tests application for 𝑝
2
, the iterations with: real-valued parameters (a, b, and c) and complex-

valued parameters (d, e, and f).

Figures 4(e), 4(g), and 4(d) but with the use of the tests 1, 2,
4, respectively.

Figure 7 presents the examples of the use of different
convergence tests in the polynomiographs for 𝑝

2
(𝑧) = 𝑧

4
+ 4.

Figures 7(a), 7(b), and 7(c) were obtained with the use of the
parameters that have been used to generate Figures 3(d), 3(k),
and 3(c) but with the use of the tests 1, 3, 5, respectively. On
the other hand Figures 7(d), 7(e), and 7(f) were obtained with
the use of the parameters that have been used to generate
Figures 5(a), 5(g), and 5(d) but with the use of the tests 1, 3, 5,
respectively.

From the examples presented in Figures 6 and 7 one
can see that the different convergence tests have significantly
changed the shape of regions of fast convergence. Moreover,
one can observe a small change in the areas of slow con-
vergence. When one looks at the polynomiographs obtained
with the standard modulus test and with the use of the tests
1–5 one can observe that the areas from the original poly-
nomiographs are very regular and circular, whereas in Figures
6 and 7 the areas have an irregular nature. The change of the
shape is very different when one compares the images
obtained with different convergence tests.

7.4. Polynomiographs with Different Colour Maps. Figure 8
presents polynomiographs generated with the same param-
eters that have been used to obtain polynomiograph from
Figure 2(h) but with the use of different colour maps. From
this example we see that the polynomiographs are strongly
dependent not only on iterations but also on the colour
maps used. The same graphical information contained in
the polynomiograph may be drastically different for different
colour maps. The explanation of this is the following. The
colours made of the red hues, such as red, magenta, and
orange, are warm colours. They are vivid and energetic, and
tend to advance in space.The coloursmade of blue hues, such
as blue, cyan, and green, are cold colours. They give an
impression of calm and appear to recede from the viewer, so
they are good to use for backgrounds. The complementary
colours that are opposite to each other on the colour wheel
(e.g., red and green) are used to obtain contrast in the image.
The analogous colours that are close to each other on the
colour wheel (e.g., yellow and orange) create harmony and
they are pleasing to the eye. By adding white or black to
any colour it is lightened or darkened and called the tint or
shade, respectively. Summing up, colours create the depth,
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15 14 12 10 8 6 4 2 0

(a)

15 14 12 10 8 6 4 2 0

(b)

15 14 12 10 8 6 4 2 0

(c)

15 14 12 10 8 6 4 2 0

(d)

15 14 12 10 8 6 4 2 0

(e)

15 14 12 10 8 6 4 2 0

(f)

Figure 8: Examples of different colour maps application for the fixed polynomiograph.

movement andmood of an image.Those effects, made by dif-
ferent colour maps, can be observed on the polynomiographs
from Figure 8.

8. Time Tests of Polynomiographs Generation

It is a difficult task to estimate theoretically the complexity
of the algorithms used for polynomiographs generation. It is
because of many factors that should be taken into account.
Among these factors are the following: the degree of the
polynomial, the root finding method, the computation accu-
racy, the type of iteration, the type of convergence test, the
maximal number of iterations, the polynomiograph’s res-
olution, to mention a few. So, instead of the theoretical
complexity estimateswe performed some time tests which are
presented in this section.

All the experiments were performed on a computer
with the following specification: Intel Core i5-4570 proces-
sor, 16GB RAM, and Windows 7 (64-bit). The software
for polynomiographs’ generation has been implemented in
Processing, a programming language based on Java.

The experiments were performed for two sets of parame-
ters:

(1) 𝑝
1
(𝑧) = 𝑧

7
+ 𝑧
2
− 1, 𝐴 = [−1.5, 1.5]

2, 𝑀 = 15,
the standard convergence test with 𝜀 = 0.001, the
Newton’s method, and the resolution 600×600 pixels,

(2) 𝑝
2
(𝑧) = 𝑧

4
+ 4, 𝐴 = [−2, 2]

2,𝑀 = 40, the standard
convergence test with 𝜀 = 0.001, the Newton’s
method, and the resolution 600 × 600 pixels.

In our experiments we focused on the comparison of
the different iteration processes. The iterations have been
compared in four groups depending on the number of
their parameters: 1 parameter (Mann, Khan), 2 parameters
(Ishikawa, S, Picard-S), 3 parameters (Noor, SP, CR), and 5
parameters (Suantai, Karakaya). The experiments have been
limited to parameters with real parts only and performed
for all possible combinations of discrete values of parameters
changed by different steps within each test group. The
steps’ values and the total numbers of parameters’ values
combinations are given in Table 1. From a huge number of
the experiments only the most representative results are
presented in Tables 2–9.Moreover, each polynomiograph has
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Table 1: Steps’ values and the total numbers of values combinations
used in the time tests.

Test group Step Total number of combinations
1 Parameter 0.01 99
2 Parameters 0.05 420
3 Parameters 0.10 1210
5 Parameters 0.10 47190

Table 2: Times of polynomiograph’s generation for 𝑝
1
using one

parameter iterations.

𝛼
Time [s]

Mann Khan
1.0 0.760 0.827
0.9 0.768 0.819
0.8 0.803 0.816
0.7 0.855 0.823
0.6 0.931 0.840
0.5 1.042 0.877
0.4 1.158 0.921
0.3 1.257 0.964
0.2 1.317 1.044
0.1 1.319 1.149

Table 3: Times of polynomiograph’s generation for 𝑝
2
using one

parameter iterations.

𝛼
Time [s]

Mann Khan
1.0 0.509 0.510
0.9 0.538 0.515
0.8 0.582 0.520
0.7 0.646 0.529
0.6 0.732 0.567
0.5 0.830 0.560
0.4 0.972 0.575
0.3 1.190 0.600
0.2 1.582 0.627
0.1 2.337 0.666

been generated several times to decrease the influence of
other processes and the Virtual Java Machine running on
the computer. Then, the worst and the best times have been
rejected to obtain the average time generation. It should be
added that polynomiographs’ time generation for 𝑝

1
and 𝑝

2

with the standard Picard iteration was 0.663 s and 0.418 s,
respectively.

Tables 2 and 3 present slices of the results obtained for
the iterations with one parameter for polynomials 𝑝

1
and 𝑝

2
,

respectively. From the results we see that for the values of 𝛼
close to 1 the Mann iteration is faster than the Khan iteration.
Then, starting from 𝛼 equal to about 0.77 for 𝑝

1
and 0.97 for

𝑝
2
the Khan iteration is faster than the Mann iteration and

this remains true up to the lowest values of 𝛼. Moreover, we
can observe that when the value of 𝛼 decreases then the time

Table 4: Times of polynomiograph’s generation for 𝑝
1
using two

parameters iterations.

𝛼 𝛽
Time [s]

Ishikawa 𝑆 Picard-S
1.0 0.1 1.234 1.249 1.466
1.0 0.5 0.971 0.997 1.300
1.0 1.0 0.915 0.915 1.274
0.8 0.1 1.333 1.285 1.488
0.8 0.5 1.145 0.974 1.268
0.8 1.0 1.129 0.935 1.232
0.5 0.1 1.861 1.356 1.538
0.5 0.5 1.829 1.082 1.349
0.5 1.0 1.719 1.019 1.297
0.2 0.1 2.511 1.403 1.583
0.2 0.5 2.552 1.253 1.467
0.2 1.0 2.514 1.187 1.414

Table 5: Times of polynomiograph’s generation for 𝑝
2
using two

parameters iterations.

𝛼 𝛽
Time [s]

Ishikawa 𝑆 Picard-S
1.0 0.1 0.772 0.771 0.880
1.0 0.5 0.627 0.641 0.793
1.0 1.0 0.574 0.580 0.778
0.8 0.1 0.939 0.836 0.924
0.8 0.5 0.863 0.705 0.857
0.8 1.0 0.877 0.657 0.827
0.5 0.1 1.350 0.862 0.930
0.5 0.5 1.350 0.724 0.853
0.5 1.0 1.354 0.688 0.823
0.2 0.1 2.944 0.945 0.977
0.2 0.5 2.882 0.823 0.914
0.2 1.0 2.869 0.775 0.877

Table 6: Times of polynomiograph’s generation for 𝑝
1
using three

parameters iterations.

𝛼 𝛽 𝛾
Time [s]

Noor SP CR
0.2 0.4 0.2 3.671 2.120 2.487
0.2 0.4 0.5 3.676 1.689 2.440
0.2 0.4 0.8 3.693 1.459 2.388
0.5 0.5 0.0 2.569 1.807 1.804
0.5 0.5 0.5 2.470 1.365 1.655
0.5 0.5 1.0 2.472 1.188 1.636
0.7 0.9 0.3 1.720 1.172 1.167
0.7 0.9 0.6 1.715 1.068 1.130
0.7 0.9 0.9 1.742 1.064 1.134
1.0 0.2 0.2 1.552 1.416 1.576
1.0 0.4 0.6 1.318 1.112 1.344
1.0 0.9 0.5 1.024 1.026 1.032
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Table 7: Times of polynomiograph’s generation for 𝑝
2
using three

parameters iterations.

𝛼 𝛽 𝛾
Time [s]

Noor SP CR
0.2 0.4 0.2 4.111 1.571 1.836
0.2 0.4 0.5 4.134 1.265 1.845
0.2 0.4 0.8 4.164 1.031 1.846
0.5 0.5 0.0 1.946 1.356 1.355
0.5 0.5 0.5 1.866 1.005 1.219
0.5 0.5 1.0 1.906 0.826 1.235
0.7 0.9 0.3 1.268 0.783 0.797
0.7 0.9 0.6 1.271 0.737 0.793
0.7 0.9 0.9 1.299 0.702 0.792
1.0 0.2 0.2 0.977 0.875 0.992
1.0 0.4 0.6 0.849 0.745 0.867
1.0 0.9 0.5 0.668 0.675 0.678

Table 8: Times of polynomiograph’s generation for 𝑝
1
using five

parameters iterations.

𝛼 𝛽 𝛾 𝑎 𝑏
Time [s]

Suantai Karakaya
0.8 0.2 0.7 0.6 0.3 1.791 1.781
0.8 0.2 0.1 0.0 0.6 2.320 2.300
0.8 0.2 0.0 0.0 0.0 3.602 3.599
0.3 0.7 1.0 0.7 0.1 1.979 1.939
0.3 0.7 0.7 1.0 0.0 1.924 1.916
0.3 0.7 0.2 0.8 0.2 2.352 2.372
0.6 0.1 0.7 0.2 0.2 3.059 2.180
0.6 0.2 0.7 0.2 0.2 2.638 2.104
0.6 0.3 0.7 0.2 0.2 2.313 2.026
0.1 0.5 0.3 0.5 0.2 3.676 2.575
0.2 0.5 0.3 0.5 0.2 3.131 2.402
0.3 0.5 0.3 0.5 0.2 2.735 2.295
0.4 0.5 0.3 0.5 0.2 2.337 2.193

Table 9: Times of polynomiograph’s generation for 𝑝
2
using five

parameters iterations.

𝛼 𝛽 𝛾 𝑎 𝑏
Time [s]

Suantai Karakaya
0.8 0.2 0.7 0.6 0.3 1.196 1.190
0.8 0.2 0.1 0.0 0.6 1.522 1.511
0.8 0.2 0.0 0.0 0.0 2.356 2.347
0.3 0.7 1.0 0.7 0.1 1.250 1.245
0.3 0.7 0.7 1.0 0.0 1.277 1.284
0.3 0.7 0.2 0.8 0.2 1.472 1.477
0.6 0.1 0.7 0.2 0.2 2.198 1.524
0.6 0.2 0.7 0.2 0.2 1.915 1.457
0.6 0.3 0.7 0.2 0.2 1.661 1.393
0.1 0.5 0.3 0.5 0.2 2.640 1.721
0.2 0.5 0.3 0.5 0.2 2.256 1.651
0.3 0.5 0.3 0.5 0.2 1.902 1.544
0.4 0.5 0.3 0.5 0.2 1.599 1.442

difference between the two iterations increases and the time
of polynomiograph’s generation also increases.

Tables 4 and 5 present slices of the results obtained for
the iterations with two parameters for polynomials 𝑝

1
and

𝑝
2
, respectively. When we look at the times for Ishikawa and

𝑆 iteration we can observe that for the fixed value of 𝛼 < 1

the time difference between those two iterations is increasing
when 𝛽 is also increasing and that the 𝑆 iteration is faster.
We can also observe that the lower the value of 𝛼 the greater
the time difference. In the case of Ishikawa and Picard-S
iteration for the values of 𝛼 close to 1 the Ishikawa iteration
is faster. Then, starting from 𝛼 equal to about 0.8 for 𝑝

1
and

0.7 for 𝑝
2
the Picard-S iteration is faster than the Ishikawa

iteration and the lower the values of 𝛼 the greater the time
differences. Finally, for the 𝑆 and Picard-S iterations we can
observe that for the fixed value of𝛼 the 𝑆 iteration is faster and
that the time difference is increasing when the value of 𝛽 is
also increasing.The difference is the smallest for small values
of 𝛼 and increases with the growth of 𝛼. Moreover, we can
observe that the time of Ishikawa iteration has downward
trend with the growth of 𝛼, and that the times for 𝑆 and
Picard-S iterations are oscillating is some interval.

For three and five parameter iterations the comparison
among iteration types is more complex and difficult to
make. Despite the difficulties we made some observations
concerning the times. Tables 6 and 7 present slices of the
results obtained for the iterations with three parameters for
the polynomials 𝑝

1
and 𝑝

2
, respectively. When we look at the

times forNoor and SP iterationswe can observe that theNoor
iteration is slower and that for fixed values of 𝛼 and 𝛽 the time
difference is increasing with the growth of 𝛾. Moreover, we
can observe that with the value drop of 𝛼 the time differences
are getting larger. In the case of the Noor and CR iteration
we can observe similar dependencies as in the previous case
(substituting SP iteration with CR). Furthermore, for 𝛼 = 1
the two iterations have comparable times. Finally, for the SP
andCR iterations we can observe that the SP iteration is faster
and that for the fixed values of 𝛼 and 𝛽 the time difference is
increasing with the growth of 𝛾. Furthermore, when we look
at the times of consecutive iterations we see that the iterations
have downward trendwith the value growth of 𝛼 for the Noor
iteration, 𝛼 + 𝛽 + 𝛾 for the SP iteration, and 𝛼 + 𝛽 for the CR
iteration.

Finally, slices of the results for the last group of itera-
tions (with five parameters) for polynomials 𝑝

1
and 𝑝

2
are

presented in Tables 8 and 9, respectively. From these results
we can observe that if 𝛼 + 𝛽 = 1, then the times of the
iterations are close to each other. When 𝛼 + 𝛽 < 1 then the
time difference between the iterations is noticeable.The lower
the sum the greater the difference in favour of the Karakaya
iteration. When we look at the formulas of the iterations we
see that the parameters𝑎 and 𝑏play similar role as𝛼 and𝛽, but
in the other step of the iteration process.Thismay suggest that
there may be a similar dependency between the sum of those
parameters and the time difference, but the obtained results
show that there is no such a dependency.

Additionally, the examples showed that polynomiographs
change their shapes in a smooth way with the change of
parameters lying in their admissible intervals.
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9. Conclusions and Future Work

It is known that mathematics and art are closely connected
to each other. A good example of such a connection delivers
polynomials and related to them polynomiographs. In the
paper by the use of different iteration processes, colour-
ing methods, convergence tests and colourmaps we gener-
alized Kalantari’s polynomiography. The polynomiographs
presented in this paper look nicely and many of them can
be classified as aesthetic ones. Patterns of polynomiographs
can be altered by changing the parameters of iterations and
convergence tests.Those parameters effect on the complexity,
level of details, and more or less fractal appearance of the
polynomiographs. Real parts of the parameters alter symme-
try, whereas imaginary ones cause asymmetric twisting of
the polynomiographs and influence on statics or dynamics
of the images. Colourmaps with cold or warm colours alter
drastically a visual expression of polynomiographs. This
expression can be classified as nostalgic, sad, calmor cheerful,
full of energy or sometimes flat or spatial.

Polynomiographs can be helpful to those who are inter-
ested in generating of nicely looking images in an automatic
way. Those images can inspire graphics designers in their
designs.

The results of this paper can be further extended by
using the multipoint methods [29–31]. Similar investigations
to those presented in this paper can be carried out for
complex fractals (Julia and Mandelbrot sets) and biomorphs.
Some aspects of such investigations have been reported in
the literature [9, 32–34]. Another interesting direction rely
on replacing complex numbers by more general: dual and
double numbers used in [35] for defining the Q-Systems
Fractals. Additionally, by following Kalantari’s paper [36]
one can generalize polynomiography to analytic functions or
even to the quasipolynomials [37] that have infinitely many
roots on complex plane, in contrary to polynomials. The
problems mentioned above show the possible future work on
the polynomiography generalization.
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