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Sea freight transportation involvesmoving huge amounts of freights amongmaritime locationswidely spaced bymeans of container
vessels.The time required to serve container vessels is themost relevant indicator when assessing the competitiveness of a maritime
container terminal. In this paper, two main logistic problems stemming from the transshipment of containers in the seaside of a
maritime container terminal are addressed, namely, the Berth Allocation Problem aimed at allocating and scheduling incoming
vessels into berthing positions along the quay and the Quay Crane Scheduling Problem, whose objective is to schedule the loading
and unloading tasks associated with a container vessel. For solving them, two Migrating Birds Optimization (MBO) approaches
are proposed. The MBO is a recently proposed nature-inspired algorithm based on the V-formation flight of migrating birds. In
this algorithm, a set of solutions of the problem at hand, called birds, cooperate among themselves during the search process by
sharing information within a V-line formation. The computational experiments performed over well-known problem instances
reported in the literature show that the performance of our proposed MBO approaches is highly competitive and presents a better
performance in terms of running time than the best approximate approach proposed in the literature.

1. Introduction

Maritime container terminals and container vessels are the
main components involved in sea freight transportation,
where huge amounts of freights are moved among widely
spaced locations. Since the international sea freight trade
has undergone a relevant growth over the last few decades
(United Nations Conference on Trade And Development,
http://www.unctad.org/), maritime container terminals have
to better use and schedule their resources in order to
efficiently face the operational and technical requirements of
shipping companies. In this regard, as indicated by Nicoletti
et al. [1] and Expósito-Izquierdo et al. [2], the time required
to serve container vessels, since their arrival until their
departure, is the most representative indicator used by the
shipping companies when assessing the competitiveness of a
givenmaritime container terminal.Moreover, the faster these
tasks are made, the earlier the containers are available for
withdrawal by the corresponding companies, and therefore

there will be a better management of the whole terminal (Yeo
[3]).

Several logistic problems are relevant in the productiv-
ity of the maritime container terminal. One of the most
outstanding problems within them is the Berth Allocation
Problem (BAP), whose purpose is to allocate and schedule
those vessels arriving to port into berthing positions along
the quay in order to optimize some objective function. This
problemhas been extensively studied in the literature over the
last years and a multitude of variations has been proposed
(Biertwirth and Meisel [4]). One of these variants is the
Dynamic Berth Allocation Problem (DBAP), proposed by
Cordeau et al. [5]. It considers berth and vessel time windows
as well as heterogeneous vessel service times depending
on the assigned berth. The other outstanding optimization
problem in maritime container terminal is the Quay Crane
Scheduling Problem (QCSP), which is aimed at determining
the work schedules of the quay cranes allocated to a given
container vessel. It is worth mentioning that solving the
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DBAP and the QCSP allows the terminal managers to know
how to perform the management of the incoming container
vessels during a certain planning horizon.This means know-
ing the berthing position and berthing time of the vessels and
how the quay cranes are handled during the transshipment
operations. In this regard, their efficient solution prevents
traffic bottlenecks and enhances the competitiveness of the
whole infrastructure.

Logistic operations, such as those involved in the DBAP
and QCSP, require fast and effective solution approaches due
to inherent requirements of the context where they appear.
In this backdrop, the usage of metaheuristics to find high-
quality feasible solutions is advisable. For this reason, in this
work we apply and assess a recent nature-inspired meta-
heuristic based on the 𝑉-formation of the migrating birds,
called Migrating Birds Optimization (MBO), proposed by
Duman et al. [6]. This metaheuristic is a population-based
algorithm, where the individuals, called birds, cooperate
among themselves during the search process by sharing
information about the explored search space. The way they
share the information is by considering a 𝑉-formation that
establishes the relation among birds.

The main goal of this work is to propose and evaluate
the use of the MBO technique for solving the main seaside
problems at maritime container terminals. With this goal in
mind, we have selected two of the most relevant problems in
the related literature, DBAP and QCSP. The computational
results as well as the comparison with the best approximate
algorithms reported in the literature point out a competitive
performance ofMBO in terms of objective function value and
running time. This latter feature makes MBO suitable and
competitive to be included in port decision support systems.
It is worth highlighting the significance of the running time
in these systems, due to the fact that the aforementioned
problems may have to be solved frequently (i) because of its
direct link with each other and with problems from other
parts of the container terminal and (ii) to include possible
changes related to terminal resources and (iii) to assist port
managers during the negotiations with shipping companies.

The remainder of this paper is structured as follows.
Section 2 introduces the DBAP and QCSP. The MBO is pre-
sented in Section 3. Afterwards, Section 4 describes the appli-
cation of MBO to the seaside problems under analysis in
this paper: DBAP and QCSP. Section 5 discusses the com-
putational experiments carried out to assess the suitability
of MBO. Finally, Section 6 presents the main conclusions
extracted from the work and suggests several directions for
further research.

2. Seaside Operations

Seaside operations are those related to the transshipment of
containers between the container vessels and the maritime
container terminal. In this context, three main problems can
be identified.

(i) Berthing of theVessels.Each incoming container vessel
has to be assigned to a position along the quay of the
container terminal according to its particular charac-
teristics (i.e., length, draft, arrival time, etc.).

(ii) Allocation of Quay Cranes.A subset of the quay cranes
in the container terminal must be allocated to each
berthed vessel in order to perform its loading and
unloading operations.

(iii) Scheduling of the Quay Cranes. The quay cranes allo-
cated to a given container vessel have be scheduled
for performing its transshipment operations in such a
way that the stay is the shortest as possible.

As indicated by Bierwirth and Meisel [4], the allocation
of quay cranes known as Quay Crane Allocation Problem
(QCAP) is tightly related to the BAP due to the fact that the
handling times of the vessels depend on the number of quay
cranes assigned to them. Consequently, the QCAP is usually
jointly considered with the BAP or QCSP. Therefore, in the
following, these two relevant logistic problems, namely, the
management of berths and the schedule of quay cranes at a
terminal when serving container vessels, are addressed.

2.1. Dynamic Berth Allocation Problem. The Dynamic Berth
Allocation Problem (DBAP) is an NP-hard problem
(Cordeau et al. [5]) that seeks to identify the berthing position
and berthing time of the container vessels arriving to port
over a well-defined time horizon.

In the DBAP, we are given a set of incoming container
vessels, 𝑉, and a set of berths, 𝐵. Each vessel, 𝑖 ∈ 𝑉, must be
assigned to a berth, 𝑘 ∈ 𝐵. Each vessel has a known time
window, [𝑡V

𝑖
, 𝑡V󸀠
𝑖
]. Similarly, each berth has its own time win-

dow, [𝑡𝑏
𝑘
, 𝑡𝑏
󸀠

𝑘
]. For each vessel 𝑖 ∈ 𝑉, its service time, 𝑠𝑘

𝑖
,

depends on the berth 𝑘 ∈ 𝐵, where it is assigned to. That is,
the service time of a given vessel may differ from one berth to
another. Furthermore, each 𝑖 ∈ 𝑉 has a given service priority,
denoted as𝑝

𝑖
, according to its contractual agreement with the

terminal. It should be noted that the higher this value, the
higher the priority of the vessel.

In a more detailed way, the assumptions in the DBAP can
be enumerated as follows.

(a) Each berth 𝑘 ∈ 𝐵 can only handle one vessel at a time.
(b) The service time of each vessel 𝑖 ∈ 𝑉 is determined by

the assigned berth 𝑘 ∈ 𝐵.
(c) Each vessel 𝑖 ∈ 𝑉 can be served only after its arrival

time 𝑡V
𝑖
.

(d) Each vessel 𝑖 ∈ 𝑉 has to be served until its departure
time 𝑡V󸀠

𝑖
.

(e) Each vessel 𝑖 ∈ 𝑉 can only be berthed at berth 𝑘 ∈ 𝐵

after 𝑘 becomes available at time step 𝑡𝑏
𝑘
.

(f) Each vessel 𝑖 ∈ 𝑉 can only be berthed at berth 𝑘 ∈ 𝐵

until 𝑘 becomes unavailable at time step 𝑡𝑏
󸀠

𝑘
.

In order to present the decision variables, let us define a
graph, 𝐺𝑘 = (𝑉

𝑘
, 𝐴
𝑘
)∀𝑘 ∈ 𝐵, where 𝑉𝑘 = 𝑉 ∪ {𝑜(𝑘), 𝑑(𝑘)}

contains a vertex for each vessel as well as the vertices 𝑜(𝑘)
and 𝑑(𝑘), which are the origin and destination nodes for any
route in the graph. The set of arcs is defined as 𝐴𝑘 ⊆ 𝑉

𝑘
×

𝑉
𝑘, where each one represents the handling time of the vessel.

Considering this graph, the decision variables defined in the
DBAP are as follows.
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(i) 𝑥𝑘
𝑖𝑗
∈ {0, 1}, ∀𝑘 ∈ 𝐵, ∀(𝑖, 𝑗) ∈ 𝐴

𝑘, 𝑖 ̸= 𝑗, set to 1 if vessel
𝑗 is scheduled after vessel 𝑖 at berth 𝑘 and 0 otherwise.

(ii) 𝑇𝑘
𝑖
, ∀𝑘 ∈ 𝐵, ∀V ∈ 𝑉, the berthing time of vessel 𝑖 at

berth 𝑘, that is, the time when the vessel berths.
(iii) 𝑇𝑘

𝑜(𝑘)
, ∀𝑘 ∈ 𝐵, starting operation time of berth 𝑘, that

is, the time when the first vessel berths at the berth.
(iv) 𝑇𝑘

𝑑(𝑘)
, ∀𝑘 ∈ 𝐵, ending operation time of berth 𝑘, that

is, the time when the last vessel departs at the berth.

The objective function (1) aims to minimize the total
(weighted) service time of all the vessels, defined as the time
elapsed between their arrival to the port and the completion
of their handling. It should be noted that when vessel 𝑖 ∈ 𝑉

is not assigned to berth 𝑘 ∈ 𝐵, the corresponding term in
the objective function is zero because ∑

𝑗∈𝑉∪𝑑(𝑘)
𝑥
𝑘

𝑖𝑗
= 0 and

𝑇
𝑘

𝑖
= 𝑡
𝑖
:

min∑

𝑖∈𝑉

∑

𝑘∈𝐵

𝑝
𝑖
[

[

𝑇
𝑘

𝑖
− 𝑡
𝑖
+ 𝑠
𝑘

𝑖
∑

𝑗∈𝑉∪𝑑(𝑘)

𝑥
𝑘

𝑖𝑗
]

]

. (1)

A comprehensive description of the DBAP is provided by
Cordeau et al. [5], Imai et al. [9], and Lalla-Ruiz et al. [10].

For the sake of clarity, we provide an example of a solution
of the DBAP in Figure 1. In this figure, an assignment plan is
depicted for 6 container vessels and 3 berths. The rectangles
represent the vessels. Within each rectangle the service
priority, service time, and the time windows associated with
each vessel are provided. The time windows of the berths
are delimited by the scratched areas. For instance, berth 1
is opened from time step 0 until time step 13. In the figure,
vessel 6 has to wait for berthing in their respective assigned
berths. In this regard, since its priority is 2, its waiting time
will have less impact on the objective function value than
delaying, for example, vessel 5.

The mathematical formulation of this problem provided
in [11] allows solving those instances within reasonable
computational time. However, as indicated in [10] this math-
ematical model implemented in CPLEX reaches a memory
fault status for problem instances where other characteristics
are taken into account. Therefore, approximate approaches
are required, in the following, we describe the most recent
ones, de Oliveira et al. [12] proposed a clustering search with
simulated annealing, and the authors evaluate their approach
using only the large-size problem instances proposed in [5].
Their approach allows us to reach high-quality solutions in
short computational times. Later, Ting et al. [13] developed
a Particle Swarm Optimization (PSO) and solve the small-
and large-size instances proposed in [5]. Their approach
reports the same quality solutions as [12] in terms of objective
function value; nevertheless, it requires less computational
time. Finally, Lalla-Ruiz and Voß [14] propose a matheuristic
based on POPMUSIC (Partial Optimization Metaheuristic
Under Special Intensification Conditions).The authors tested
their approach over the largest instances proposed in [5]
exhibiting a high robustness in terms of the average objective
values reported by their approach.
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Figure 1: Solution example for |𝑉| = 6 vessels and |𝐵| = 3 berths.

2.2. QuayCrane Scheduling Problem. TheQuayCrane Sched-
uling Problem (QCSP) is stated as determining the finishing
times of the tasks performed by the available quay cranes
allocated to a container vessel berthed at the terminal. In this
environment, a task represents the loading/unloading of a
group of containers onto/from a given deck or hold of the
container vessel at hand. Alternative definitions of tasks are
proposed by Meisel and Bierwirth [15].

Input data for the QCSP consist of a set of tasks Ω =

{1, 2, . . . , |Ω|} (loading or unloading operations associated
with a container group) and a set of quay cranes 𝑄 =

{1, 2, . . . , |𝑄|} with similar technical characteristics. Each 𝑡 ∈

Ω is located in a certain position along the container vessel,
𝑙
𝑡
, and has a positive handling time, 𝑝

𝑡
.

The objective of the QCSP is to minimize the service time
of the container vessel at hand.That is, itsmakespan (Kim and
Park [16]):

min 𝑐
𝑇
, (2)

where 𝑐
𝑖
is the finishing time of the task 𝑡 ∈ Ω and 𝑇 is a

dummy task that represents the end of the service.
The QCSP has a set of particular constraints which

differentiates it from other well-known scheduling problems
found in the scientific literature.

(a) Each quay crane performs a task without any inter-
ruption. This means that once a quay crane starts
to (un)load the containers related to a given task,
this goes on until all the containers included into the
relevant group are (un)loaded.

(b) Each quay crane 𝑞 ∈ 𝑄 is only available after its
earliest ready time, 𝑟𝑞 ≥ 0.

(c) Each quay crane 𝑞 ∈ 𝑄 is initially located on a known
position, 𝑙𝑞0 .
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Figure 2: Example of a QCSP instance and schedule with 8 tasks and 2 quay cranes.

(d) Each quay crane 𝑞 ∈ 𝑄 can travel between two
adjacent positions of the container vessel with a travel
time, 𝑡̂ > 0.

(e) Within each position of the container vessel, the rel-
evant tasks are sorted according to their precedence
relationships. For instance, unloading tasks must be
performed before loading tasks.

(f) The quay cranes are rail mounted. This means they
can only move from left to right along the container
vessel and vice versa.

(g) The quay cranes cannot work in the same position of
the vessel simultaneously and they cannot cross each
other.

(h) The quay cranes have to keep a safety distance, 𝛿 >

0, between them in order to prevent collisions. This
gives rise to that certain tasks cannot be performed
simultaneously.

Figure 2 illustrates an example of an instance for the
QCSP with 8 tasks and 2 quay cranes. The quay cranes are
initially located in the positions 𝑙10 = 2 and 𝑙

2
0 = 5 of the

container vessel. The right figure depicts a schedule for the
instance at hand where the quay cranes are available from the
beginning of the service time, 𝑟𝑞 = 0, ∀𝑞 ∈ 𝑄. Additionally,
the quay cranes have to keep a safety distance 𝛿 = 1 and
they can move between two consecutive positions of the
vessel with 𝑡̂ = 1. In this example, tasks 1, 2, 3, 5, 6, and
7 are performed by quay crane 1, whereas tasks 4 and 8 are
performed by quay crane 2. As can be seen, the makespan of
this schedule is 52 time units.

The QCSP is already known to be NP-hard (Sammarra
et al. [17]). A mathematical formulation for the QCSP is
proposed by Legato et al. [18]. Moreover, the QCSP has
been suitably dealt in the literature through several papers.
It was introduced in the early work by Daganzo [19] and
later approximately addressed by Kim and Park [16] and
Sammarra et al. [17].The computational results of theseworks
brought to light the necessity of developing high efficient
optimization techniques to tackle the QCSP by means of
reasonable computational times. In this regard, an interesting
approach to solve theQCSPwas put forward byBierwirth and

Meisel [7]. In their proposal, the authors suggest exploring
the search space of unidirectional schedules. A given schedule
is termed unidirectional if all the quay cranes move with
similar direction of movement along their service time. This
approach was afterwards deeply exploited by Legato et al. [18]
and Expósito-Izquierdo et al. [8]. Lastly, the interested reader
is referred to the work by Meisel and Bierwirth [15] to obtain
an exhaustive review or the related literature. Unlike most
of the previous proposals found in the related literature, the
MBO proposed in this work (see Section 3) allows us to reach
a high diversification level of the search space during explo-
ration whereas it properly exploits the promising regions in
order to find a large number of local optima solutions. This
suitable balance between diversification and intensification is
mainly due to its population-based structure, which avoids
stagnation in low-quality regions of the search space.

3. Migrating Birds Optimization

The Migrating Birds Optimization (MBO) algorithm was
initially proposed by Duman et al. [6]. In that work, the
authors propose a nature-inspired metaheuristic based on
the 𝑉-formation flight of migrating birds. This algorithm
consists of a set of individuals, where each is associated
to a solution and termed as birds in MBO. Moreover, the
individuals are aligned in a 𝑉-formation. Figure 3 shows an
illustrative scheme of the 𝑉-formation, in which the first
individual corresponds to the leader bird in the flock and it is
represented by the doubled circle at the top. The remaining
circles represent the rest of the flock. The arrows in the
figure represent how the information is shared among the
individuals.

In MBO, the leader individual attempts to improve itself
by generating a number of neighbour solutions. Then, the
following individual in the 𝑉-formation evaluates a number
of its own neighbours and a number of the best discarded
neighbour solutions received from the previous individual.
In case one of those solutions leads to an improvement
with respect to the solution associated with the individual
then it is replaced by that solution yielding the maximum
improvement. Once all the individuals have been considered,
the process is repeated for itermax iterations. Once those
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(1) Generate 𝑛birds initial solutions in a random manner and place them on a hypothetical 𝑉 formation arbitrarily
(2) 𝑔 = 0

(3) while 𝑔 < 𝐾 do
(4) for (𝑙 = 0; 𝑙 < itermax; 𝑙++) do
(5) Try to improve the leading solution by generating and evaluating 𝜆 neighbours of it
(6) 𝑔 = 𝑔 + 𝜆

(7) for all (solutions 𝑠 in the flock (except leader)) do
(8) Try to improve the leading solution by generating and evaluating 𝜆 − 𝛿

neighbours of it and the 𝛿 unused best neighbours from the solution in the front.
(9) 𝑔 = 𝑔 + (𝜆 − 𝛿)

(10) end for
(11) end for
(12) Move the leader solution to the end and forward one of the solutions following it to the leader position
(13) end while
(14) Return best solution in the flock

Algorithm 1: Migrating Birds Optimization algorithm (Duman et al. [6]).

Leader

Figure 3: Example of the𝑉-formation of theMBO for 7 individuals
(birds).

iterations have been reached, the leader individual is moved
to the end of one of the lines of the 𝑉-formation and one of
its direct follower individuals becomes the new leader of the
flock. For this new formation, the process restarts for another
itermax iterations. The complete MBO process is carried out
until a given a stopping criterion is met.

The initial position of the individuals along the 𝑉-
formation depends on the generation order. That is, the
first individual generated will be the leader individual, and
therefore the leader bird of the flock, the second and third
individuals generated will be its direct followers, and so forth.
After generating the initial population, the individuals are
organized into a 𝑉-formation, as shown in Figure 3.

The input parameters of the MBO algorithm defined by
the user are the following:

𝑛birds: number of individuals termed as birds;
𝐾: maximum number of neighbour solutions gener-
ated by the individuals;
itermax: number of iterations before changing the
leader individuals;
𝜆: number of random neighbours generated by each
individual;
𝛿: number of best discarded solutions to share among
individuals.

Algorithm 1 depicts the pseudocode of MBO, as reported
by Duman et al. [6]. The first step is to generate 𝑛birds
individuals (line 1). The number of generated solutions by
the population, 𝑔, is set to 0 (line 2). Once the population is
generated, theMBO search process starts (lines 3–13). During
the search process, firstly, the leader individual generates 𝜆
random neighbour solutions by means of a neighbourhood
structure. In case the best solution generated leads to an
improvement in terms of objective function value, the solu-
tion associated to the leader is replaced by that neighbour
solution (line 5). Secondly, each direct follower individual
generates a 𝜆 − 𝛿 neighbour solutions selected at random
(lines 7–10) by means of a neighbourhood structure. Also,
each individual receives the best 𝛿 discarded solutions from
the individual in front of it. If one of the solutions, gener-
ated or received, leads to an improvement of the solution
associated to the individual, then the improved solution
replaces it (line 8). This 𝑉-formation is maintained until a
prefixed number of iterations, itermax, is reached. Once that,
the leader individual becomes the last solution and one of
its direct follower individuals becomes the new leader (line
12). Right after, the search process is restarted for other
itermax iterations. The MBO search process is executed until
a number of neighbour solutions, 𝐾, have been generated
through the search process (line 3). For a more detailed
description of the MBO algorithm, the reader is referred to
the work by Duman et al. [6].

4. Migrating Birds Optimization for
the Seaside Problems at Maritime
Container Terminals

In the following, we apply the Migrating Birds Optimization
(MBO) introduced in Section 3 to the DBAP and the QCSP.
In both cases, we also evaluate the use of improvement
procedures applied to the best solution provided by MBO.
The rationale behind this is to (i) assess the capability of
MBO for pointing out promising regions of the search space
that can be exploited by using a improvement procedure and
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(ii) measure the contribution of an improvement method
based to the quality of the solutions provided by MBO.

4.1. Migrating Birds Optimization for the Dynamic
Berth Allocation Problem

4.1.1. Solution Representation. In the context of the DBAP,
the MBO implementation considers a solution 𝑆DBAP as a
sequence composed of the vessel identifiers, where each
berth is delimited by a 0. The service order of each vessel
is determined by its position in the sequence. The solution
structure for the example of Figure 1 for 3 berths and 6 vessels
is as follows: 𝑆DBAP = {1, 3, 0, 4, 2, 0, 5, 6}.

4.1.2. Neighbourhood Structures. The neighbourhood struc-
tures considered in this approach are generated by using the
following movements.

(a) Reinsertion Movement. A vessel 𝑖 is removed from
a berth 𝑘 and reinserted into another berth 𝑘

󸀠

(∀𝑘, 𝑘󸀠 ∈ 𝐵, 𝑖 ̸= 𝑖
󸀠) at any of the possible positions.

For example, in 𝑆DBAP = {1, 3, 0, 4, 2, 0, 5, 6} if vessel
1 is removed from its berth, then all these possible
reinsertion movements can be performed, namely,
{3, 0, 1, 4, 2, 0, 5, 6}, {3, 0, 4, 1, 2, 0, 5, 6}, {3, 0, 4, 2, 1, 0,
5, 6}. {3, 0, 4, 2, 0, 1, 5, 6}, {3, 0, 4, 2, 0, 5, 1, 6}, and {3, 0,
4, 2, 0, 5, 6, 1}.

(b) Interchange Movement. It consists of exchanging a
vessel 𝑖 assigned to berth 𝑘 with a vessel 𝑖󸀠 assigned
to berth 𝑘

󸀠 (∀𝑖, 𝑖󸀠 ∈ 𝑉, 𝑖 ̸= 𝑖
󸀠, ∀𝑘, 𝑘󸀠 ∈ 𝐵, 𝑘 ̸=

𝑘
󸀠). For example, for the previous solution, 𝑆DBAP =

{1, 3, 0, 4, 2, 0, 5, 6}, if we select vessel 1, the possible
interchange movements that can be obtained are
the following: {4, 3, 0, 1, 2, 0, 5, 6}, {2, 3, 0, 4, 1, 0, 5, 6},
{5, 3, 0, 4, 2, 0, 1, 6}, and {6, 3, 0, 4, 2, 0, 5, 1}.

The generation of random neighbour solutions by the indi-
viduals is based on the reinsertion move. On the other hand,
both movements are used in the improvement method.

4.1.3. Improvement Method. As discussed in the relevant
section, we also analyse the capability of MBO for pointing
out promising regions in the solution search space. In doing
so, we applied an improvement method proposed by Lalla-
Ruiz et al. [10] over the best solution provided by MBO. This
method consist of the following steps: given a solution, its best
neighbour solution is obtained by means of the reinsertion
moment. Over that best neighbor solution, we generate its
neighborhood by means of the interchange movement and
return the best neighbor solution. This process is performed
until no improvement in terms of the objective function value
is achieved.

4.1.4. Initial Population. For generating the initial popula-
tion, we use a random greedy method (R-G) proposed by
Cordeau et al. [5]; that is, given a random vessel permutation,
the vessels are assigned one at a time to the best possible berth
following that sequence order according to their impact over
the objective function value. The use of this method instead

of other proposed initialization procedures reported in the
literature such as First-Come First-Served Greedy (FCFS-G)
or generating the solution completely at random is based on
the fact that, on the one hand, FCFS-G is a deterministic
approach, which use will affect the convergence of the
algorithm. On the other hand, R-G provides better quality
solutions than generating the initial solutions completely at
random; this is due to the fact that R-G allocates the vessels
within the random sequence according to the impact over the
objective function value of the solution being constructed.

4.1.5. Stopping Criterion. The stopping criterion for the over-
all MBO search process is met when a certain number of 𝐾
generated solutions by the population are reached. Moreover,
as pointed out in the relevant section, for large-size instances,
we included an additional stopping criterion based on a
maximum number of iterations 𝛾 without improvement of
the best solution obtained.

4.2. Migrating Birds Optimization for the Quay Crane
Scheduling Problem

4.2.1. Solution Representation. The solutions of the QCSP are
represented as sequences composed of the available tasks, that
is,Ω. A given sequence includes zeros in order to delimit the
subsets of tasks performed by the quay cranes. This way, the
leftmost quay crane performs those tasks from the beginning
of the sequence up to the first zero, the second quay crane
performs those tasks from the first zero up to the second
zero, and so forth. For instance, a solution for the example
presented in Figure 2 with 2 quay cranes and 8 tasks could
be as follows: 𝑆QCSP = (1, 2, 3, 5, 6, 7, 0, 4, 8). In this case,
the leftmost quay crane performs the tasks (1, 2, 3, 5, 6, 7),
whereas the other quay crane performs the tasks (4, 8).

4.2.2. Neighbourhood Structures. The neighbourhood struc-
tures used by the MBO are based on the following exploring
movements.

(a) Reinsertion Movement. A task 𝑡 ∈ Ω currently
assigned to a quay crane 𝑞 ∈ 𝑄 is reassigned, in such a
way that 𝑡 is performed by another quay crane 𝑞󸀠 ∈ 𝑄

(where 𝑞󸀠 ̸= 𝑞).
(b) Interchange Movement. Given pair tasks, 𝑡1, 𝑡2 ∈ Ω,

assigned to two different quay cranes, 𝑞 ∈ 𝑄 and 𝑞
󸀠
∈

𝑄 (where 𝑞󸀠 ̸= 𝑞), the movement exchanges the tasks.
This way, 𝑡2 is eventually assigned to 𝑞 whereas 𝑡1 is
assigned to 𝑞2.

The generation of random neighbour solutions by the
individuals is based on the interchange movement.

4.2.3. Local Search. A local search process based on the best
improvement strategy is proposed in order to find local
optima solutions during the search. This way, given a certain
feasible solution of the QCSP, at each step, the set of neigh-
bour solutions found by means of reinsertion movement is
generated. The best neighbour solution replaces the current
solution until a local optimum is achieved.
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Figure 4: Performance of MBO with and without an improvement procedure when solving the DBAP small-size instances.

4.2.4. Initial Population. The solutions included into the
initial population have been generated at random.Thismeans
that each task is assigned to one of the available quay cranes
randomly. It is worth mentioning that the tasks are selected
to be assigned from the leftmost up to the rightmost within
the container vessel.

4.2.5. Stopping Criterion. The stopping criterion for the
overall MBO search process is met when a certain number
of𝐾 neighbour solutions have been already generated by the
individuals.

5. Computational Experiments

This section is devoted to assessing the performance of
the Migrating Birds Optimization (MBO) introduced in the
previous section.All the reported computational experiments
have been conducted on a computer equipped with an Intel
Dual Core 3.16GHz and 4GB of RAM.

5.1. Computational Experiments for the DBAP. The problem
instances used for evaluating the performance of our MBO
approach are those provided by Cordeau et al. [5]. According
to the authors, their instances were generated by taking
into account a statistical analysis of the traffic and berth
allocation data at the maritime container terminal of Gioia
Tauro (Italy). The instances are grouped into sets of 10
instances, whose sizes range from 25 vessels and 5 berths
up to 60 vessels and 13 berths. Moreover, in order to fit the
space for this work, for the small- and medium-size problem
instances we have selected the 3 hardest solvable instances
of each set with regard to the time required to provide

the optimal solution by the implementation of the mathe-
matical formulation (Buhrkal et al. [11]) in CPLEX (http://
www-01.ibm.com/software/commerce/optimization/cplex-
optimizer/) to provide the optimal solution. For the large
instance set, we selected a representative set of instances.
By taking into account the experiments carried out in this
work, we identified the following parameter values for MBO,
𝑛birds = 31, 𝛿 = 3, 𝜆 = 20, itermax = 3, and 𝐾 = |𝑁|

3 for
the small- and medium-size instances. For the large-size
instances, we set 𝐾 = |𝑁|

2.5 and an additional stopping
criterion of a maximum number of 𝛾 = 10 consecutive
iterations without improvement of the best solution
obtained.

5.1.1. Improvement Method. As previously indicated in Sec-
tion 4, an improvement phase (based on that proposed by
Lalla-Ruiz et al. [10]) is applied over the best solution pro-
vided by MBO. Figures 4, 5, and 6 show the computational
performance in terms of objective function value and compu-
tational time of MBO with (MBO w/IM) and without (MBO
w/o IM) improvement method for the small-, medium-, and
large-size instances proposed by Cordeau et al. [5]. As can
be checked, the performance exhibited by MBO is similar
regardless of size of the instance. Furthermore, the use of a
improvement procedure leads to an enhancement of the best-
known solution through a small increase of the computa-
tional time. This indicates that the use of the improvement
to this method enhances the convergence to the best solution
within our complete approach proposed in this work.

At the light of this analysis, in the following results we
report the computational results provided by the joint use of
MBO with the improvement method.
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Figure 5: Performance of MBO with and without an improvement procedure when solving the DBAP medium-size instances.
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Figure 6: Performance of MBO with and without an improvement procedure when solving the DBAP large-size instances.

5.1.2. Comparison with the Best Literature Approach. Tables
1 and 2 present a comparison among the best published
approaches for the DBAP, namely, the mathematical model
presented by Buhrkal et al. [11], the best approximate
approach for this problem consisting of a Particle Swarm
Optimization algorithm (PSO) proposed by Ting et al. [13],
and our MBO. The first column shows the characteristics of
the instances to solve, that is, the number of vessels (|𝑉|)
and berths (|𝐵|), and the instance identifier (id). For each

instance, the best objective value (Obj.), relative error (Gap
(%)) with regard to the optimal value provided by CPLEX,
and the computational time measured in seconds (𝑡 (s)) are
presented. Furthermore, with the aim of assessing the time
improvement reported byMBO in comparison with PSO, the
percentage of time improvement (𝑡impr) is also reported.

As shown in Table 1, MBO reports high-quality solutions
in shorter computational times than the other approaches.
It reaches the optimal value for the majority of the problem
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Table 1: Computational results for a representative set of small- and medium-size instances proposed by Cordeau et al. [5].

Instance CPLEX PSO MBO
|𝑉| |𝐵| id Obj. 𝑡 (s) Obj. Gap (%) 𝑡 (s) Obj. Gap (%) 𝑡 (s) 𝑡impr (%)

25 5
1 759 5.99 759 0.00 0.75 759 0.00 0.29 −61.33

5 955 6.97 955 0.00 0.86 955 0.00 0.27 −69.77

10 1073 6.38 1073 0.00 0.73 1073 0.00 0.32 −54.79

25 7
3 807 4.28 807 0.00 0.97 807 0.00 0.24 −75.26

5 725 3.85 725 0.00 0.44 725 0.00 0.27 −38.64

8 768 3.93 768 0.00 1.05 768 0.00 0.25 −76.19

25 10
2 727 6.99 727 0.00 0.75 727 0.00 0.36 −52.00

3 761 6.12 761 0.00 0.56 761 0.00 0.34 −39.29

5 840 6.77 840 0.00 0.45 840 0.00 0.29 −35.56

35 7
2 1192 15.93 1192 0.00 4.91 1198 0.50 0.81 −83.50

6 1686 29.16 1686 0.00 3.28 1692 0.36 0.77 −76.52

8 1318 17.52 1318 0.00 2.39 1324 0.46 0.73 −69.46

35 10
1 1124 19.98 1124 0.00 1.58 1124 0.00 0.91 −42.41

5 1349 22.31 1349 0.00 1.53 1350 0.07 0.91 −40.52

9 1311 29.45 1311 0.00 2.81 1313 0.15 0.97 −65.48

Average 1026.33 12.38 1026.33 0.00 1.54 1027.73 0.10 0.52 −58.71

Table 2: Computational results for a representative set of large-size instances proposed by Cordeau et al. [5].

Instance CPLEX PSO MBO
|𝑉| |𝐵| id Opt. 𝑡 (s) Obj. Gap (%) 𝑡 (s) Obj. Gap (%) 𝑡 (s) 𝑡impr (%)

60 13

1 1409 17.92 1409 0.00 11.11 1411 0.14 3.42 −69.22

2 1261 15.77 1261 0.00 7.89 1261 0.00 3.52 −55.39

3 1129 13.54 1129 0.00 7.48 1129 0.00 3.63 −51.47

4 1302 14.48 1302 0.00 6.03 1302 0.00 3.81 −36.82

5 1207 17.21 1207 0.00 5.84 1207 0.00 3.13 −46.40

6 1261 13.85 1261 0.00 7.67 1261 0.00 3.46 −54.89

7 1279 14.60 1279 0.00 7.5 1279 0.00 3.05 −59.33

8 1299 14.21 1299 0.00 9.94 1299 0.00 3.30 −66.80

9 1444 16.51 1444 0.00 4.25 1444 0.00 3.48 −18.12

10 1213 14.16 1213 0.00 5.2 1213 0.00 3.40 −34.62

Average 1280.40 15.23 1280.40 0.00 7.29 1280.60 0.01 3.42 −49.31

instances. Although MBO is not able to provide the optimal
solutions in five cases (i.e., 35 × 7 − 2, 35 × 7 − 6, 35 × 7 − 8,
35 × 10 − 1, and 35 × 10 − 9), it presents a very competitive
performance with a time range enough for improvement.
In this regard, the maximum gap in those cases is 0.50%.
Furthermore, MBO is able to reduce, on average, about the
58% of the time required by PSO.

Moreover, when we evaluate larger problem instances,
as those reported in Table 2, we can point out the relevant
time improvement reported by MBO over PSO, which is, on
average, of almost 50%. In this regard, as shown in this table,
the quality of the solutions is similar to the PSO. MBO is
able to provide the optimal solutions in the majority of the
cases. In the unique case where MBO does not provide the
optimal solution, it is able to provide a solution with a gap
of 0.07%. It should be also pointed out that the time benefit

presented by MBOmakes it suitable as a solution method for
being applied either individually or included into integrated
schemes in which the berth allocation is required and has to
be executed frequently.

5.2. Computational Experiments for the QCSP. In order to
assess the suitability of MBO when solving the QCSP, we
have considered 40 instances (k13–k52) of those proposed
by Bierwirth and Meisel [7]. These instances have different
number of tasks (from 10 up to 25) and quay cranes (from
2 up to 3) which allow encompassing real-world scenarios.
It is worth mentioning that, as done in previous works, in
this experiment we have established that the quay cranes are
available from the beginning of the service time (i.e., 𝑟𝑞 = 0,
∀𝑞 ∈ 𝑄) and have to keep a safety distance 𝛿 = 1 during
the service. Moreover, by preliminary tests the following
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Figure 7: Performance of MBO with and without a local search procedure when solving the QCSP k43–k52 problem instances.

parameter values have been used in the execution of MBO:
𝑛birds = 31, 𝛿 = 1, 𝜆 = 10, itermax = 5, and𝐾 = |𝑁|

3.

5.2.1. Local Search. As done in previous works (e.g., Sam-
marra et al. [17], Expósito-Izquierdo et al. [8]), a local search
process is applied to the best solution provided by MBO.The
rationale behind this is to assess the capacity ofMBO to point
out promising regions in the search space. Figure 7 shows the
computational performance in terms of objective function
value and computational time ofMBOwith (MBOw/LS) and
without (MBOw/o LS) local search for the instances k43–k52
(for the other instances, k13–k42, regardless of the use or not
of the local search, our algorithm provides the best known
solution). As shown in the figure, the performance exhibited
by the MBO with and without LS is similar independently
of the instance tackled. In this regard, the use of a local
search leads to a very small improvement of some solutions
in some cases (see k51 and k52) requiring only an slightly
increase of the computational time. This fact may indicate
that, in some cases, the solution provided byMBO is already a
local optimum. Finally, although LS contributes to improving
the quality of the solution, not using it may not affect
substantively the quality of the solution. Nevertheless, due
to small computational time required, in the following, the
MBO computational results reported for the QCSP instances
are the ones obtained with local search.

5.2.2. Comparison with the Best Literature Approach. Table 3
shows a comparison between the optimal solutions reported
by Bierwirth and Meisel [7], the Estimation Distribution
Algorithm (EDA) proposed by Expósito-Izquierdo et al. [8],
and our MBO. In each case, we report the objective function
value of the best found solution and the computational time
measured in seconds. In the case of the MBO, we also
report the gap in the objective function value compared with

the optimal solution and computational time compared with
those reported by the EDA.

As can be checked in Table 3, our MBO has reported
(near-)optimal solutions for all the instances under analysis.
Only in one instance (k45), the optimal solution was not
reached. In those cases, MBO reports a gap of 0.36% and
an overall gap of only 0.01% for all the instances considered.
The quality of the solutions reported by MBO indicates that
our approach is highly effective in realistic scenarios. Finally,
when carrying out an analysis of the computational times,
we realize that MBO requires short computational times,
requiring atmost 3.84 seconds.This fact constitutes a relevant
improvement in comparison with the EDA, which requires
more than 16 seconds in some instance (k50). This time
advantagemust be suitably consideredwhen addressing prac-
tical scenarios where the QCSP has to be solved dynamically.

6. Conclusions and Further Research

In this paper, we have presented a Migrating Birds Opti-
mization-based approach for addressing two essential seaside
problems at maritime container terminals: the Dynamic
Berth Allocation Problem (DBAP) and Quay Crane Schedul-
ing Problem (QCSP). It is noticeable from the computational
experiments that the proposed algorithm is able to report
high-quality solutions by means of short computational
times. In this regard, the time advantage makes MBO
promising and competitive as solutionmethodwhen tackling
seaside operations either individually or embedded into real
decision-support systemswhere this problemhas to be solved
frequently. Moreover, since our approach includes the use of
an improvement method (in the case of DBAP) and a local
search (in the case of QCSP) over the best solution provided
by MBO, we have assessed the contribution of them to the
quality of the solution provided. In this regard, their use
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Table 3: Comparison among the optimal solutions (UDS, Bierwirth
and Meisel [7]), the Estimation Distribution Algorithm (EDA,
Expósito-Izquierdo et al. [8]), and ourMBOwhen solving theQCSP.

UDS EDA MBO
Obj. 𝑡 (s) Obj. 𝑡 (s) Obj. 𝑡 (s) Gap (%)

𝑘13 453 — 453 0.08 453 0.17 0.00
𝑘14 546 — 546 0.09 546 0.18 0.00
𝑘15 513 — 513 0.08 513 0.17 0.00
𝑘16 312 — 312 0.56 312 0.17 0.00
𝑘17 453 — 453 0.08 453 0.17 0.00
𝑘18 375 — 375 0.07 375 0.16 0.00
𝑘19 543 — 543 0.08 543 0.18 0.00
𝑘20 399 — 399 0.09 399 0.19 0.00
𝑘21 465 — 465 0.07 465 0.17 0.00
𝑘22 540 — 540 0.13 540 0.20 0.00
𝑘23 576 — 576 0.27 576 0.40 0.00
𝑘24 666 — 666 0.39 666 0.38 0.00
𝑘25 738 — 738 0.25 738 0.35 0.00
𝑘26 639 — 639 0.33 639 0.37 0.00
𝑘27 657 — 657 0.29 657 0.35 0.00
𝑘28 531 — 531 0.27 531 0.34 0.00
𝑘29 807 — 807 0.31 807 0.36 0.00
𝑘30 891 — 891 0.22 891 0.40 0.00
𝑘31 570 — 570 0.26 570 0.37 0.00
𝑘32 591 — 591 0.37 591 0.38 0.00
𝑘33 603 — 603 9.12 603 1.13 0.00
𝑘34 717 — 717 9.24 717 1.16 0.00
𝑘35 684 — 684 4.48 684 1.09 0.00
𝑘36 678 — 678 7.62 678 1.13 0.00
𝑘37 510 — 510 4.09 510 1.11 0.00
𝑘38 618 — 618 6.66 618 1.09 0.00
𝑘39 513 — 513 6.54 513 1.14 0.00
𝑘40 564 — 564 7.14 564 1.11 0.00
𝑘41 588 — 588 6.66 588 1.13 0.00
𝑘42 573 — 573 6.30 573 1.18 0.00
𝑘43 876 12.6 876 12.60 876 3.74 0.00
𝑘44 822 12.0 822 11.40 822 3.63 0.00
𝑘45 834 10.8 834 8.40 837 3.52 0.36
𝑘46 690 11.4 690 9.60 690 3.66 0.00
𝑘47 792 10.2 792 10.20 792 3.51 0.00
𝑘48 639 11.4 639 8.40 639 3.44 0.00
𝑘49 894 10.8 894 13.20 894 3.80 0.00
𝑘50 741 10.2 741 16.80 741 3.84 0.00
𝑘51 798 10.2 798 12.00 798 3.52 0.00
𝑘52 960 10.2 960 13.20 960 3.69 0.00
Avg. 633.98 10.98 633.98 4.70 634.05 1.33 0.01

allows an enhancement in the quality of the solutions in terms
of objective function value through a small increase of the
computational time.

Furthermore, the inherent dynamism of the seaside oper-
ations at maritime container terminals highly impacts on

the performance of the technical equipment and, conse-
quently, on the involved transportation modes. Thus, having
effective and fast algorithms to reach high-quality solutions
is aspired by terminal managers. In this context, at the light
of the computational results presented along this paper, we
can claim that usingMBO is suitable and advisable to be used
in practical contexts with the goal of providing an adequate
service to the incoming container vessels.

A multitude of lines are open for further research. In
the future, we are going to test the performance of MBO
in other heterogeneous transportation problems, such as
Vehicle Routing Problem, due to its generalist standpoint.
In this regard, we are also going to study how different
interaction schemes impact on the performance of MBO.
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