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Meshless method of line is a powerful device to solve time-dependent partial differential equations. In integrating step, choosing a
suitable set of points, such as adaptive nodes in spatial domain, can be useful, although in some cases this can cause ill-conditioning.
In this paper, to produce smooth adaptive points in each step of the method, two constraints are enforced in Equidistribution
algorithm. These constraints lead to two different meshes known as quasi-uniform and locally bounded meshes. These avoid the
ill-conditioning in applying radial basis functions. Moreover, to generate more smooth adaptive meshes another modification is
investigated, such as using modified arc-length monitor function in Equidistribution algorithm. Influence of them in growing the
accuracy is investigated by some numerical examples.The results of consideration of two constraints are compared with each other
and also with uniform meshes.

1. Introduction

Meshless methods have gained much attention in the last
decade. They are well known for their simplicity and ability
in reconstructing multivariate functions from scattered data.
Moreover, meshless methods using radial basis functions
(RBFs) are powerful methods to solve partial differential
equations (PDEs). The initial development in applying RBFs
for numerical solution of PDEs is due to the pioneering
work of Kansa [1, 2]. He used some collocation nodes toz
collocate the RBFs. Meshless methods using RBFs have
several advantages comparing to finite difference method
(FDM) finite element method (FEM) and other mesh based
methods [3]. One of these advantages is that they do not
require a mesh or element. These methods need only some
scattered nodes. It means that the nodes can be chosen, freely.
Due to this useful property, an important geometric problem
arises: how to choose the nodes to improve the accuracy?
This problem causes too many researches about distribution

of nodes in meshless methods. Several researchers have
considered this problem [4–8]. One of the effective methods
to choose an efficient set of central nodes, known as adaptive
nodes, is Equidistribution method [9, 10]. In this method,
the objective is to find a partition of the interval, such
that a given weight function takes a given constant value
over each subinterval. These adaptive central nodes can be
used in meshless methods, such as meshless method of
line (MMOL). The method of line (MOL) is a well-known
numerical method to solve PDEs [11, 12]. In the meshless
method of line, the RBFs are used to approximate the solution
inMOL.Thismethod is very reliable for using adaptive nodes
[13, 14]. In each step of this method, some central nodes,
in spatial domain, are required. Adaptive central nodes can
be a good selection to use in this method. But, due to ill-
conditioning of the problem in some cases, when the nodes
are near to each other, in many practical cases, it is necessary
for the chosen nodes to have certain smoothness properties.
This leads to some constraints.
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In this study, two reliable constraints are presented, and
the influence of them in applying the MMOL with adaptive
nodes is investigated. The first constraint, known as quasi-
uniform mesh, has been applied in some researches as
well [13]. The aim of this study is to show application of
another constraint, known as locally bounded mesh, and to
discuss impact of it and some modification on meshes on
increasing the accuracy.This paper is organized as follows. In
Section 2, radial basis functions interpolation is introduced.
In Section 3, an Equidistribution algorithm is presented and
two constraints are imposed to obtain central nodes. In
Section 4, adaptive nodes are applied inMMOL to solve some
time-dependent PDEs.

2. Radial Basis Functions to
Approximate a Function

Radial basis functions are real valued basis functions which
depend on the distance 𝑟 between two points.The commonly
used RBFs are multiquadric (MQ), Gaussian, Thin-Plate
Spline (TPS), and compactly supported RBFs (CS-RBFs).
The MQ radial basis function provides the most accurate
approximation, in most applications of RBFs [15]. MQ is
defined as 𝜑(𝑟) = √1 + (𝜀𝑟)

2, where 𝜀 is called shape
parameter. In this paper, MQ is used in numerical examples.
To approximate a given scattered data {𝑓

𝑖
}
𝑛

𝑖=1
at nodes {𝑥

𝑖
}
𝑛

𝑖=1
,

RBF interpolation is given by combination of 𝑛 RBFs; that is,

𝑢 (𝑥) =

𝑛

∑

𝑗=1

𝜆
𝑗
𝜑 (𝑟
𝑗
) , 𝜆

𝑗
∈ R, (1)

where 𝑟
𝑗
= ‖𝑥−𝑥

𝑗
‖
2
and ‖ ⋅‖ denote the Euclidean norm. 𝜑(𝑟)

is an RBF and 𝜆
𝑗
s are the coefficients that will be determined.

By collocating the interpolation conditions (𝑢(𝑥
𝑗
) = 𝑓
𝑗
, 𝑗 =

1, . . . , 𝑛), the system of equations is obtained as the following
matrix form:

𝐴𝜆 = 𝑓, (2)

where 𝑎
𝑖𝑗

= 𝜑(𝑟
𝑖𝑗
) and 𝑟

𝑖𝑗
= ‖𝑥
𝑖
− 𝑥
𝑗
‖
2
.

The accuracy of the approximate function depends on
various factors. Some of the most important ones are
as follows: how the RBFs are chosen, nodes distribution,
and selecting the shape parameter. Finding the optimal
shape parameter is an open problem, although concentrated
researches have been made to determine some appropriate
shape parameter for a given problem [16, 17]. In this paper,
we focus on distributing the nodes to obtain more accurate
approximations. In next section, an Equidistributionmethod
is introduced to select adaptive central nodes.

3. An Adaptive Method to Central Nodes

Based on the mesh-free property of RBF meshless methods,
one can select a set of nodes freely, such as uniformor random
scheme. But in the case that the solution is relatively more
oscillatory or even shocks appear, some adaptive schemes
can be applied [4–8]. Equidistribution algorithm is a reliable

approach to construct adaptive central nodes. Equidistribu-
tion is the process of distributing the nodes in an interval such
that a determined weight function is equally distributed over
the chosen mesh.

3.1. Equidistribution
Definition 1 (Equidistribution). Let 𝑀 be a nonnegative
piecewise continuous function (𝑀 ∈ 𝐶

+
[𝑎, 𝑏]) and 𝑐 a

constant such that 𝑛 = (1/𝑐) ∫

𝑏

𝑎
𝑀(𝑥)𝑑𝑥 is an integer. The

mesh
Δ : {𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
} (3)

is called equidistributing (e.d.) on [𝑎, 𝑏]with respect to𝑀 and
𝑐, if

∫

𝑥𝑖

𝑥𝑖−1

𝑀(𝑥) 𝑑𝑥 = 𝑐, 𝑗 = 2, . . . , 𝑛. (4)

The function 𝑀 is called “monitor,” which depends on
the underlying function 𝑢. To find more details about the
monitors refer to [18, 19]. In this paper the arc-lengthmonitor
(𝑀(𝑥) = √1 + 𝑢

𝑥

2) is applied. To enforce at least a few nodes
in the flat part of the interval, a parameter 𝛼 can be inserted
in the arc-length monitor, that is, the modified arc-length
𝑀(𝑥) = √𝛼 + 𝑢

𝑥

2. In numerical examples the influence of
this parameter is illustrated.

For a given monitor function 𝑀 and the constant 𝑐, the
Equidistribution to produce an e.d. mesh in [𝑎, 𝑏] is done in
three steps.

Step 1. Approximate 𝑔(𝑡) = ∫

𝑡

𝑎
𝑀(𝜏)𝑑𝜏, 𝑡 ∈ [𝑎, 𝑏].

Step 2. Determine the smallest integer 𝑛 such that 𝑛𝑐 ≥ 𝑔(𝑏)

and define 𝑑 = 𝑔(𝑏)/𝑛.

Step 3. Find the mesh
Π
𝑛

: 𝑎 = 𝑥
0
< ⋅ ⋅ ⋅ < 𝑥

𝑛
= 𝑏 (5)

by inverse interpolation. The points 𝑥
𝑗
are given by 𝑥

𝑗
=

𝑔
−1

(𝑗𝑑).

Figure 1 shows the e.d. nodes based on𝑢(𝑥) = 𝑒
𝑥
4

with𝛼 =

1. It shows that central nodes are concentrated at the region
with steepest gradient. The concentration makes the nodes
in the region near to each other. With smaller minimum
distance between centrals, the MQ shape parameter must
be adjusted, so that the condition number of the associated
linear system remains reasonable. This adjustment is not
always applicable. Thus some constraint on the distribution
of central nodes can be imposed. The two most common
constraints and an algorithm to construct these constraint
adaptive nodes are introduced in the following section.

3.2. Equidistribution with Constraints. The two most impor-
tant and common constraints are quasi-uniform and locally
bounded. Equidistributing a function subject to the first
constraint has been introduced in Pereyra and Sewell’s work
in 1974 [9]. The second constraint that is more important is
introduced by Kautsky and Nichols at 1980 [10].
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Figure 1: The nodes produced with quasi-uniform and locally
bounded constraints.

3.2.1. Quasi-Uniform Mesh. The mesh Π : {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
} is

called quasi-uniform with respect to the constant 𝑘 if
max
𝑗
ℎ
𝑗

min
𝑗
ℎ
𝑗

≤ 𝑘, (6)

where ℎ
𝑗
= 𝑥
𝑗+1

− 𝑥
𝑗
, 𝑗 = 1, 2, . . . , 𝑛 − 1.

Definition 2 (sub-Equidistribution). According to Defini-
tion 1, the mesh Π is called subequidistributing (s.e.d.) on
[𝑎, 𝑏] with respect to 𝑀 and 𝑐 if, for 𝑛𝑐 ≥ ∫

𝑏

𝑎
𝑀,

∫

𝑥𝑖

𝑥𝑖−1

𝑀(𝑥) 𝑑𝑥 ≤ 𝑐, 𝑗 = 2, . . . , 𝑛. (7)

Now the problem is as follows: given a function 𝑀 ∈ 𝐶
+ and

constants 𝑐 > 0 and 𝑘 ≥ 1, find a mesh which is
(1) s.e.d. on [𝑎, 𝑏] with respect to 𝑀 and 𝑐,
(2) quasi-uniform with respect to 𝑘.

The following theorem solves the problem.

Theorem 3. If Π : {𝑎 = 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
= 𝑏} is an e.d. mesh on

[𝑎, 𝑏] with respect to 𝑀
∗ and 𝑑, where

𝑀
∗
(𝑡) = max (𝑀 (𝑡) , 𝑝) , (8)

with

𝑝 = (

1

𝑘

) max
𝑡∈[𝑎,𝑏]

𝑀(𝑡) , (9)

and 𝑑 = (1/𝑐) ∫

𝑏

𝑎
𝑀
∗
(𝑥)𝑑𝑥 (and 𝑛 is equal to the smallest

integer such that 𝑛𝑐 ≥ ∫

𝑏

𝑎
𝑀
∗
𝑑𝑥), then Π is a s.e.d. on [𝑎, 𝑏]

with respect to 𝑀 and 𝑐 and is satisfied in (6). For proof and
more details about implementation refer to [9].

3.2.2. Locally Bounded Mesh. Themesh Δ : {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
} is

locally bounded with respect to constant 𝑘 ≥ 1, if

1

𝑘

≤

ℎ
𝑗

ℎ
𝑗−1

≤ 𝑘, (10)

where ℎ
𝑗
= 𝑥
𝑗+1

− 𝑥
𝑗
, 𝑗 = 1, 2, . . . , 𝑛 − 1.

The Equidistribution problem is as follows: given a
function 𝑀 ∈ 𝐶

+
[𝑎, 𝑏], constants 𝑐 > 0 and 𝑘 ≥ 1, find a

mesh which is

(1) s.e.d. on [𝑎, 𝑏] with respect to 𝑀 and 𝑐,
(2) locally bounded with respect to 𝑘.

The following theorem solves the problem.

Theorem 4. Let 𝜆 > 0, 𝑀 ∈ 𝐶
+
[𝑎, 𝑏], and

𝑀
∗
(𝑡) = max
𝜏∈[𝑎,𝑏]

𝐺 (𝑀; 𝑡, 𝜏) , (11)

where 𝐺(𝑀; 𝑡, 𝜏) = 𝑀(𝜏)/(1 + 𝜆|𝑡 − 𝜏|𝑀(𝜏)). If

Π : {𝑎 = 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
= 𝑏} (12)

is an e.d. mesh on [𝑎, 𝑏] with respect to 𝑀
∗ and some 𝑐 > 0,

thenΠ is s.e.d. on [𝑎, 𝑏]with respect to𝑀 and 𝑐, and for 𝑘 = 𝑒
𝜆𝑐

one has 1/𝑘 ≤ ℎ
𝑗
/ℎ
𝑗−1

≤ 𝑘, 𝑗 = 2, . . . , 𝑛.

For proof and more details about implementation, inter-
ested reader is referred to [10].

3.2.3. Numerical Algorithm. Based on Theorems 3 and 4,
it is now possible to build a mesh which is s.e.d. and is
quasi-uniform or locally bounded. In practical application
the function 𝑢, which is to be approximated, is generally given
in discrete form; that is, we have the monitor function 𝑀 at
some points 𝑡

𝑗
on the mesh Π

𝑁
(Π
𝑁

: 𝑎 = 𝑡
0
< ⋅ ⋅ ⋅ < 𝑡

𝑁
= 𝑏).

Based onTheorems 3 and 4, to find a s.e.d. mesh with respect
to 𝑀 and 𝑐, which is quasi-uniform or locally bounded with
respect to 𝑘, we require three main steps.

Step 1. Pad the monitor function 𝑀 to produce the padded
function 𝑀

∗ using (8) and (11), respectively, for the quasi-
uniform and locally bounded (with 𝜆 = (ln 𝑘)/𝑐 for locally
bounded).

Step 2. Determine the smallest number of nodes 𝑛, such that
𝑛𝑐 ≥ ∫

𝑏

𝑎
𝑀
∗
𝑑𝑥.

Step 3. Equidistribute 𝑀
∗ with respect to 𝑑 = (∫

𝑏

𝑎
𝑀
∗
𝑑𝑥)/𝑛

to find the new mesh Π
𝑛
.

It is noted that as 𝑑 ≤ 𝑐, the mesh is constraint with
respect to a constant 𝑘


≤ 𝑘, so that the number of points

in the mesh may be greater than required to satisfy the
constraints. In practice, the number of points 𝑁 is constant,
and the e.d. process is performed with respect to 𝑑 =

(∫

𝑏

𝑎
𝑀
∗
𝑑𝑥)/𝑁. For deeper insight, the interested reader is

referred to [9, 10].
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Figure 1 shows the nodes produced with quasi-uniform
and locally bounded constraints. It illustrates that the con-
strained meshes have more smoothness properties, than
those produced without any constraint. Moreover, by mod-
ifying the value of 𝑘 and 𝛼, one can gain some arbitrary
properties in the mesh. With smaller value of 𝑘, the mesh
becomes near to uniform mesh so that with 𝑘 = 1 the two
constraint meshes are same to uniform.

4. Applying Adaptive Nodes in
Meshless Method of Line

4.1. Meshless Method of Line (MMOL). Meshless method of
line (MMOL) is a numerical method to approximate the
solution of time-dependent PDEs. In MMOL, in each time
step, the solution is approximated by radial basis functions.

Consider the following equation:

𝑢
𝑡
+ 𝐿 (𝑢) = 0, (13)

with the boundary and initial conditions

𝑢 (𝑎, 𝑡) = 𝑓
1
(𝑡) ,

𝑢 (𝑏, 𝑡) = 𝑓
2
(𝑡) ,

𝑡 > 0,

𝑢 (𝑥, 𝑡
0
) = 𝑔 (𝑥) , 𝑎 ≤ 𝑥 ≤ 𝑏.

(14)

By time discretizing, the RBF approximation for the solution
𝑢 in step 𝑛 is given by

𝑢 (𝑥, 𝑡
𝑛
) = 𝑢
𝑛
(𝑥) =

𝑁

∑

𝑗=1

𝜆
𝑗
𝜑 (𝑟
𝑗
) = Φ

𝑇
(𝑥) 𝜆, (15)

where Φ
𝑇
(𝑥) = [𝜑(𝑟

1
(𝑥)), 𝜑(𝑟

2
(𝑥)), . . . , 𝜑(𝑟

𝑁
(𝑥))] and 𝑟

𝑗
=

‖𝑥 − 𝑥
𝑗
‖. Suppose that the spatial domain [𝑎, 𝑏] is discretized

by 𝑁 nodes 𝑥
𝑗
(𝑗 = 1, 2, . . . , 𝑁), such that 𝑥

1
= 𝑎, 𝑥

𝑁
= 𝑏. By

collocating (13) with the center nodes we have

𝑢 (𝑥
𝑖
, 𝑡
𝑛
) = 𝑢
𝑛
(𝑥
𝑖
) =

𝑁

∑

𝑗=1

𝜆
𝑗
𝜑 (𝑟
𝑖𝑗
) , 𝑖 = 1, . . . , 𝑁. (16)

These equations, in the matrix notation, are given by

𝑢
(𝑛)

= 𝐴𝜆, (17)

where 𝑢
(𝑛)

= [𝑢
𝑛
(𝑥
1
), 𝑢
𝑛
(𝑥
2
), . . . , 𝑢

𝑛
(𝑥
𝑁
)]
𝑇 and 𝜆 = [𝜆

1
, 𝜆
2
,

. . . , 𝜆
𝑁
]
𝑇. From (15) and (17), 𝑢

𝑛
(𝑥) can be written as the

following:

𝑢
𝑛
(𝑥) = Φ

𝑇
(𝑥) 𝐴
−1

𝑢
(𝑛)

= 𝑁 (𝑥) 𝑢
(𝑛)

, (18)

where 𝑁(𝑥) = Φ
𝑇
(𝑥)𝐴
−1

= [𝑁
1
(𝑥),𝑁

2
(𝑥), . . . , 𝑁

𝑁
(𝑥)].

Generally, for an arbitrary time 𝑡, we have

𝑢
𝑛
(𝑥; 𝑡) = 𝑁𝑢

(𝑛)
. (19)

Substituting (19) into (13), the following ordinary differential
equation will be obtained:

𝑑𝑢
𝑖

𝑛

𝑑𝑡

+ 𝐿 (𝑢
𝑖

𝑛
) = 0, 𝑖 = 1, . . . , 𝑁. (20)

To write (20) in the matrix form, let

𝑈 = [𝑢
𝑛
(𝑥
1
) , 𝑢
𝑛
(𝑥
2
) , . . . , 𝑢

𝑛
(𝑥
𝑁
)]
𝑇

,

𝐿 (𝑈)

= [𝐿 (𝑢
𝑛
(𝑥
1
))
𝑇

, 𝐿 (𝑢
𝑛
(𝑥
2
))
𝑇

, . . . , 𝐿 (𝑢
𝑛
(𝑥
𝑁
))
𝑇

]

𝑇

.

(21)

Thus (20) can be written as follows:

𝑑𝑈

𝑑𝑡

+ 𝐿 (𝑈) = 0. (22)

Equation (22) is a system of ordinary differential equations
with the following initial and boundary conditions:

𝑈(𝑡
0
) = [𝑢 (𝑥

1
, 𝑡
0
) , 𝑢 (𝑥

2
, 𝑡
0
) , . . . , 𝑢 (𝑥

𝑁
, 𝑡
0
)]
𝑇

,

𝑢 (𝑥
1
, 𝑡) = 𝑓

1
(𝑡) ,

𝑢 (𝑥
𝑁
, 𝑡) = 𝑓

2
(𝑡) .

(23)

This ODE can be solved by an ODE solver such as
Runge-Kutta method. By applying fourth-order Runge-Kutta
method (RK4) to (22), the following scheme will be obtained:

𝑈
𝑛+1

= 𝑈
𝑛
+

𝑘

6

(𝐾
1
+ 2𝐾
2
+ 2𝐾
3
+ 𝐾
4
) ,

𝐾
1
= −𝐿 (𝑈

𝑛
) ,

𝐾
2
= −𝐿(𝑈

𝑛
+

𝑘

2

𝐾
1
) ,

𝐾
3
= −𝐿(𝑈

𝑛
+

𝑘

2

𝐾
2
) ,

𝐾
4
= −𝐿 (𝑈

𝑛
+ 𝑘𝐾
3
) ,

(24)

where 𝑘 is the time step. This scheme yields to the solution at
each step of time.

4.2. Adaptive Nodes in MMOL. In this section adaptive
meshless method of line is applied to time-dependent partial
differential equation with initial conditions. In first step,
adaptive nodes are produced in the spatial domain based
on initial condition. Assume that 𝑠

𝑛

𝑗
(𝑗 = 1, . . . , 𝑁) is an

approximate solution at time 𝑡
𝑛 at distinct nodes 𝑥

𝑛

𝑗
(𝑗 =

1, . . . , 𝑁). Then, MMOL is applied on these central nodes
to obtain approximations 𝑠

𝑛+1

𝑗
(𝑗 = 1, . . . , 𝑁) at time 𝑡

𝑛+1.
Next, a new set of adaptive nodes is obtained based on the
properties of 𝑠

𝑛+1 as a function. Finally, 𝑠𝑛+1
𝑗

(𝑗 = 1, . . . , 𝑁) are
obtained by interpolation of the values (𝑥

𝑛

𝑗
, 𝑠
𝑛+1

𝑗
). Application

of adaptive central nodes inMMOL has been studied in some
literatures [13, 14]. In producing the adaptive central nodes in
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Figure 2: The plot of exact and approximate solutions of Example 5 with 50 uniform, quasi-uniform, and locally bounded nodes (resp.,
(a)–(c)).

Table 1: The results of Example 5 with different number of nodes and different mesh distribution.

Mesh 𝑡 𝑛 Shape 𝑘 𝛼 𝐿
∞

𝐿
2

Uniform 1
50 11 — — 0.2142 0.0416
100 11 — — 0.0214 0.0038
150 11 — — 0.0020 3.8450𝑒 − 4

Quasi-uniform 1
50 51 6 1𝑒 − 8 0.1149 0.0234
100 51 6 1𝑒 − 8 0.0049 0.0014
150 61 3 1𝑒 − 8 0.0014 5.2280𝑒 − 4

Locally bounded 1
50 61 1.05 1𝑒 − 16 0.0060 0.0030
100 21 1.001 1𝑒 − 16 0.0017 5.6623𝑒 − 4

150 51 1.001 1𝑒 − 16 0.0018 6.6146𝑒 − 4

each step one can apply each of the constraints. In this study,
we investigate the impact of two introduced constraints and
the parameters 𝛼 and 𝑘 to control the position of the central
nodes. To compare the accuracy of the approximate solution,
two well-known PDEs, Burgers equation and KdV equation,
are investigated.Throughout the numerical examples, we use
MQ-RBF.

Example 5. Consider Burger equation

𝑢
𝑡
+ 𝑢𝑢
𝑥

= 𝜐𝑢
𝑥𝑥

, (25)

on the interval [−1, 1]. The exact solution is

𝑢 (𝑥, 𝑡) =

0.1𝑒
𝑎
+ 0.5𝑒

𝑏
+ 𝑒
𝑐

𝑒
𝑎
+ 𝑒
𝑏
+ 𝑒
𝑐

, (26)

where 𝑎 = −(𝑥+0.5+4.95𝑡)/(20𝜐), 𝑏 = −(𝑥+0.5+0.75𝑡)/(4𝜐),
and 𝑐 = −(𝑥 + 0.625)/(2𝜐). The initial condition 𝑢(𝑥, 0)

and boundary conditions 𝑢(−1, 𝑡) and 𝑢(1, 𝑡) are determined
using exact solution. By choosing 𝜐 = 0.0035 the equa-
tion is solved by using uniform nodes, quasi-uniform, and

locally bounded adaptive nodes. In Figure 2 the approximate
solutions and the central nodes are shown. The values of
parameters 𝑘, 𝛼 and shape parameter 𝑐, the 𝐿

2
-norms, and

𝐿
∞
-norms of the approximate solutions are presented in

Table 1. Note that the impact of different values of 𝑘 and 𝛼

make some freedom to avoid the ill-conditioning.The values
of these parameters which depend on the number of nodes
and their distribution form are shown in Table 1.

Example 6. Consider KdV equation:

𝑢
𝑡
+ 𝜀𝑢𝑢

𝑥
+ 𝜇𝑢
𝑥𝑥𝑥

= 0, (27)

with 𝜀 = 6 and 𝜇 = 1. The initial condition is

𝑢 (𝑥, 0) = 2 sec ℎ
2
(𝑥) . (28)

The exact solution is 𝑢(𝑥, 𝑡) = 2 sec ℎ
2
(𝑥 − 4𝑡).

The computational domain is [−10, 40]. The boundary
conditions 𝑢(−10, 𝑡) and 𝑢(40, 𝑡) are specified by exact solu-
tion. In this example, the gradient of the initial condition
is not noticeable with respect to the length of the region
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Figure 3: The plot of exact and approximate solutions of Example 5 with 100 uniform, quasi-uniform, and locally bounded nodes (resp.,
(a)–(c)).

Table 2: The results of Example 6 with different number of nodes and different mesh distribution.

Mesh 𝑡 𝑛 Shape 𝑘 𝛼 𝐿
∞

𝐿
2

Uniform 1
100 1.5 — — 0.2679 0.0692
150 1.5 — — 0.0043 0.0020
200 1.5 — — 1.4216𝑒 − 4 6.6842𝑒 − 5

Quasi-uniform 1
100 1.1 4 1𝑒 − 8 0.0136 0.0046
100 0.8 4 1𝑒 − 8 0.0067 0.0020
151 0.8 2 1𝑒 − 8 0.0033 0.0015

Locally bounded 1 50 1.7 1.05 1𝑒 − 16 0.0074 0.0027
80 1.1 1.01 1𝑒 − 16 7.6419𝑒 − 4 3.0145𝑒 − 4

[−10, 40]. Thus the role of the parameters 𝑘 and 𝛼 to control
the concentrate of the nodes in appropriate region is very
important. Solution and absolute error of the approximate
solutions for differentmesh nodes are plotted in Figure 3.The
results of implementation are summarized in Table 2.

5. Results and Conclusions

In this paper, application of adaptive nodes, in MMOL, to
time-dependent PDEs is investigated. An Equidistribution
algorithm was introduced to produce adaptive central nodes.
To avoid ill-conditioning in the RBF approximation, two
constraints were imposed to adaptive nodes. To illustrate the
effect of constraints, the method was applied to two well-
known time-dependent PDEs.

In Example 5, the results shown in Figure 2 confirm that,
for 𝑛 = 50, the approximate solution by the locally bounded
nodes has a good accuracy while two others cannot make a
reliable approximate solutionwith the samenumber of nodes;
they need more number of nodes. For 𝑛 = 100, the quasi-
uniform nodes work as well as locally bounded nodes but
the uniform nodes do not have good accuracy yet (Figure 3).

For 𝑛 = 150, all of three approaches are in a good accuracy.
Thus, the results illustrate that the approximate solution
based on the locally bounded nodes has more accuracy than
two others, although the quasi-uniform nodes make more
accurate approximate solution from uniform nodes. Based
on the results of Table 1, the 𝐿

2
-norm of the approximate

solution for 𝑛 = 100 with uniform nodes seems acceptable
but the figures show that this approximate solution is not
accurate, whereas two other meshes make more accurate
approximations. Additively, the results reveal that the locally
bounded mesh has more accurate approximation solution
with smaller number of nodes. For 𝑛 = 150, it is illustrated
that the results of three meshes are same, because with a large
number of nodes, to avoid the ill-conditioning, the value of
𝑘 must be small, and this leads the constraint meshes to a
uniform mesh. Consequently, the results become same or
close together.

In Example 6, Figure 4 shows that for 𝑛 = 100 uniform
nodes the approximate solution is not accurate, and to
obtain more accurate solution, at least 150 uniform nodes are
needed, whereas for 𝑛 = 100 quasi-uniform nodes and 𝑛 =

100 locally bounded nodes, one can obtain a good accuracy.
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Figure 4: The plot of exact and approximate solutions of Example 6 with 100 and 150 uniform nodes (a), 100 and 150 quasi-uniform nodes
(b), and 51 and 81 locally bounded nodes (c).

The results of this example illustrate that the quasi-uniform
mesh makes more accurate results from uniform mesh. Also
by using the locally bounded mesh, the results have the best
accuracy than the others. It comes from the smoothness
properties of the produced mesh in locally bounded based
on initial condition and the solution function. Analysis of
the results in Table 2 illustrates that, in this example by
applying locally bounded mesh with 𝑛 = 81, the error
of approximate solution is more accurate than the error of
approximate solution obtained by uniform mesh and quasi-
uniformmesh with 𝑛 = 150. The obtained results by uniform
mesh with 𝑛 = 200 are comparable with the one obtained
by locally bounded with 𝑛 = 81. Thus the results reveal that
locally bounded mesh produces more accurate solution in
comparison with quasi-uniform mesh, and both of them are
better than uniform mesh. It is noted that two parameters
𝑘 and 𝛼 have very important role in the smoothness of the
meshes and so in the accuracy of the results.
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