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Natural convective boundary-layer flow of a nanofluid on a heated vertical cylinder embedded in a nanofluid-saturated porous
medium is studied.The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis. Lie groups
analysis is used to get the similarity transformations, which transform the governing partial differential equations to a system of
ordinary differential equations. Twogroups of similarity transformations are obtained.Numerical solutions of the resulting ordinary
differential systems are obtained and discussed for various values of the governing parameters.

1. Introduction

A nanofluid is a colloidal mixture of nanosized (<100 nm)
particles in a base fluid. It is known that nanofluids can
tremendously enhance the heat transfer characteristics of the
original (base) fluid.Thus nanofluids have many applications
in industry such as coolants, lubricants, heat exchangers,
and microchannel heat sinks [1]. Nanoparticles have been
made of various materials such as oxide ceramics and nitride
ceramics. The objective of nanofluids is to achieve the best
possible thermal properties with the least possible (<1%)
volume fraction of nanoparticles in the base fluid [1]. There
have been many studies in the literature to better understand
the mechanism behind the enhanced heat transfer character-
istics.

There have been several recent experimental studies to
better understand the mechanism of heat transfer enhance-
ment during natural convection heat transfer in nanofluids
([2, 3]), and a summary can be found in Godson et al.
[1]. Godson et al. [1] conclude that firm conclusions cannot
be made from the limited number of studies and further
experimental and theoretical work is required.

There have been several recent studies on the mathemati-
cal andnumericalmodelling of natural convection heat trans-
fer in nanofluids by Congedo et al. [4]. Mathematical and
numerical models have some advantages over experimental
studies due to themany factors that influence nanofluid prop-
erties. Congedo et al. have used the computer code Fluent
(release 6.3) to conduct numerical simulation of the water-
Al
2
O
3
nanofluid. Natural convection in a horizontal tube heat

exchanger was studied for a wide range of conditions and
comparison made with available experimental data. Santra et
al. [5] have used Artificial Neural Networks (ANN) to study
heat transfer due to laminar natural convection of copper-
water nanofluid in a differentially heated square cavity. The
ANN was trained by resilient propagation algorithm. It was
observed that the ANN was able to predict the heat transfer
correctly within the given range of training data and is an effi-
cient tool to predict heat transfer with reasonable computa-
tional time. Ho et al. [6] have used the finite volume approach
with QUICK and central differencing for the convection and
diffusion terms, respectively, to model natural convection
of a nanofluid (alumina-water) in a square enclosure. They
studied the effect of using two different formulas from
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the literature for effective viscosity and thermal conductivity
of the nanofluid.

Lie group analysis, also called symmetry analysis, can be
used to obtain similarity transformations that can be used to
reduce the system of governing partial differential equations
and associates boundary conditions to a system of ordinary
differential equations. Ibrahim et al. [7] investigated the sim-
ilarity reductions for problems of radiative andmagnetic field
effects on free convection and mass transfer flow past a semi-
infinite flat plate. They obtained new similarity reductions
and found an analytical solution for the uniform magnetic
field case using Lie group method. They also presented
numerical results for the nonuniform magnetic field case.
Kalpakides and Balassas [8] studied the free convective
boundary-layer problem of an electrically conducting fluid
over an elastic surface by group theoretic method. Their
results agree with the existing result for the group of scaling
symmetry. They found that the numerical solution also does
so. Megahed et al. [9] investigated convective heat and mass
transfer along a semi-infinite vertical flat plate in the presence
of a strong nonuniform magnetic field and the effects of
Hall currents using the scaling group of transformations.
They found that the temperature and concentration increase
with an increase in magnetic parameter. Ibrahim et al.
[10] presented symmetry group and similarity solutions for
the steady laminar boundary-layer flow due to a rotating
frustum of a cone in a viscous fluid. They found new
four groups of similarity transformations. Hassanien and
Hamad [11] introduced new similarity solutions of flow and
heat transfer of a micropolar fluid along a vertical plate
in a thermally stratified medium. The general analysis is
developed in their study for the case of ambient temperature
that varies exponentially with time, varies with the position,
or has a uniform value. Some examples of the use of Lie
group analysis to obtain similarity transformations for three-
dimensional Euler equations were presented by Sekhar and
Sharma [12]. Bhuvaneswari et al. [13] presented similarity
solutions of natural convection heat and mass transfer in
an inclined surface with chemical reaction via Lie group
analysis. Using symmetry analysis, Sahin et al. [14] studied
the self-similarity solutions of the one-layer shallow-water
equations representing gravity currents.

In this paper, the similarity solution of natural convective
boundary-layer flow on a vertical cylinder embedded in a
nanofluid-saturated porous medium is studied. Two groups
of similarity transformations are presented.

2. Analysis

Consider steady two-dimensional free convection boundary-
layer flow past a vertical circular cylinder of radius 𝐿 placed
in a nanofluid-saturated porous medium. Cylindrical system
of coordinates (𝑧, 𝜙, 𝑟) are used in which the 𝑧-axis is aligned
vertically upwards. The temperature 𝑇 and the nanoparticle
fraction 𝐶 take constant values 𝑇

𝑤
and 𝐶

𝑤
at the surface of

the cylinder, 𝑟 = 𝐿. The ambient values, attained as 𝑟 tends to
infinity, are denoted by 𝑇

∞
and 𝐶

∞
, respectively.
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Figure 1: Physical model and coordinate system.

The Boussinesq approximation is employed. Homogene-
ity and local thermal equilibrium in the porous medium are
assumed with porosity denoted by 𝜀. The field variables are
the velocity 𝑉, the temperature 𝑇, and the nanoparticle vol-
ume fraction 𝐶. The following four field equations (in steady
case) embody the conservation of total mass, momentum,
thermal energy, and nanoparticles, respectively,

∇ ⋅ 𝑉 = 0, (1)

∇𝑝 +

𝜇

𝑘

𝑉 = [𝜌
𝑝
𝐶 + (1 − 𝐶) {𝜌

𝑓
(1 − 𝛽 (𝑇 − 𝑇

∞
))}] 𝑔, (2)

(𝜌𝑐)
𝑓
𝑉 ⋅ ∇𝑇 = 𝑘

𝑚
∇
2
𝑇

+ 𝜀 (𝜌𝑐)
𝑝
[𝐷
𝐵
∇𝐶 ⋅ ∇𝑇 + (

𝐷
𝑇

𝑇
∞

)∇𝑇 ⋅ ∇𝑇] ,

(3)

𝑉 ⋅ ∇𝐶 = 𝜀𝐷
𝐵
∇
2
𝐶 + 𝜀(

𝐷
𝑇

𝑇
∞

)∇
2
𝑇. (4)

Here 𝜌
𝑓
is the density of the base fluid and 𝜇, 𝑘, and 𝛽 are

the viscosity, thermal conductivity, and volumetric volume
expansion coefficient of the nanofluid, respectively, while 𝜌

𝑝

is the density of the particles. The porosity 𝜀, the effective
heat capacity (𝜌𝑐)

𝑚
, and the effective thermal conductivity

𝑘
𝑚
of the porous medium are introduced. The gravitational

acceleration is denoted by 𝑔. The coefficients that appear in
(3) and (4) are the Brownian diffusion coefficient 𝐷

𝐵
and

the thermophoretic diffusion coefficient 𝐷
𝑇
. We consider a

cylindrical polar coordinate system (𝑧, 𝜙, 𝑟) corresponding
to the axial, azimuthal, and radial directions, respectively,
and denote the associated fluid velocities as (𝑢, V, 𝑤); the
configuration is shown in Figure 1.

The boundary conditions are taken to be

𝑤 = 0, 𝑇 = 𝑇
𝑤
, 𝐶 = 𝐶

𝑤
at 𝑟 = 𝐿,

𝑢 → 0, 𝑤 → 0, 𝑇 → 𝑇
∞
, 𝐶 → 𝐶

∞

as 𝑟 → ∞,

(5)
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with the observation that the flow is axisymmetric so that
V = 0 and all other dependent variables are independent of 𝜙,
and, by making the standard boundary-layer approximation,
based on a scale analysis, the governing equations (1)–(4) take
the form

𝜕

𝜕𝑧

(𝑟 𝑢) +

𝜕

𝜕𝑟

(𝑟𝑤) = 0, (6)

𝜕𝑝

𝜕𝑧

= −

𝜇

𝑘

𝑢 + 𝜌
𝑓∞
𝛽𝑔 (1 − 𝐶

∞
) (𝑇 − 𝑇

∞
)

− 𝑔 (𝜌
𝑝
− 𝜌
𝑓∞
) (𝐶 − 𝐶

∞
) ,

(7)

𝜕𝑝

𝜕𝑟

= 0, (8)

𝑢

𝜕𝑇

𝜕𝑧

+ 𝑤

𝜕𝑇

𝜕𝑟

= 𝛼
𝑚

1

𝑟

𝜕

𝜕𝑟

(𝑟

𝜕𝑇

𝜕𝑟

)

+ 𝜏 [𝐷
𝐵

𝜕𝑇

𝜕𝑟

𝜕𝐶

𝜕𝑟

+

𝐷
𝑇

𝑇
∞

(

𝜕𝑇

𝜕𝑟

)

2

] ,

(9)

𝑢

𝜕𝐶

𝜕𝑧

+ 𝑤

𝜕𝐶

𝜕𝑟

= 𝜀𝐷
𝐵

1

𝑟

𝜕

𝜕𝑟

(𝑟

𝜕𝐶

𝜕𝑟

)

+ 𝜀

𝐷
𝑇

𝑇
∞

1

𝑟

𝜕

𝜕𝑟

(𝑟

𝜕𝑇

𝜕𝑟

) ,

(10)

where

𝛼
𝑚
=

𝑘
𝑚

(𝜌𝑐)
𝑓

, 𝜏 =

𝜀 (𝜌𝑐)
𝑝

(𝜌𝑐)
𝑓

. (11)

By eliminating𝑝 from (7) and (8) by cross-differentiation,
and by introducing the following nondimensional variables:

𝑟 =

𝑟

𝐿

, 𝑧 =

𝑧

𝐿Ra
𝐿

, 𝑢 =

𝐿

𝛼Ra
𝐿

𝑢,

𝑤 =

𝐿

𝛼

𝑤, 𝜃 =

𝑇 − 𝑇
∞

𝑇
𝑤
− 𝑇
∞

,

𝜙 =

𝐶 − 𝐶
∞

𝐶
𝑤
− 𝐶
∞

,

Ra
𝐿
=

𝑘𝜌
𝑓∞
𝛽𝑔 (1 − 𝐶

∞
) (𝑇
𝑤
− 𝑇
∞
) 𝐿

𝛼𝜇

,

(12)

where Ra
𝐿
is the Rayleigh number, (6)–(10) become in

nondimensional form:

𝜕

𝜕𝑧

(𝑟𝑢) +

𝜕

𝜕𝑟

(𝑟𝑤) = 0,

𝜕𝑢

𝜕𝑟

=

𝜕𝜃

𝜕𝑟

−Nr
𝜕𝜙

𝜕𝑟

,

𝑢

𝜕𝜃

𝜕𝑧

+ 𝑤

𝜕𝜃

𝜕𝑟

=

1

𝑟

𝜕

𝜕𝑟

(𝑟

𝜕𝜃

𝜕𝑟

) +Nb𝜕𝜃
𝜕𝑟

𝜕𝜙

𝜕𝑟

+ Nt(𝜕𝜃
𝜕𝑟

)

2

,

Le(𝑢
𝜕𝜙

𝜕𝑧

+ 𝑤

𝜕𝜙

𝜕𝑟

) =

1

𝑟

𝜕

𝜕𝑟

(𝑟

𝜕𝜙

𝜕𝑟

) +

Nt
Nb

1

𝑟

𝜕

𝜕𝑟

(𝑟

𝜕𝜃

𝜕𝑟

) ,

(13)

with the boundary conditions

𝑟 = 1: 𝑤 = 0, 𝜃 = 1, 𝜙 = 1,

𝑟 → ∞: 𝑢 → 0, 𝑤 → 0, 𝜃 → 0, 𝜙 → 0,

(14)

where the parameters in (13) are defined by

Le =
𝛼
𝑚

𝜀𝐷
𝐵

, Nb =
𝜏𝐷
𝐵
(𝐶
𝑤
− 𝐶
∞
)

𝛼
𝑚

,

Nt =
𝜏𝐷
𝑇
(𝐶
𝑤
− 𝐶
∞
)

𝛼
𝑚
𝑇
∞

,

Nr =
(𝜌
𝑝
− 𝜌
𝑓∞
) (𝐶
𝑤
− 𝐶
∞
)

𝜌
𝑓∞
𝛽 (1 − 𝐶

∞
) (𝑇
𝑤
− 𝑇
∞
)

.

(15)

Here Nr, Nb, Nt, and Le denote a buoyancy ratio, a
Brownian motion parameter, a thermophoresis parameter,
and a Lewis number, respectively.

We define the stream function 𝜓 according to

𝑢 =

1

𝑟

𝜕𝜓

𝜕𝑟

, 𝑤 = −

1

𝑟

𝜕𝜓

𝜕𝑧

. (16)

Using (16), (13)-(14) become

𝜕

𝜕𝑟

(

1

𝑟

𝜕𝜓

𝜕𝑟

) =

𝜕𝜃

𝜕𝑟

−Nr
𝜕𝜙

𝜕𝑟

,

1

𝑟

(

𝜕𝜓

𝜕𝑟

𝜕𝜃

𝜕𝑧

−

𝜕𝜓

𝜕𝑧

𝜕𝜃

𝜕𝑟

)

=

1

𝑟

𝜕

𝜕𝑟

(𝑟

𝜕𝜃

𝜕𝑟

) +Nb𝜕𝜃
𝜕𝑟

𝜕𝜙

𝜕𝑟

+Nt(𝜕𝜃
𝜕𝑟

)

2

,

Le1
𝑟

(

𝜕𝜓

𝜕𝑟

𝜕𝜙

𝜕𝑧

−

𝜕𝜓

𝜕𝑧

𝜕𝜙

𝜕𝑟

)

=

1

𝑟

𝜕

𝜕𝑟

(𝑟

𝜕𝜙

𝜕𝑟

) +

Nt
Nb

1

𝑟

𝜕

𝜕𝑟

(𝑟

𝜕𝜃

𝜕𝑟

) ,

(17)

with the boundary conditions

𝑟 = 1:
𝜕𝜓

𝜕𝑧

= 0, 𝜃 = 1, 𝜙 = 1,

𝑟 → ∞:
𝜕𝜓

𝜕𝑟

→ 0,

𝜕𝜓

𝜕𝑧

→ 0, 𝜃 → 0, 𝜙 → 0.

(18)



4 Journal of Applied Mathematics

3. Symmetry Groups

The symmetry groups of (17) are calculated using classical Lie
group approach. The one-parameter infinitesimal Lie group
of transformations leaving (17) invariant is defined as

𝑟 ∗ 𝑟 + 𝜀𝜉
1
(𝑟, 𝑧, 𝜓, 𝜃, 𝜙) ,

𝑧 ∗ 𝑧 + 𝜀𝜉
2
(𝑟, 𝑧, 𝜓, 𝜃, 𝜙) ,

𝜓 ∗ 𝜓 + 𝜀𝜇
1
(𝑟, 𝑧, 𝜓, 𝜃, 𝜙) ,

𝜃 ∗ 𝜃 + 𝜀𝜇
2
(𝑟, 𝑧, 𝜓, 𝜃, 𝜙) ,

𝜙 ∗ 𝜙 + 𝜀𝜇
3
(𝑟, 𝑧, 𝜓, 𝜃, 𝜙) ,

(19)

and the infinitesimal generator has the following form:

𝑋 = 𝜉
1
(𝑟, 𝑧, 𝜓, 𝜃, 𝜙)

𝜕

𝜕𝑟

+ 𝜉
2
(𝑟, 𝑧, 𝜓, 𝜃, 𝜙)

𝜕

𝜕𝑧

+ 𝜇
1
(𝑟, 𝑧, 𝜓, 𝜃, 𝜙)

𝜕

𝜕𝜓

+ 𝜇
2
(𝑟, 𝑧, 𝜓, 𝜃, 𝜙)

𝜕

𝜕𝜃

+ 𝜇
3
(𝑟, 𝑧, 𝜓, 𝜃, 𝜙)

𝜕

𝜕𝜙

.

(20)

By carrying out a straightforward and tedious algebra, we
finally obtain the form of the infinitesimals 𝜉

1
, 𝜉
2
, 𝜇
1
, 𝜇
2
, and

𝜇
3
as

𝜉
1
=

1

2

𝑎
1
𝑟, 𝜉

2
= 𝑎
1
𝑧 + 𝑎
2
, 𝜇

1
= 𝑎
1
𝜓 + 𝑎
3
,

𝜇
2
= 𝑎
4
, 𝜇

3
= 𝑎
5
,

(21)

where 𝑎
1
, 𝑎
2
, 𝑎
3
, 𝑎
4
, and 𝑎

5
are constants. The infinitesimals

generators that correspond to the infinitesimals (21) are

𝑋
1
=

1

2

𝑟

𝜕

𝜕𝑟

+ 𝑧

𝜕

𝜕𝑧

+ 𝜓

𝜕

𝜕𝜓

,

𝑋
2
=

𝜕

𝜕𝑧

, 𝑋
3
=

𝜕

𝜕𝜓

,

𝑋
4
=

𝜕

𝜕𝜃

, 𝑋
5
=

𝜕

𝜕𝜙

.

(22)

Further details on similarity transformations using Lie
group analysis can be found in [15–18].

4. Reductions to Ordinary
Differential Equations

Wewill produce the similarity transformations and solutions
using infinitesimal generators given in (22). Imposing the
restrictions from the boundary conditions, we choose only
the generator𝑋

1
.

The characteristic functions are

𝑑𝑟

𝑟/2

=

𝑑𝑧

𝑧

=

𝑑𝜓

𝜓

=

𝑑𝜃

0

=

𝑑𝜙

0

, (23)

from which the independent similarity variable, the stream
function, the temperature, and the mass fraction turn out to
be of the form

𝜂 =

𝑟

√𝑧

, 𝜓 = 𝑧𝐹 (𝜂) , 𝜃 = 𝜃 (𝜂) , 𝜙 = 𝜙 (𝜂) .

(24)

Substituting (24) into the partial differential equations (17)-
(18), we finally obtain the system of nonlinear ordinary
differential equations:

𝜂𝐹

− 𝐹

− 𝜂
2
(𝜃

−Nr𝜙) = 0,

𝜂𝜃

+ (1 + 𝐹) 𝜃


+Nb 𝜂𝜃𝜙 +Nt 𝜂𝜃2 = 0,

𝜂𝜙

+ (1 + Le𝐹) 𝜙 + Nt

Nb
(𝜂𝜃

+ 𝜃

) = 0.

(25)

The appropriate boundary conditions are expressed as

𝜂 = 𝜁: 𝐹 =

1

2

𝜁𝐹

, 𝜃 = 1, 𝜙 = 1,

𝜂 → ∞: 𝐹

→ 0, 𝜃 → 0, 𝜙 → 0,

(26)

where primes denote differentiationwith respect to 𝜂, and 𝜁 =
𝑧
−1/2.

Now, if we consider 𝜂 = (𝑟 − 1)/√𝑧 instead of 𝜂 = 𝑟/√𝑧
which are given in (24), the similarity representation will be
as follows:

(𝜂 + 𝜁) 𝐹

− 𝐹

− (𝜂
2
+ 2𝜁𝜂 + 𝜁

2
) (𝜃

− Nr𝜙) = 0,

(𝜂 + 𝜁) 𝜃

+ (1 + 𝐹) 𝜃



+ Nb (𝜂 + 𝜁) 𝜃𝜙 +Nt (𝜂 + 𝜁) 𝜃2 = 0,

(𝜂 + 𝜁) 𝜙

+ (1 + Le𝐹) 𝜙 + Nt

Nb
[(𝜂 + 𝜁) 𝜃


+ 𝜃

] = 0,

(27)

with the boundary conditions

𝜂 = 0: 𝐹 = 0, 𝜃 = 1, 𝜙 = 1,

𝜂 → ∞: 𝐹

→ 0, 𝜃 → 0, 𝜙 → 0.

(28)

5. Results and Discussions

Thesimilarity solution of free convective boundary-layer flow
on a vertical cylinder embedded in a nanofluid-saturated
porous medium is obtained. Two groups of similarity trans-
formations and the corresponding ordinary differential sys-
tems are presented.

The two systems (25)-(26) and (27)-(28) have been solved
numerically by using finite difference method (MATLAB
package). The numerical solutions of the first system (25)-
(26) are shown in Figures 2 and 3, while Figures 4 and 5
represent the numerical solutions of the second system (27)-
(28). In first system we considered 𝜁 = 1, while in the second
system we put 𝜁 = 0 (𝜁 arbitrary).
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Figure 2: Plots of dimensionless similarity functions 𝐹(𝜂), 𝐹(𝜂),
𝜃(𝜂), and 𝜙(𝜂) for the case of Le = 10, Nr = 0.5, Nb = 0.5, Nt = 0.5,
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10987654321
0

0.9

0.8

0.7

0.6

0.5

0.1

0.4

0.3

0.2

1

(𝜂)

𝜃

𝜙

F
 ,
𝜃
,𝜙

Le = 2, 5, 10

F

Figure 3: Plots of dimensionless similarity functions 𝐹(𝜂), 𝜃(𝜂),
and 𝜙(𝜂) for various values of Le at Nr = 0.5, Nb = 0.5, Nt = 0.5,
and 𝜁 = 1.
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Figure 4: Plots of dimensionless similarity functions 𝐹(𝜂), 𝐹(𝜂),
𝜃(𝜂), and 𝜙(𝜂) for the case of Le = 10, Nr = 0.5, Nb = 0.5, Nt = 0.5,
and 𝜁 = 0.
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Figure 5: Plots of dimensionless similarity functions 𝐹(𝜂), 𝜃(𝜂),
and 𝜙(𝜂) for various values of Le at Nr = 0.5, Nb = 0.5, Nt = 0.5,
and 𝜁 = 0.
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Plots of the dependent similarity variables for Le = 10, Nr
= 0.5, Nb = 0.5, and Nt = 0.5 for both systems are shown in
Figures 2 and 4 [19]. We have found that the boundary-layer
profiles for the stream function 𝐹(𝜂) and the temperature
function 𝜃(𝜂) have essentially the same form as in the case
of a regular fluid. The thickness of the boundary-layer for
the mass fraction function 𝜙(𝜂) is smaller than the thermal
boundary-layer thickness when Le > 1. We notice that in the
case of a nanofluid the two profiles of the velocity 𝐹(𝜂) and
the temperature 𝜃 diverge within a layer whose thickness is
comparable with that of the mass fraction.

Figure 3 shows the behavior of the velocity 𝐹(𝜂), the
temperature 𝜃(𝜂), and the mass fraction function 𝜙(𝜂) for
various values of Lewis number Le when Nr = 0.5, Nb = 0.5,
Nt = 0.5, and 𝜁 = 1 (first system). It is observed that the
velocity 𝐹(𝜂) increases as the Lewis number Le increases.
Also, it is noticed that the thicknesses of the thermal and the
mass fraction boundary layers are decreased with increasing
Le.

Figure 5 displays the effect of Lewis number Le on
the velocity, the temperature, and the nanoparticle volume
fraction for Nr = 0.5, Nb = 0.5, Nt = 0.5, and 𝜁 = 0 (second
system). For the second system we have gotten the same
behavior as in Figure 4 (numerical from system 1).

6. Conclusions

The symmetries of the governing system of partial differential
equations are obtained using Lie group analysis and they
reduce the system to system of ordinary differential equa-
tions. The similarity solution depends on four dimensionless
parameters, namely, a Lewis number Le, a buoyancy-ratio
parameter Nr, a Brownian motion parameter Nb, and a
thermophoresis parameter Nt. From the numerical results,
the thickness of the thermal boundary layer is greater than the
thickness of the mass fraction boundary layer when Le > 1. In
the case of a nanofluid the two profiles of the velocity 𝐹(𝜂)
and the temperature 𝜃 diverge within a layer whose thickness
is comparable with that of the mass fraction.
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