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This work presents a novel offline model predictive control technique for tracking of constrained systems. The quadratic
programming problem, commonly found in constrained control methods, is replaced by sequential offline set projections based
on priority given to the decision variables. If a preference is established in terms of which decision variables are more desirable, the
optimization problem can be solved by sequentially choosing the most important variables and performing amembership test with
the projection of the constraint closed set over the related dimensions.Thus, real-time optimization is replaced by offline projection
operations and online one-dimensional membership tests.This concept of decision variable prioritization is then applied to a form
of model predictive control: feasible target tracking.Three quadratic programming problems are replaced by the proposedmethod.
In the first problem, attainable steady-state demands are computed based on the performance of the plant. The reachable target
command is then filtered in terms of dynamic admissibility, creating feasible inputs to the plant. Finally, the control is computed
considering the current state and disturbance vectors along with the feasible and attainable command. Simulations of the method
executing a path-following task are presented, demonstrating its benefits with negligible online computational burden.

1. Introduction

Model predictive control has been a matter of extensive
research in recent decades because it provides a straightfor-
ward way to address the control of constrained multivariate
systems [1]. The computed control to be applied in the plant
is such that it satisfies the system constraints; therefore,
an online constrained optimal control must be computed
at every time instant. Though being initially conceived for
applications in the process industry, other engineering fields
are taking advantage of the developed techniques, such as
in space systems [2] and aeronautical guidance and control
[3, 4]. The facility of MPC to deal with constraints and its
common appearance with traditional linear-quadratic con-
trollers makes this technique suitable for the design of fault-
tolerant flight control systems and also to allow operations
near vehicle operational bounds.

Despite the fact that successful flight tests have already
been executed to perform constrained control of fast dynam-
ical modes of an aircraft [5], the related computational load is

still high for the present generation of flight control comput-
ers. However, in the last decade, new approaches have been
presented to decrease the computational burden of the online
control calculations. Explicit MPC [6] has become the main
strategy for moving offline most of the constrained control
law computations. In the other direction, new methods were
recently proposed [7, 8] to improve numerical performance
during real-time execution.

Nevertheless, the online computation of the control
actions depends mostly on linear or quadratic programming
solvers, which donot offer guarantees of finite-time execution
because of their iterative procedures.ThismakesMPC a non-
certifiable technique for civil aviation control software, where
deterministic algorithms are mandatory [9]. Explicit MPC
could be an alternative for this problem, but it is still restricted
for control of low-order systems and for regulation purposes
[10]. An attempt to perform robust variable tracking, instead
of nominal regulation, can increase the complexity of the
state-space formulation in a way that makes it hard or even
impossible to compute offline solutions.
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Therefore, the main contribution of this work is the
proposal of a novel method to move offline the nondeter-
ministic computations of MPC, leaving only set membership
verifications during real-time operation. This is achieved by
proposing a new form to solve quadratic convex optimization
problems and applying it on the feasible target trackingmodel
predictive control (FTT-MPC) method [11], producing a new
form of offline MPC. Based on the assumption of the exis-
tence of priority among controlled outputs and manipulated
variables (inputs), the traditional quadratic programming
problem is replaced by offline computation and projection of
polyhedral sets.This newmodel predictive control method is
then applied to perform airspeed, flight path angle, and turn
rate tracking of a small UAV model during a path-following
task with constraints on angle of attack, throttle, and aerody-
namic surfaces deflections as well as with considerable plant-
model mismatches, demonstrating adequate flight envelope
estimation and protection.

The structure of this paper is organized as follows.
Section 2 establishes the constrained control problem and
initial assumptions. Section 3 presents a new method to
compute the projection of a point over a polytope, based on
prioritization of the decision vector components. Section 4 is
the main part of this work, where the feasible target tracking
MPC is converted to an offline implementation. Finally,
Section 5 applies the technique to the longitudinal and lateral
control of an unmanned aircraft, showing a practical and
potential application of the proposed MPC method.

2. Problem Formulation

Let the discrete-time state-space model be defined by

𝑥𝑘+1 = Φ𝑥𝑘 + Γ𝑢𝑘 + Γ𝑑𝑑𝑘,

𝑑𝑘+1 = 𝑑𝑘,

𝑦𝑘 = 𝐸𝑥𝑘,

𝑧𝑘 = 𝐻𝑦𝑘,

(1)

where 𝑥𝑘 ∈ R𝑛 is the state vector, 𝑢𝑘 ∈ R𝑚 is the control
vector, 𝑦𝑘 ∈ R𝑝 is the vector of observed variables, 𝑑𝑘 ∈ R𝑞

is the constant vector of disturbances, and 𝑧𝑘 ∈ R𝑞, 𝑞 ≤ 𝑚,
is the vector of controlled variables. The disturbance vector
is included to model mismatches between the plant and the
nominal model as well as constant external disturbances
acting on the plant. Note that the number of disturbance
variables is equal to the number of controlled outputs 𝑞.

The objective of the control system is to asymptotically
eliminate the tracking error given a piecewise constant
reference command 𝑟𝑐, which is

𝑧𝑘 󳨀󳨀󳨀󳨀󳨀→

𝑘→∞

𝑟𝑐 (2)

in the presence of a disturbance 𝑑𝑘 and given constraints on
the state and control vectors 𝑥𝑘 ∈ X, 𝑢𝑘 ∈ U, where X and
U are closed, bounded, and convex sets expressed by linear
inequalities. In case 𝑟𝑐 is not achievable, a reachable target 𝑟ss
will be computed with some priority among the controlled

variables. Additionally, the dynamical protection character-
istic of the controller maintains the outputs inside their
admissible ranges by computing feasible target values of 𝑧ss.

Before proceeding with the assumptions, some useful
definitions are given. A polyhedron is the intersection of a
finite number of closed halfspaces:

P = {V ∈ R
𝑛
| 𝐿𝑐V ≤ 𝑘𝑐} , (3)

where 𝐿𝑐 and 𝑘𝑐 are, respectively, a matrix and a vector
which represent linearly the set of halfspaces. A polytope is a
bounded polyhedron. Given a polyhedron P ⊂ V × Y , where
V andY are subspaces, that is, sets with lower dimensions that
P, the projection 𝜋 of P over V , is defined as

𝜋VP = {V ∈ V | ∃𝑦 ∈ Y , (V, 𝑦) ∈ P} , (4)

and the slice 𝜎 of P at a vector 𝑟 ∈ R𝑝 is defined as

𝜎𝑟P = {V ∈ R
𝑛
| (V, 𝑟) ∈ P} , (5)

Assumption 1. The pair (Φ, 𝐸) is assumed to be detectable
with 𝐸 full row rank. The following condition is equivalent:

rank [Φ − 𝐼 Γ

𝐸 0
] = 𝑛 + 𝑝. (6)

Assumption 2. It is assumed that the state and disturbance
vectors are estimated by a nominally asymptotically stable
observer. Because 𝑑𝑘 ∈ R𝑞, the observer proposed byMaeder
et al. [12] is chosen for this work. Other choices of observers
[13] would increase the dimension of the disturbance vector
and add additional numerical complexity to the controller
synthesis.

Assumption 3. The disturbance is bounded and lies in a
compact convex polyhedron containing the origin in its
interior.

3. Weighted Projection of
a Point on a Polytope

In the next section, it will be presented a new form of
MPC that basically shapes input references and computes
the constrained control, by projecting points on convex
polyhedral sets. The projected point is commonly computed
by solving a quadratic programming (QP) problem [14] and
several solvers are available to calculate the solution; however,
they comprise iterative procedures with no guarantee of finite
time execution. This section presents a novel and simple way
to project a point over a polytope without need of online
optimization.

The Euclidean orthogonal projection of V0 on a polytope
is given by the solution of the QP [14]:

min
V

𝐽 (V0) = (V − V0)
𝑇
(V − V0)

subject to: V ∈ V .

(7)



Journal of Applied Mathematics 3

We also refer to oblique 2-norm projection of the minimizer
of the following weighted cost function:

min
𝑦

𝐽 (𝑦0) = (𝑦 − 𝑦0)
𝑇
𝑊(𝑦 − 𝑦0)

subject to: 𝑦 ∈ Y ,

(8)

where 𝑊 ∈ R𝑛×𝑛 is a positive definite diagonal matrix.
Clearly, both formulations are equivalent by doing the vari-
able transformation V𝑖 = √𝑤𝑖𝑦𝑖, 𝑖 = 1, . . . , 𝑛. Here the weights
are chosen to influence the solution, giving relative different
emphasis to some components in the minimization of the
distance between the optimal solution 𝑦∗ and 𝑦0.

It is proposed to solve (8) with a special choice of each
diagonal element of the 𝑊 matrix: the largest individual
weight penalizes the most important component in terms of
distance minimization, followed by the second component,
and so on. Giving enough scale separation between the diag-
onal elements, it is possible to solve (8) through sequential
projections and slices of polytopes.

The proposed prioritized computation of 𝑦∗
𝑝
is given as

follows. Let us consider the feasible setY . Its projection on the
most important component 𝑦1 creates the one-dimensional
set Y1. Thus, the prioritized value 𝑦∗

1𝑝
is obtained by verifying

whether 𝑦10 ∈ Y1 or not. If it is, 𝑦∗
1𝑝

= 𝑦10
. If not, 𝑦∗

1𝑝

will be equal to the nearest extremum of Y1. Next, the set
Y is projected over the two most important components,
generating Y2. Because 𝑦

∗

1𝑝
has been already selected, the

choice of 𝑦∗
2𝑝
is done over the slice of Y2 at 𝑦

∗

1𝑝
, in which it is

also a one-dimensional set. This sequence of projections and
slices continues until the last component 𝑦𝑛.

Figure 1 exemplifies and compares, using a two-
dimensional case, two solutions of (8), one considering
𝑊 = 𝐼, and the other with weighting prioritization, that is,
𝑤1 ≫ 𝑤2. The established setpoint (𝑦10 , 𝑦20) is not achievable
because it lies outside the admissible set. In the unweighted
projection computation, the pair (𝑦

∗

1
, 𝑦
∗

2
) is the closest

point to (𝑦10 , 𝑦20) and is perpendicular to the related active
constraint. However, considering 𝑦1 as the preferred variable
to attain, the demand prioritization technique computes a
solution where 𝑦∗

2𝑝
is the result of the prioritized choice 𝑦∗

1𝑝
.

Its selection is simply performed by a membership test with
the projection of the two-dimensional polytope on the first
dimension, as shown in the lower part of Figure 1.

The extension of the proposed method to compute
decision variables in higher-dimensional spaces and its appli-
cation to the problem of constrained control must take into
consideration the definition of the projection operation. As
stated by (4), the projection of a high-dimensional decision
space on the most important variables subspace guarantees
the existence of the remaining decision elements. Doing
sequential projections clearly decreases the sets of the vari-
ables with low priority, even with degeneration to a point, but
they will not be empty.

The presented method of solving (8) is particularly
helpful for online applications. It is worth observing that the
successive projections of the set Y can be done completely

y1

y
2

(y∗
1 , y

∗
2 )

(y∗
1 , y

∗
2 )p

(y1, y2)0

y∗1p

Y

Figure 1: Orthogonal and prioritized projections of a point on a
polytope.

offline. It only remains to calculate online the sequence of
slices, which are computationally inexpensive.

4. Offline Feasible Model Predictive Control

While input constraints are relatively straightforward to
manipulate, output constraints must be mapped onto the
input space through some sort of dynamical prediction.Thus,
the input applied to the system will consider the future
evolution of the constrained outputs. Even basic formulations
of MPC naturally compute optimal inputs that force the
outputs to stay inside their limitations. However, not all
reference values to be tracked are numerically feasible; that
is, the imposed limitations and the system demand may not
be compatible. In addition, even if feasibility is found, closed-
loop stability may not be assured because the constraints are
active not only at the time instant of the input computation,
but also at all future instants.

Previous work presented the feasible target trackingMPC
technique [11], a three-stage control method where each part
comprises a quadratic programming problem. In the present
work, the offline feasible model predictive control method
(OFF-MPC) is proposed, replacing each optimization of
the FTT-MPC by prioritized projections on polytopes that
comprises the relevant system constraints.

The offline feasible MPC technique, schematically shown
in Figure 2, guarantees both feasibility and closed-loop stabil-
ity by first computing statically reachable commands, which
respects the complete set of constraints when the system
reaches the steady-state condition. The disturbance vector of
(1) is required to correct the steady-state output limitations,
that is, the admissible envelope, when differences between the
model and the real system occur. After this first computation,
dynamically feasible commands are calculated, to assure that
the input and output constraints will be satisfied during
the transient. In this step, both state and disturbance vec-
tors are necessary because the dynamically feasible demand
depends on the state at each time instant. Finally, the optimal
constrained control is obtained in the MPC, considering a
feasible and reachable demand.
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Figure 2: Overall scheme of the offline feasible MPC.

Off-line computation
(1) Sort the reference vector 𝑟𝑐 in order of importance
(2) Create the polyhedron Pss

(3) Project Pss over [𝑟𝑇ss 𝑑
𝑇

𝑘
]

𝑇

to create the polyhedron P𝑤
(4) For 𝑖 = 1 to 𝑞

(a) Project P𝑤 over [𝑟1ss ⋅ ⋅ ⋅ 𝑟𝑖ss
𝑑
𝑇

𝑘
]

𝑇

to create P𝑤𝑖
On-line computation
(1) Slice P𝑤1 at estimated values of 𝑑𝑘
(2) Check if 𝑟1 lies inside the admissible range of 𝑟1ss
(3) For 𝑖 = 2 to 𝑞

(a) Slice P𝑤𝑖 at selected [𝑟1ss ⋅ ⋅ ⋅ 𝑟(𝑖−1)ss]
𝑇 and estimated 𝑑𝑘

(b) Check if 𝑟𝑖 lies inside the admissible range of 𝑟𝑖ss

Algorithm 1: Sets of statically admissible commands.

4.1. Sets of Statically Admissible Commands. The separation
between the determination of steady-state target values and
constrained control computation creates distinct optimiza-
tion problems, which are individually solvable through the
demand prioritization technique. Thus, in a first step, the
polyhedral set of input, state, and output constraints that
act in the steady-state is created and projected offline over
the highest priority variable to track, creating an interval of
admissible and reachable values. In the sequence, another
projection is performed over the second most important
variable, and this operation repeats until the last variable,
whose computation is simply performed by online slicing
the complete constraint set with the choice of prioritized
variables.

The equality constraints represented by the state-space
and target equations can be converted into inequality con-
straints through introduction of arbitrarily small tolerance
vectors 𝜖𝑥 and 𝜖𝑧. Hence, (1) can be stated, at steady state,
as

(Φ − 𝐼) 𝑥ss + Γ𝑢ss + Γ𝑑𝑑𝑘 ≤ 𝜖𝑥𝐼,

(Φ − 𝐼) 𝑥ss + Γ𝑢ss + Γ𝑑𝑑𝑘 ≥ −𝜖𝑥𝐼,

𝐻𝐸𝑥ss − 𝑟ss ≤ 𝜖𝑧𝐼,

𝐻𝐸𝑥ss − 𝑟ss ≥ −𝜖𝑧𝐼,

𝑢ss ∈ 𝜆U,

𝑥ss ∈ 𝜆X,

(9)

which defines the polyhedron Pss spanned by the aug-
mented vector [𝑥𝑇ss 𝑥

𝑇

ss 𝑟
𝑇

ss 𝑑
𝑇

𝑘
]

𝑇

. The projection of Pss over

[𝑟
𝑇

ss 𝑑
𝑇

𝑘
]

𝑇

generates a polyhedron P𝑤 that encodes statically
admissible commands 𝑟ss to the real plant, provided that the
disturbance is known or estimated. The scalar 𝜆 ∈ (0, 1)

slightly shrinks the constraints at steady state to allow the set
computations of the next subsection.

If there is no priority among references to be tracked, the
statically admissible vector 𝑟ss is the orthogonal projection
of 𝑟𝑐 on the slice of P𝑤 at estimated values of 𝑑𝑘. However,
the prioritization and ordering of each element of 𝑟𝑐 give the
possibility of avoiding online quadratic programming com-
putation, being replaced by an offline sequence of polyhedra
projections.

The first required offline operation is a projection of P𝑤
over [𝑟1ss 𝑑

𝑇

𝑘
]

𝑇

to create the polyhedron P𝑤1 . The procedure

follows with the projection of P𝑤 over [𝑟1ss 𝑟2ss
𝑑
𝑇

𝑘
]

𝑇

to
compute P𝑤2 . This is performed by all ordered elements of
𝑟𝑐.

The online slice of P𝑤1 with estimated values of 𝑑𝑘 gives
the admissible range of 𝑟1ss . Thus, in the sequence, slices
are performed with the disturbance and selected attainable
reference values. This sequence of offline projections and
online slices is followed until the last demand 𝑟𝑞, as shown
by Algorithm 1.

4.2. Sets of Dynamically Admissible Commands. Once the
attainable target 𝑟ss is computed, the next step of the
OFF-MPC method is the computation of the dynamically
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Off-line computation
(1) Create invariant setO

∞
of the extended

closed-loop state-space
(2) Create the setO𝑐

∞
by recursion

(3) For 𝑖 = 1 to 𝑞
(a) ProjectO𝑐

∞
over [𝑥𝑇

𝑗
𝑑
𝑇

𝑗
𝑟
1ss

⋅ ⋅ ⋅ 𝑟
𝑖ss]
𝑇

to create P𝑟𝑖
On-line computation
(1) Slice P𝑟1 at estimated values of 𝑥𝑘 and 𝑑𝑘

to create the one-dimensional set Z1ss
(2) Check if 𝑟1ss is inside Z1ss to obtain 𝑧1ss
(3) For 𝑖 = 2 to 𝑞

(a) Slice P𝑟𝑖 at selected [𝑧1ss ⋅ ⋅ ⋅ 𝑧(𝑖−1)ss]
𝑇 and

known values of 𝑥𝑘 and 𝑑𝑘 to create
the one-dimensional set Z𝑖ss

(b) Check if 𝑟𝑖ss is inside Z𝑖ss to obtain 𝑧𝑖ss

Algorithm 2: Sets of dynamically admissible commands.

admissible target 𝑧ss, which guarantees the existence of a
feasible control action to steer states and controls to the target
values 𝑥ss ∈ 𝜆X and 𝑢ss ∈ 𝜆U. The starting point is the
proposed control law predicted for𝑁 steps [15]:

𝑢𝑗 = −𝐾(𝑥𝑗 − 𝑥ss) + 𝑢ss + 𝑐𝑗 𝑗 = 𝑘, . . . , 𝑘 + 𝑁 − 1,

𝑢𝑗 = −𝐾 (𝑥𝑗 − 𝑥ss) + 𝑢ss 𝑗 ≥ 𝑘 + 𝑁.

(10)

Themodel predictive controller calculates the contribution 𝑐𝑗
over𝑁 steps. A reparameterization that relates the target state
vector with the target control vector and disturbance is also
proposed:

𝑥ss = (𝐼 − Φ)
−1
Γ𝑢ss + (𝐼 − Φ)

−1
Γ𝑑𝑑𝑘.

(11)

Therefore, assuming that 𝑟ss is piece-wise constant, it will
be convenient to extend the state-space vector as 𝑥𝑎 =

[𝑥
𝑇

𝑗
𝑑
𝑇

𝑗
𝑢
𝑇

ss 𝑟
𝑇

ss]
𝑇

, leading to the following extended linear
model:

[

[

[

[

𝑥𝑗+1

𝑑𝑗+1

𝑢ss
𝑟ss

]

]

]

]

=

[

[

[

[

Φ − Γ𝐾 Θ𝑑Γ𝑑 ΓΘ 0

0 𝐼 0 0

0 0 𝐼 0

0 0 0 𝐼

]

]

]

]

[

[

[

[

𝑥𝑗

𝑑𝑗

𝑢ss
𝑟ss

]

]

]

]

+

[

[

[

[

Γ

0

0

0

]

]

]

]

𝑐𝑗, (12)

where Θ = 𝐾(𝐼 − Φ)
−1
Γ + 𝐼 and Θ𝑑 = Γ𝐾(𝐼 − Φ)

−1
+ 𝐼. In

a similar way of that established in the previous section, the
relation between the statically admissible demand 𝑟ss, steady-
state control 𝑢ss, and the disturbance 𝑑𝑘 = 𝑑ss is found
through the formulation of the following constraint:

𝐻𝐸 (𝐼 − Φ)
−1
Γ𝑑𝑑𝑘 + 𝐻𝐸 (𝐼 − Φ)

−1
Γ𝑢ss − 𝑟ss ≤ 𝜖𝑟𝐼

−𝐻𝐸 (𝐼 − Φ)
−1
Γ𝑑𝑑𝑘 − 𝐻𝐸 (𝐼 − Φ)

−1
Γ𝑢ss + 𝑟ss ≤ −𝜖𝑟𝐼

(13)

in addition to state limitations 𝑥𝑗 ∈ X. Because the reference
value 𝑟ss is statically admissible, 𝑢ss fully respects the control
limitations and does not need to be accounted for again.
For stability purposes, it is assumed that, after 𝑁 steps,

the extended state vector 𝑥𝑎 at 𝑗 = 𝑘 + 𝑁 lies inside an
invariant set O∞. This extension of the state-space vector is
similar to those proposed by Chisci and Zappa [16] and to
recent techniques of economic MPC [17].

One possible way of interpreting the role of the MPC
control is that the inputs {𝑐𝑗}

𝑘+𝑁−1

𝑗=𝑘
are responsible for steering

the extended state in𝑁 that moves into the invariant setO∞.
The set of all states that can be steered to O∞ after 𝑁 steps
is the domain of attraction O(𝑁)

∞
of the complete closed-loop

constrained system. This set is computed by first performing
recursive substitutions of the extended dynamic system
into the constraints, creating the set O𝑐

∞
and subsequently

projecting it over 𝑥𝑎𝑘 to eliminate the MPC contributions in
the domain of attraction formulation.

Here the priority among the demands again eliminates
the need for online optimization. Performing a projection
of O𝑐
∞

on the subspace spanned by [𝑥𝑇
𝑗
𝑑
𝑇

𝑗
𝑟1ss
]

𝑇

removes
the dependency on 𝑢ss, creating the polyhedron P𝑟1 . The
slice of P𝑟1 with estimated values of 𝑥𝑘 and 𝑑𝑘 gives the
dynamically admissible range of 𝑟1ss . It is worth noting the
similarity with the procedure adopted to obtain the static
set in the previous subsection, but instead of considering
only the estimated disturbance vector, the current state vector
is also considered here to guarantee transient constraint
satisfaction.

Once themost important demand is filtered in a dynamic
sense and compared to the admissible range, a new command
𝑧1ss

is created. The sequence of dynamic filtering, which is
summarized in Algorithm 2, follows the same steps of the
static admissibility.

Remark 4. The reparameterization presented before is suit-
able for both square and nonsquare systems, where 𝑞 ≤ 𝑚

and (𝐼−Φ) admits an inverse. If one or both conditions do not
hold, the steady-state reparameterization suggested by Shead
and Rossiter [18] is applicable, and the extension of the state
space is performed considering the null space of [Φ − 𝐼 Γ],
instead of 𝑢ss.
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4.3. Control Calculation. The computation of 𝑧ss introduces
one additional degree of freedom in the constrained con-
troller. Because the dynamically filtered demand is calculated
fromO𝑐

∞
, the state and control vectors at steady state respect

the related constraints. The feedforward control input 𝑢ss is
calculated as

𝑢ss = (𝐻𝐸 (𝐼 − Φ)
−1
Γ)

−1

[𝑧ss − 𝐻𝐸 (𝐼 − Φ)
−1
Γ𝑑𝑑𝑘] .

(14)

Assumption 5. There are no elements of the state vector
integrating elements of the controlled vector. The following
condition is equivalent:

rank [Φ − 𝐼 Γ

𝐻𝐸 0
] = 𝑛 + 𝑞. (15)

Assumption 6. (1) Let Ψ = Ψ
𝑇
∈ R𝑚×𝑚 be a diagonal positive

definite matrix.
(2) Let 𝐾 ∈ R𝑚×𝑛 be a feedback gain such that Φ − Γ𝐾 is

Hurwitz.
The constrained control problem is to determine the

optimal control sequence 𝐶∗
𝑁
= {𝑐𝑗}

𝑘+𝑁−1

𝑗=𝑘
that minimizes, at

each time instant 𝑘, the following cost function:

𝐽𝑘 =

𝑘+𝑁−1

∑

𝑗=𝑘

𝑐
𝑇

𝑗
Ψ𝑐𝑗 (16)

subject to 𝑐𝑗 ∈ slice(O𝑐
∞
, [𝑥
𝑇

𝑘
̂
𝑑
𝑇

𝑘
𝑧
𝑇

ss]
𝑇
), 𝑗 ∈ (𝑘, 𝑘 + 𝑁 − 1).

Theorem 7. Assume that Assumptions 1 through 6 hold.
Assume that the piecewise constant command 𝑟𝑠𝑠 is statically
admissible. Thus, for any initial estimated state, disturbance
and command (𝑥𝑘, ̂𝑑𝑘, 𝑟𝑠𝑠) ∈ O(𝑁)

∞
, the dynamically admissible

command 𝑧𝑠𝑠 and control law 𝑢𝑘 = 𝜅(𝑥𝑘,
̂
𝑑𝑘, 𝑟𝑠𝑠) steer the

system to the statically admissible setpoint 𝑟𝑠𝑠, while respecting
the constraints.

Proof. First, the control law 𝑢𝑘 = −𝐾(𝑥𝑘 − 𝑥ss) + 𝑢ss + 𝑐𝑘 is a
feasible solution for the constrained control problem because
𝑥𝑎𝑘

∈ O(𝑁)
∞

. Let us define the optimal cost function at the
sample instant 𝑘 as 𝐽∗

𝑘
= ∑
𝑘+𝑁−1

𝑗=𝑘
𝑐
𝑇

𝑗
Ψ𝑐𝑗 with feasible control

sequence 𝐶∗
𝑁
= {𝑐𝑗}
𝑘+𝑁−1

𝑗=𝑘
. At the following sample time 𝑘 + 1,

define the control sequence 𝐶𝑁−1 = {𝑐𝑗}
𝑘+𝑁−1

𝑗=𝑘+1
and also 𝐽𝑘+1 =

∑
𝑘+𝑁

𝑗=𝑘+1
𝑐
𝑇

𝑗
Ψ𝑐𝑗. Thus, 𝐽∗

𝑘
− 𝐽𝑘+1 = 𝑐

𝑇

𝑘
Ψ𝑐𝑘. Considering that at

𝑘 + 1 the optimal cost is 𝐽∗
𝑘+1

, it follows that 𝐽𝑘+1 ≥ 𝐽
∗

𝑘+1
and

therefore 𝐽∗
𝑘+1

− 𝐽
∗

𝑘
≤ 𝑐
𝑇

𝑘
Ψ𝑐𝑘.

Hence, the optimal cost sequence {𝐽
∗

𝑘
}
∞

𝑘=0
can never

increase. Moreover, if 𝐽∗
𝑘
= 𝐽
∗

𝑘+1
, then 𝑐

𝑇

𝑘
Ψ𝑐𝑘 = 0, which

means that the extended state-space 𝑥𝑎𝑘 already lies already
in the invariant setO∞, from where the unconstrained linear
feedback law 𝑢𝑗+𝑁 = −𝐾(𝑥𝑗+𝑁−𝑥ss)+𝑢ss steers the controlled
vector to 𝑟ss when 𝑘 → ∞.

Remark 8. The fact that 𝑟ss is piecewise constant means that
the above stability result holds, only if changes on 𝑟ss occur

after the system reaches its equilibriumaround steady state. In
this case, stability can be assured, but not when the reference
is modified while the system dynamics is still prevailing.

The calculation of the MPC contributions can also follow
the concept of decision variable prioritization, ordering the
elements 𝑐1, 𝑐2, . . . , 𝑐𝑚. From the polyhedron O𝑐

∞
, one can

project it offline over variables [𝑥𝑇
𝑗
𝑑
𝑇

𝑗
𝑟
𝑇

ss 𝑐1]

𝑇

to create
the set P𝑐1 . The known values of 𝑥𝑘, 𝑑𝑘, and 𝑟ss = 𝑧ss are
then used to online slice this set and provide an admissible
range for 𝑐1. The procedure is repeated to generate the sets
P𝑐1 , . . . ,P𝑐𝑚 and is summarized in Algorithm 3. Note that the
MPC contribution will be zero unless it is required to steer
the states to the invariant set O∞. Additionally, note that
it is necessary to compute only the first 𝑚 elements of 𝐶∗

𝑁

because the remaining inputs are not applied in the plant at
time instant 𝑘. Thus, the online computational burden does
not depend on the control horizon size, which affects only
the offline projections ofO𝑐

∞
on Algorithms 2 and 3.

4.4. Optimality of the Prioritized Constrained Solution. Dur-
ing normal operation, inside the system limitations, the con-
trol consists of a regulation around state and control steady-
state values.This regulation is governed by the feedback linear
gain 𝐾. Thus, optimality is easily achieved if 𝐾 is obtained
through optimal control methods (e.g., LQR).

Given a statically admissible reference to track, the
controller offers the computation of both 𝑧ss and 𝑐𝑘 to
respect system constraints. First, if some constraint becomes
active, the dynamical filter is the first subsystem to act
(Algorithm 2), computing 𝑧ss in such a way that the MPC
is capable of steering the states inside the extended invariant
set after 𝑁 moves. The ordered choice of the elements of 𝑧ss
does not affect the size of the domain of attraction of the
controller because there are MPC nonlinear contributions 𝑐𝑘
to maintain the system stable while tracking. This is assured
by the projection operation on O𝑐

∞
.

The ordering of controlled variables seems suitable
for multivariable systems where there are interdependence
among demands. This type of relationship can occur when
operating at the limits of the system performance, what it is
exactly MPC does, or following a desired optimal trajectory
computed by somekind of higher level optimization layer. For
example, the optimal climb schedule for an aircraft generally
relates flight path angle (the angle that the airspeed vector
makes with the ground) with the airspeed. Thus, rate or
angle of climb is first selected, followed by the selection
of airspeed. Depending on the aircraft performance, the
airspeed is unique for a given altitude change demand. The
example of Section 5 will explore this aspect, presenting the
prioritization of demands as a mean to achieve better aircraft
climb performance.

After the first filter, the contribution 𝑐𝑘 is calculated
(Algorithm 3) considering the previous filtered values of
𝑥ss and 𝑢ss. The existence of nonempty sets P𝑐𝑖 , 𝑖 = 1

to 𝑚, is guaranteed by the computation of 𝑧ss. Again, the
prioritization is only a method to select the contributions
inside each set P𝑐𝑖 . Therefore, the way that each constrained
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Off-line computation
(1) Sort the control contribution vector 𝑐

𝑘

(2) For 𝑖 = 1 to𝑚
(a) ProjectO𝑐

∞
over [𝑥𝑇

𝑗
𝑑
𝑇

𝑗
𝑟
𝑇

ss 𝑐1 ⋅ ⋅ ⋅ 𝑐𝑚]

𝑇

to create P𝑐𝑖
On-line computation
(1) Calculate 𝑥ss and 𝑢ss from the dynamically

admissible vector 𝑧ss
(2) Slice P𝑐1 at estimated values of 𝑥𝑘, 𝑑𝑘 and 𝑟ss = 𝑧ss
(3) Check if 𝑐1 = 0 lies inside the admissible values
(4) For 𝑖 = 2 to𝑚

(a) Slice P𝑐𝑖 at computed [𝑐1 ⋅ ⋅ ⋅ 𝑐
(𝑖−1)]
𝑇 and at

values of 𝑥𝑘, 𝑑𝑘 and 𝑟ss = 𝑧ss
(b) Check if 𝑐𝑖 = 0 lies inside the admissible values

(5) Compute 𝑢𝑘 = −𝐾 (𝑥𝑘 − 𝑥ss) + 𝑢ss + 𝑐𝑘

Algorithm 3: Control calculation.
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Figure 3: Closed-loop system for UAV trajectory control.

decision variable is computed (orthogonal or prioritized
projection) does not enlarge or reduce either the setsZ𝑖ss , 𝑖 = 1
to 𝑞, or P𝑐𝑖 .

Any choice of the MPC correction inside
slice(O𝑐

∞
, [𝑥
𝑇

𝑘
̂
𝑑
𝑇

𝑘
𝑧
𝑇

ss]
𝑇

) is such that keeps the system
inside the limitations. The minimization of the cost function
given by (16) provides an optimal choice among all possible
solutions. If the cost function prioritizes some variables
among others, through selection of individual diagonal
elements of Ψ, the presented technique solves the problem
of oblique projection of a point on a set, finding an optimal
solution for the problem stated in (16). Based on what
is depicted in Figure 1, it is possible that the prioritized
projection leads, in the control inputs with less priority,
to larger 𝑐𝑘 components than those computed through
orthogonal unweighted projection. Thus, the ordering of
control inputs makes more use of the last elements to
maintain the closed-loop system inside its limitations, since
the first components of 𝐶∗

𝑁
have preference to be set closer

or equal to zero.

5. Simulation Example

The test aircraft used for the simulations is a six-degree-of-
freedommodel of the unmanned aerial vehicle Acauã, which
also takes into account actuator and engine dynamics [19].

Acauã is a propeller-driven fixed-wing unmanned testbed
used at the Brazilian Aeronautics and Space Institute (IAE).
Linear models for control synthesis have been obtained with
airspeed of 27m/s and a pressure altitude of 620m, at zero
sideslip.

The simulation scenario consists of following a path
defined by geodetic waypoints and related courses, as shown
by Table 1. In this work, two-dimensional Dubins paths [20,
21] were used to connect each waypoint. Briefly, a 2D Dubins
path is a path that flies over a certain waypoint on its desired
coursemakes a right or left turn followed by a straight line and
finishes with a right or left turn, flying over the next waypoint
on a certain course. The selected turn radius for the circular
transitions was 190m, which corresponds to a nominal rate
of turn of 8.14 deg/s at an airspeed of 27m/s. The on-off turn
rate commands created by 2D Dubins paths can practically
be considered as piecewise constant references to be followed
by the MPC-based autopilot, which is favorable in terms of
closed-loop stability (Theorem 7).

Thus, the lateral guidance system [22] will be responsible
for creating autopilot demands to steer the vehicle straight
or through right or left turns with a constant radius. In
the vertical channel, piecewise constant flight path angle
demands were generated to explore the full flight envelope of
the aircraftmodel. Figure 3 shows schematically the complete
closed-loop system for the simulation.
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Table 1: List of waypoints.

Number Lat. (deg.) Long. (deg.) Course (deg.)
1 −21.9842 −47.3426 0
2 −21.9765 −47.3474 120
3 −21.9765 −47.3377 240

5.1. Longitudinal Constrained Autopilot. Consider the un-
manned aerial vehicle continuous-time linearized longitudi-
nal model described in [19]:

𝐴 long =
[

[

[

[

−0.1849 0.9732 −0.1182 −9.8067

−0.016 −2.498 0.9673 0

0.0227 −33.97 −5.924 −0

0 0 1 0

]

]

]

]

,

𝐵long =
[

[

[

[

3.582 −0.7128

−0.0008 −0.197

0.0012 −41.17

0 0

]

]

]

]

.

(17)

The state vector is composed of the true airspeed (m/s),
angle of attack (rad), pitch rate (rad/s), and the pitch angle
(rad), respectively. The control vector is composed of the
engine throttle and the elevator angular deflection. Full state
observation (𝐸 = 𝐼) is assumed, and it is intended to
control both airspeed and flight path anglewithout offset with
priority given to the second variable. Thus,

𝐻long = [
1 0 0 0

0 −1 0 1
] . (18)

The feedback gain 𝐾 was obtained by first defining an
LQR continuous-time cost function and subsequently per-
forming the discretization [23]. The elements of the 𝑄

matrix in the LQR cost function were chosen to penalize
deviations of airspeed and flight path angle; thus, 𝑄 =

𝐻
𝑇

long diag([1 3300])𝐻long. The 𝑅 matrix was set to 𝑅 =

diag([100 820]). The dynamical system and the weight
matrices were discretized with 𝑇𝑠 = 0.05 s, from which the
matrices Φ and Γ are obtained, along with the feedback gain
𝐾. The disturbance model was chosen to have two variables,
and the related distribution matrix was set to Γ𝑑 = Γ.
The observer gains were computed using the linear Kalman
method.

The inputs are constrained as follows: ‖𝛿𝑡𝑐‖∞ ≤ 0.5 and
‖𝛿𝑒𝑐

‖∞ ≤ 10 deg.The disturbances are assumed to respect the
bounds ‖𝑑1‖∞ ≤ 0.5, ‖𝑑2‖∞ ≤ 0.05. It is required to protect
the aircraft against aerodynamic stall while maneuvering,
imposing 𝛼 ∈ (−8.08, 3.36) deg, which corresponds to a total
admissible interval of (−3.06, 8.38) deg. The constraints at
steady state were scaled through 𝜆 = 0.99.

The sets P𝑤1 , P𝑤2 (Algorithm 1); P𝑟1 , P𝑟2 (Algorithm 2);
and P𝑐1 and P𝑐2 (Algorithm 3) were computed offline through
the appropriate numerical routine [24] in the MATLAB
environment, setting 𝜖𝑥 = 𝜖𝑧 = 𝜖𝑟 = 10

−4.2 and the control
horizon𝑁 = 2.

5.2. Lateral Constrained Autopilot. The same values of the
control horizon 𝑁, tolerances 𝜖𝑧, 𝜖𝑟, and the sampling time
from the longitudinal controller were used in the synthesis of
the constrained lateral autopilot.The state-space continuous-
time linear lateral model is given by

𝐴 lat =
[

[

[

[

−0.2123 0.0868 −0.9868 0.3618

−5.6541 −1.7311 0.4654 0

6.8358 −0.0697 −0.5304 0

0 1.0000 0.0875 0

]

]

]

]

,

𝐵lat =
[

[

[

[

0 0.0858

6.1382 1.1299

−0.2630 −5.0436

0 0

]

]

]

]

,

(19)

where the state vector is composed of the sideslip (rad),
roll rate (rad/s), yaw rate (rad/s), and the bank angle (rad).
Aileron and rudder angular deflections (rad) define the
control vector.The track priority is givenfirst tomaintain zero
sideslip and subsequently to follow the turn rate. Hence,

𝐻lat = [
0 0 1 0

1 0 0 0
] . (20)

After discretization of the state-space formulation, the dis-
crete lateral gain is given by

𝐾lat = [
0.9302 0.2528 −0.1069 0.5671

0.3871 0.0666 −1.8854 0.1874
] . (21)

Full state feedback (𝐸 = 𝐼) is considered. Constraints on
control angular displacements were defined as ‖𝛿𝑎‖∞ ≤

10 deg and ‖𝛿𝑟‖∞ ≤ 10 deg. In addition, the related sets of
Algorithms 2 and 3 were computed offline, with disturbance
vector elements constrained to ‖𝑑1‖∞ ≤ 0.05 and ‖𝑑2‖∞ ≤

0.05.
It is important to mention that Assumptions 1 through 6

are fully respected in the two-controller synthesis. Assump-
tions 1 and 2 are accomplished by the choice of the esti-
mator (Kalman) and full state observation. Bounds for the
disturbance vector are established (Assumption 3). Finally,
the choice of the controlled vector in both autopilots, that is,
no states as pure integrators of controlled variables and the
LQR feedback gains, guarantees Assumptions 5 and 6.

5.3. Simulation Analysis. Two cases were considered for the
simulation. First, nominal engine power and longitudinal sta-
bility were considered in the computation of the controllers.
The second case, however, simulates an underpowered Acauã
(60% of maximum nominal power) with 50% of the original
static stability, with the nominal controllers. Figure 4 shows
the horizontal path followed by the aircraft in both cases.
During the flyover of waypoints 2 and 3, an abrupt modi-
fication in the turn direction was required, but the vehicle
strictly followed the computed Dubins path due to the high-
gain lateral controller.Themaximum lateral deviation during
the two cases was 8.1 meters but with immediate guidance
and control regulation to zero.The feasible commands 𝑧ss and
aircraft responses in the first case are shown in Figure 5. On
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Figure 5: Controlled outputs and state variables in the nominal simulation.

two occasions, aggressive roll reversals were demanded by the
Dubins path and guidance from the lateral autopilot, but fast
and stable tracking of the turn rate was achieved with small
variations of the sideslip angle.

In addition to the lateral tracking task, an aggressive vari-
ation of the flight path angle was simulated by an arbitrarily
large command. Regardless of the airspeed command, the
highest attainable climb angle (higher priority) was selected.

The angle of attack has changed between maximum and
minimum values but never exceeded the limitations. The full
exploration of the flight envelope for climbing and descent
is shown in Figure 6. Engine throttle is demanded at its
maximum and minimum values, and the elevator deflection
reached its minimum deflection twice. An adequate lateral
path-following performance was achieved through a high-
gain lateral feedback control, which manipulated aileron and
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Figure 6: Inputs in the nominal simulation.

rudder deflection to their limits as shown also in Figure 6.
Thus, unconstrained control strategies would most likely fail
to track the considered turn rates.

The ability to cope with plant-model mismatches is
demonstrated in the case of an underpowered vehicle
with reduced static stability. Figure 7 shows related feasible
demands and aircraft responses given the same path to be
followed and flight path angle command. With only 60%
of the nominal maximum power, the aircraft is not able to
achieve the previous nominal climb angles, but due to the
slice of P𝑤1 and P𝑤2 at the estimated disturbance values, real
attainable commands are online computed. It is worth noting
the demanded reduction of airspeed, which is crucial in the
task of tracking the maximum climb angle. The longitudinal
controller maintained performance and stability despite the
fact that the real aircraft was less stable. Figure 8 shows that
the elevator deflection required to maneuver was noticeably
less than in the first case. Additionally, the reduced available
power is shown in the evolution of the engine throttle. Again,
the key aspect of offset-free tracking is the disturbance vector
of the longitudinal autopilot, as shown in Figure 9. While the
disturbance was practically zero, that is, a small plant-model
mismatch, in the first simulation, the mismatch is present but
properly taken into account in this case.

5.4. Aspects of Computational Burden and Optimality. The
elimination of online iterative numerical routines provided
by OFF-MPC reflects the drastic runtime reduction. Using
the MATLAB command tic toc, the complete constrained
control computation (online sections of Algorithms 1, 2, and
3) required, on average, 347 𝜇s in both vertical and lateral
autopilots. The simulations were performed on a PC with a
3.20GHz Intel Core i5 CPU and 4GB of RAM. A previous
work [11] presented larger runtimes, in the range of millisec-
onds. Recently, Hartley et al. [2] presented numerical simula-
tions of MPC with execution times in the range of microsec-
onds, but using iterative solvers that demand specific initial-
ization tuning. Although the offline set projections are based
on iterative numerical routines, the online segment is only
a direct sequence of algebraic operations, completely elimi-
nating the dependency on iteration stop criteria. It is worth
mentioning that this numerical performance was achieved
using only MATLAB-coded routines, without previous com-
pilation that would speed up the constrained computation.

Another comparison is done with the purpose to demon-
strate the optimality achieved when the problem stated by (8)
is solved with offline projections and online slices. Figure 10
shows engine throttle (left) and elevator deflection (right)
MPC corrections during a capture of 10 deg of flight path
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Figure 7: Controlled outputs and state variables in the simulation with reduced power and stability.

angle, using the proposed offline method and an active-set
quadratic programming solver [25] to obtain the optimal
solution of (16). Note the large nonlinear correction required
to maintain the elevator deflection inside the limits.

Although the weighting matrix Ψ was set equal to iden-
tity, both numerical methods computed identical solutions.
This means that the proposed technique of computing the
projection of a point on a polytope is capable of providing the
same results as those calculated via quadratic programming
solvers. Also, by design, elevator is the aerodynamic control
surface to provide fast vertical change in flight path. This
type of analytical priority is captured by both methods, with
advantage to theOFF-MPC,which offers the optimal solution
using less computational time. In this simulation of 6 seconds,
the active-set QP required, on average, 3.5ms, against 283 𝜇s
demanded by OFF-MPC.

6. Conclusion

The protection of the closed-loop system against excursions
outside relevant limitations is an important task that must
be performed by modern control systems. Moreover, per-
formance limitations must also be taken into account to
avoid commands with unattainable outputs. In this paper, a
technique was presented to perform tracking on constrained
systems. A new offline model predictive control technique
was proposed based on the prioritization of quadratic pro-
gramming decision variables. In this way, a sequence of

constraint set projections over incremental subspaces of
the decision variables creates polyhedral sets that, after
substitution of the previously computed decision variables,
degenerates to a one-dimensional set, where the choice of
the optimal decision variable turns into a simplemembership
verification.

The concept of decision variable prioritization was
applied to convert the feasible target tracking model pre-
dictive control technique into an offline constrained control
method. First, whether the reference vector to be tracked is
statically admissible is determined. If the demand is beyond
the performance limitations of the plant, an attainable solu-
tion is calculated starting with the highest priority reference,
and the remaining are determined through substitutions in
the incremental projections of the static constraint set.

In the sequence, the statically admissible demand is
filtered, taking into consideration the feasibility of the MPC
problem. Extending the state space with the reference to
be followed and the disturbance model, offline sequential
projections of the domain of attraction of the controller and
online substitutions generate one-dimensional feasible sets
from which dynamically feasible target outputs are easily
computed. Finally, the nonlinear MPC contributions are
calculated following the same method.

The complete offline MPC method was demonstrated
to perform tracking of trajectory variables of an unmanned
aerial vehicle model, with constraints on throttle, aerody-
namic surfaces, and angle of attack. The flight envelope was
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Figure 8: Inputs in the simulation with reduced power and stability.
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Figure 9: Estimated disturbances of the longitudinal controller in the simulation with reduced power and stability.
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Figure 10: Nonlinear MPC corrections during capture of flight path angle.

estimated and protected even when plant-model mismatches
were considered, yielding offset-free tracking and a complete
satisfaction of constraints.
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