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We show that the main result in the work by Mutlu et al. is not true. We explain point by point some of its main mistakes and we
propose an alternative version to smooth away the defects of it.

1. Introduction

FollowingMatthews [1], a partial metric on a nonempty set𝑋
is amapping𝑝 : 𝑋×𝑋 → [0,∞) verifying, for all𝑥, 𝑦, 𝑧 ∈ 𝑋,

(P1) 𝑝 (𝑥, 𝑥) ≤ 𝑝 (𝑥, 𝑦) ;

(P2) 𝑝 (𝑥, 𝑥) = 𝑝 (𝑥, 𝑦) = 𝑝 (𝑦, 𝑦) ⇒ 𝑥 = 𝑦;

(P3) 𝑝 (𝑥, 𝑦) = 𝑝 (𝑦, 𝑥) ;

(P4) 𝑝 (𝑥, 𝑧) + 𝑝 (𝑦, 𝑦) ≤ 𝑝 (𝑥, 𝑦) + 𝑝 (𝑦, 𝑧) .

(1)

In this case, (𝑋, 𝑝) is called a partial metric space. Although
the authors of [2] used the notation 𝑑 for a partial metric
space, we prefer using 𝑝 in order to avoid confusion with the
metric case. Every metric space is a partial metric space, but
the converse is false. For a partial metric 𝑝 on𝑋, themapping
𝑑
𝑠

: 𝑋 × 𝑋 → [0,∞), given by

𝑑
𝑠

(𝑥, 𝑦) = 2𝑝 (𝑥, 𝑦) − 𝑝 (𝑥, 𝑥) − 𝑝 (𝑦, 𝑦) ∀𝑥, 𝑦 ∈ 𝑋, (2)

is a metric on𝑋.
In [2], the authors introduced the following definition and

announced the following theorem.

Definition 1 (Mutlu et al. [2], Definition 9). Assume that (𝑋,
≼) is a partially ordered set and 𝐹, 𝐺 : 𝑋 × 𝑋 → 𝑋. 𝐹 and 𝐺
mappings have the following properties:

if 𝑛 is even, then 𝐹 (𝑥
𝑛
, 𝑦
𝑛
) ≽ 𝐺 (𝑥

𝑛−1
, 𝑦
𝑛−1
) and

𝐹 (𝑦
𝑛
, 𝑥
𝑛
) ≼ 𝐺 (𝑦

𝑛−1
, 𝑥
𝑛−1
) ;

if 𝑛 is odd, then 𝐺 (𝑥
𝑛
, 𝑦
𝑛
) ≽ 𝐹 (𝑥

𝑛−1
, 𝑦
𝑛−1
) and

𝐺 (𝑦
𝑛
, 𝑥
𝑛
) ≼ 𝐹 (𝑦

𝑛−1
, 𝑥
𝑛−1
) .

(3)

Theorem 2 (Mutlu et al. [2], Theorem 10). Suppose that (𝑋,
≼) is a partially ordered set and 𝑝 is a partial metric on 𝑋
with (𝑋, 𝑝) being a complete partial metric space. Assume that
𝐹, 𝐺 : 𝑋 × 𝑋 → 𝑋 are satisfied by Definition 1 and also are
continuous mappings possessing the mixed monotone property
on𝑋. Let there be a nonincreasing function 𝜑 : R+ → R such
that 𝜑(𝑡) < 𝑡 and lim

𝑟→ 𝑡
+𝜑(𝑟) < 𝑡 for all 𝑡 > 0 and also having

𝑥 ≼ 𝑢 and 𝑦 ≽ V, with

𝑝 (𝐹 (𝑥, 𝑦) , 𝐺 (𝑢, V))

≤ 𝜑(
𝑝 (𝑥, 𝑢) + 𝑝 (𝑦, V) + 𝑝 (𝑥, V) + 𝑝 (𝑦, 𝑢)

2
)

(4)
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for 𝑥, 𝑦, 𝑢, V ∈ 𝑋. If there exists (𝑥
0
, 𝑦
0
) ∈ 𝑋 × 𝑋 with 𝑥

0
≼

𝐹(𝑥
0
, 𝑦
0
) and 𝑦

0
≽ 𝐹(𝑦

0
, 𝑥
0
) at the time, ∃𝑥, 𝑦 ∈ 𝑋 with 𝑥 =

𝐹(𝑥, 𝑦) = 𝐺(𝑥, 𝑦) and 𝑦 = 𝐹(𝑦, 𝑥) = 𝐺(𝑦, 𝑥).

In this paper, we show that Definition 1 is not clear.
Therefore, Theorem 2 is not well posed. Furthermore, its
proof has many mistakes. We illustrate that it fails with an
example. Finally, we propose a correct version of Theorem 2.

2. Preliminaries

To better understand our main claims, let us introduce the
following definitions and notation. In the sequel, 𝑋 will be a
nonempty set and𝑋2 will represent the product space𝑋×𝑋

of 2 identical copies of𝑋.

Definition 3. A binary relationR on 𝑋 is a nonempty subset
R ⊆ 𝑋 × 𝑋. One will write 𝑥R𝑦 (or 𝑥 ≼ 𝑦) if (𝑥, 𝑦) ∈ R. A
binary relationR on 𝑋 is reflexive if 𝑥R𝑥 for all 𝑥 ∈ 𝑋, and
it is transitive if 𝑥R𝑧 for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 such that 𝑥R𝑦 and
𝑦R𝑧. A reflexive and transitive relation on 𝑋 is a preorder
(or a quasiorder) on𝑋. If a preorderR is also antisymmetric
(𝑥R𝑦 and𝑦R𝑥 imply𝑥 = 𝑦), thenR is called a partial order.

In [3], Guo and Lakshmikantham introduced the notion
of coupled fixed point and, thus, they initiated the investiga-
tion of multidimensional fixed point theory.

Definition 4 (Guo and Lakshmikantham [3]). Let 𝐹 : 𝑋 ×

𝑋 → 𝑋 be a given mapping. We say that (𝑥, 𝑦) ∈ 𝑋 × 𝑋 is a
coupled fixed point of 𝐹 if

𝐹 (𝑥, 𝑦) = 𝑥, 𝐹 (𝑦, 𝑥) = 𝑦. (5)

Definition 5. Given twomappings 𝐹, 𝐺 : 𝑋×𝑋 → 𝑋, we say
that (𝑥, 𝑦) ∈ 𝑋 × 𝑋 is a common coupled fixed point of 𝐹 and
𝐺 if

𝐹 (𝑥, 𝑦) = 𝐺 (𝑥, 𝑦) = 𝑥, 𝐹 (𝑦, 𝑥) = 𝐺 (𝑦, 𝑥) = 𝑦. (6)

Henceforth, we will use the notation

Φ = {𝜑 : [0,∞) → [0,∞) : 𝜑 (𝑡) < 𝑡,

lim
𝑟→ 𝑡
+

𝜑 (𝑟) < 𝑡 ∀𝑡 > 0} .

(7)

Functions in Φ are called comparison functions.

3. Main Remarks about Theorem 2

In the following lines, we must do the following commen-
taries in order to advise researchers about proving new results
based onTheorem 2.

(1) First of all, we point out that Definition 1 is not
clear because it does not explain how the sequences
{𝑥
𝑛
} and {𝑦

𝑛
} are. If they are arbitrary, then, for all

𝑥, 𝑦, 𝑧, 𝑢 ∈ 𝑋,

𝐹 (𝑥, 𝑦) ≽ 𝐺 (𝑧, 𝑢) , 𝐹 (𝑦, 𝑥) ≼ 𝐺 (𝑢, 𝑧) ;

𝐺 (𝑥, 𝑦) ≽ 𝐹 (𝑧, 𝑢) , 𝐺 (𝑦, 𝑥) ≼ 𝐹 (𝑢, 𝑧) .

(8)

Therefore, 𝐹(𝑥, 𝑦) ≽ 𝐺(𝑧, 𝑢) ≽ 𝐹(𝑥, 𝑦), so 𝐹(𝑥, 𝑦) =
𝐺(𝑧, 𝑢) for all 𝑥, 𝑦, 𝑧, 𝑢 ∈ 𝑋. Hence, both mappings
are constant, and the result is not interesting at all.

(2) As a consequence,Theorem 2 was incorrectly proved.
Precisely, its proof collects very different mistakes.

(3) Although Theorem 2 assumes that 𝐹 and 𝐺 have the
mixed monotone property, this condition was not
used through its proof. We suppose that it is not
necessary. Only Definition 1 is employed to prove that
the iterative sequences {𝑥

𝑛
} and {𝑦

𝑛
} are monotone.

(4) The authors did not clarify if R+ is either [0,∞) or
(0,∞). In any case, the test function 𝜑 : R+ →

R can take arbitrary real values. It is clear that
the contractivity condition (4) implies that 𝜑 takes
nonnegative values in different points, but it does not
cover all possibilities. In particular, the function 𝜑 is
not declared at 𝑡 = 0. Then, 𝜑(0) can take any real
value (its image is not restricted to [0,∞)).

(5) The previous remark is important because if we take
𝑥 = 𝑦 = 𝑢 = V in (4), we deduce that

𝑝 (𝐹 (𝑥, 𝑥) , 𝐺 (𝑥, 𝑥)) ≤ 𝜑 (2𝑝 (𝑥, 𝑥)) , (9)

which, in the metric case, let bound the distance
𝑑(𝐹(𝑥, 𝑥), 𝐺(𝑥, 𝑥)) by 𝜑(0). If 𝜑(0) = 0, then 𝐹(𝑥, 𝑥) =
𝐺(𝑥, 𝑥) for all 𝑥 ∈ 𝑋, which is a very strong restriction
on the mappings 𝐹 and 𝐺.

(6) In [2], page 3, equation (15), the authors announced

𝑝 (𝑥
2𝑛+1

, 𝑥
2𝑛+2

)

= 𝑝 (𝐹 (𝑥
2𝑛,
𝑦
2𝑛
) , 𝐺 (𝑥

2𝑛+1
, 𝑦
2𝑛+1

))

≤ 𝜑 ((𝑝 (𝑥
2𝑛
, 𝑥
2𝑛+1

) + 𝑝 (𝑦
2𝑛
, 𝑦
2𝑛+1

)

+ 𝑝 (𝑥
2𝑛
, 𝑦
2𝑛+1

) + 𝑝 (𝑦
2𝑛
, 𝑥
2𝑛+1

))

× (2)
−1

)

≤ 𝜑(
𝑝 (𝑥
2𝑛
, 𝑥
2𝑛+1

) + 𝑝 (𝑦
2𝑛
, 𝑦
2𝑛+1

)

2
) .

(10)

However, it is not clear why 𝑝(𝑥
2𝑛
, 𝑦
2𝑛+1

) =

𝑝(𝑦
2𝑛
, 𝑥
2𝑛+1

) = 0. Even if we would be able to prove
that 𝑥

2𝑛
= 𝑦
2𝑛+1

and 𝑦
2𝑛

= 𝑥
2𝑛+1

(which was not
proved), the condition 𝑝(𝑥, 𝑥) = 0 is not guaranteed
in a partial metric space. Precisely, this is the charac-
teristic property of partial metric spaces. Therefore,
the second inequality in (10) is false.

(7) With respect to the previous remark, it is also neces-
sary to point out that the contractivity condition (4)
does not permit us to upper bound, for instance, the
term 𝑝(𝑦

2𝑛+1
, 𝑦
2𝑛+2

). However, the authors affirmed
in [2], page 3, equation (16), that “Similarly, we can
obtain

𝑝 (𝑦
2𝑛+1

, 𝑦
2𝑛+2

) ≤ 𝜑(
𝑝 (𝑥
2𝑛
, 𝑥
2𝑛+1

) + 𝑝 (𝑦
2𝑛
, 𝑦
2𝑛+1

)

2
) .”

(11)
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Let us see where the mistake is. Theorem 2 only as-
sumes that the inequality

𝑝 (𝐹 (𝑥, 𝑦) , 𝐺 (𝑢, V))

≤ 𝜑(
𝑝 (𝑥, 𝑢) + 𝑝 (𝑦, V) + 𝑝 (𝑥, V) + 𝑝 (𝑦, 𝑢)

2
)

(12)

occurs provided that 𝑥 ≼ 𝑢 and 𝑦 ≽ V; that is, the
first argument of 𝐹 must be ≼-lower than the first
argument of 𝐺. As the authors defined

𝑦
2𝑛+1

= 𝐹 (𝑦
2𝑛
, 𝑥
2𝑛
) , 𝑦

2𝑛+2
= 𝐺 (𝑦

2𝑛+1
, 𝑥
2𝑛+1

) , (13)

then

𝑝 (𝑦
2𝑛+1

, 𝑦
2𝑛+2

) = 𝑝 (𝐹 (𝑦
2𝑛
, 𝑥
2𝑛
) , 𝐺 (𝑦

2𝑛+1
, 𝑥
2𝑛+1

)) . (14)

In this case, it was not proved that 𝑦
2𝑛

≼ 𝑦
2𝑛+1

and 𝑥
2𝑛

≽ 𝑥
2𝑛+1

. In fact, the contrary inequalities
were announced; that is, 𝑦

2𝑛
≽ 𝑦
2𝑛+1

and 𝑥
2𝑛

≼

𝑥
2𝑛+1

. If both inequalities hold, then (𝑥
2𝑛
, 𝑦
2𝑛
) =

(𝑥
2𝑛+1

, 𝑦
2𝑛+1

), whichmeans that (𝑥
2𝑛
, 𝑦
2𝑛
) is a coupled

fixed point of 𝐹. However, the proof must analyse the
case in which (𝑥

2𝑛
, 𝑦
2𝑛
) ̸= (𝑥

2𝑛+1
, 𝑦
2𝑛+1

) for all 𝑛 ∈ N.
(8) Similarly, the contractivity condition (4) cannot be

applied to study the term 𝑝(𝑥
2𝑛
, 𝑥
2𝑛+1

), because

𝑝 (𝑥
2𝑛
, 𝑥
2𝑛+1

) = 𝑝 (𝐺 (𝑥
2𝑛−1

, 𝑦
2𝑛−1

) , 𝐹 (𝑥
2𝑛
, 𝑦
2𝑛
))

= 𝑝 (𝐹 (𝑥
2𝑛
, 𝑦
2𝑛
) , 𝐺 (𝑥

2𝑛−1
, 𝑦
2𝑛−1

)) ,

(15)

but, in this case, the inequalities 𝑥
2𝑛

≼ 𝑥
2𝑛−1

and
𝑦
2𝑛
≽ 𝑦
2𝑛−1

cannot be proved in the case (𝑥
2𝑛
, 𝑦
2𝑛
) ̸=

(𝑥
2𝑛−1

, 𝑦
2𝑛−1

) since the contrary inequalities are sup-
posed.

(9) When the authors tried to prove that the sequences
{𝑥
𝑛
} and {𝑦

𝑛
} are Cauchy, as usual, they reasoned

by contradiction. They announced that if {𝑥
𝑛
} is not

Cauchy, then there exist 𝜀 > 0 and two partial
subsequences {𝑥

2𝑛(𝑖)
} and {𝑥

2𝑚(𝑖)
} such that

2𝑛 (𝑖) > 2𝑚 (𝑖) > 𝑖, 𝑑 (𝑥
2𝑚(𝑖)

, 𝑥
2𝑛(𝑖)

) ≥ 𝜀, (16)

and if 2𝑛(𝑖) is the smallest index verifying this prop-
erty, then

𝑑 (𝑥
2𝑚(𝑖)

, 𝑥
2𝑛(𝑖)−1

) + 𝑑 (𝑦
2𝑚(𝑖)

, 𝑦
2𝑛(𝑖)−1

) < 𝜀 (17)

(see [2], page 3, equations (26) and (27)).However, the
authors did not justify neither why we can suppose
that the subindices are even nor why (17), involving
the partial subsequences {𝑦

𝑚(𝑖)
} and {𝑦

𝑛(𝑖)
}, can be

deduced from (16), in which only {𝑥
𝑚(𝑖)

} and {𝑥
𝑛(𝑖)
}

have a role. In [4], the authors justified the unidimen-
sional case but did not study the coupled case.

(10) Other important mistakes can be found in [2], page 4,
equation (39), where the author announced that

𝑑
𝑠

(𝑥
𝑛
, 𝑥
𝑚
) ≤ 2𝑝 (𝑥

𝑛
, 𝑥
𝑚
) = 0,

𝑑
𝑠

(𝑦
𝑛
, 𝑦
𝑚
) ≤ 2𝑝 (𝑦

𝑛
, 𝑦
𝑚
) = 0.

(18)

Taking into account that 𝑑𝑠 is a metric on 𝑋, if this
property was true, then the sequences {𝑥

𝑛
} and {𝑦

𝑛
}

would be constant for all 𝑛 ≥ 𝑛
0
which, in general, is

false. In fact, it is well known that if there is some 𝑛
0
∈

N such that (𝑥
𝑛
0
+1
, 𝑦
𝑛
0
+1
) = (𝑥

𝑛
0

, 𝑦
𝑛
0

), then (𝑥
𝑛
0

, 𝑦
𝑛
0

)

is the common coupled fixed point.
(11) Finally, we point out that Theorem 7 in [2] is incor-

rectly enunciated.

4. An Example

It is not clear how we can show a counterexample of
Theorem 2 because Definition 1 is not well posed. Item 1
of Section 3 shows that, in general, it is a very restrictive
hypothesis (𝐹 and 𝐺must be constant and equal). Therefore,
we are going to show an example in which other hypotheses
hold, where 𝐹 and 𝐺 are not constant, but 𝐹 and 𝐺 have no
common coupled fixed point.

Let 𝑋 = [0.9, 2] provided with its usual partial order ≤
and let 𝑝(𝑥, 𝑦) = max(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋. Then, (𝑋, 𝑝) is a
complete partial metric space. Let us define 𝐹, 𝐺 : 𝑋

2

→ 𝑋

and 𝜑 : [0,∞) → [0,∞) by

𝐹 (𝑥, 𝑦) = 1 + 0.001𝑥, 𝐺 (𝑥, 𝑦) = 1 + 0.002𝑥 ∀𝑥, 𝑦 ∈ 𝑋,

𝜑 (𝑡) = 0.99𝑡 ∀𝑡 ≥ 0.

(19)

Then, 𝐹 and 𝐺 have the mixed monotone property, both
mappings are continuous, and 𝜑 ∈ Φ. Letting 𝑥

0
= 0.9 and

𝑦
0
= 2, we have the fact that 𝑥

0
= 0.9 ≤ 1.0009 = 𝐹(𝑥

0
, 𝑦
0
)

and 𝑦
0
= 2 ≥ 1.004 = 𝐹(𝑦

0
, 𝑥
0
). However, the condition

𝐹(𝑥, 𝑦) = 𝐺(𝑥, 𝑦) is impossible when (𝑥, 𝑦) ∈ 𝑋2, so 𝐹 and 𝐺
cannot have a common coupled fixed point. It only remains
to prove that the contractivity condition (4) holds.

Let 𝑥, 𝑦, 𝑢, V ∈ 𝑋 be such that 𝑥 ≤ 𝑢 and 𝑦 ≥ V. As 𝑥 ≤ 𝑢,
then 0.001𝑥 ≤ 0.002𝑢, so

𝑝 (𝐹 (𝑥, 𝑦) , 𝐺 (𝑢, V))

= max (1 + 0.001𝑥, 1 + 0.002𝑢) = 1 + 0.002𝑢.
(20)

On the other hand,

𝜑(
𝑝 (𝑥, 𝑢) + 𝑝 (𝑦, V) + 𝑝 (𝑥, V) + 𝑝 (𝑦, 𝑢)

2
)

=
0.99

2
(max (𝑥, 𝑢) +max (𝑦, V)

+max (𝑥, V) +max (𝑦, 𝑢))

= 0.495 (𝑢 + 𝑦 +max (𝑥, V) +max (𝑦, 𝑢)) .

(21)
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Therefore,

𝑝 (𝐹 (𝑥, 𝑦) , 𝐺 (𝑢, V))

≤ 𝜑(
𝑝 (𝑥, 𝑢) + 𝑝 (𝑦, V) + 𝑝 (𝑥, V) + 𝑝 (𝑦, 𝑢)

2
)

⇐⇒ 1 + 0.002𝑢 ≤ 0.495 (𝑢 + 𝑦 +max (𝑥, V) +max (𝑦, 𝑢))

⇐⇒ 1 ≤ 0.493𝑢 + 0.495 (𝑦 +max (𝑥, V) +max (𝑦, 𝑢)) .
(22)

Taking into account that

0.495 (𝑦 +max (𝑥, V) +max (𝑦, 𝑢))

≥ 0.495 (0.9 + 0.9 + 0.9) = 1.3365,

(23)

we conclude that inequality (22) holds.

5. A Correct Version

Taking into account the commentaries given in Section 3,
we propose a correct version of Theorem 2. Item 6 shows
that the terms 𝑝(𝑥, V) + 𝑝(𝑦, 𝑢) must not be employed in
the contractivity condition, and items 7-8 suggest that it is
very difficult to use two different mappings 𝐹 and 𝐺 in the
contractivity condition as we cannot compare, at the same
time, the terms 𝑝(𝐹(𝑥, 𝑦), 𝐺(𝑢, V)), 𝑝(𝐹(𝑥, 𝑦), 𝐹(𝑢, V)), and
𝑝(𝐺(𝑥, 𝑦), 𝐺(𝑢, V)). If 𝐹 and 𝐺 are not involved in the second
member of the contractivity condition, it is almost impossible
to control the term 𝑝(𝑥

𝑛
, 𝑥
𝑚
) + 𝑝(𝑦

𝑛
, 𝑦
𝑚
) when 𝑛 and 𝑚 can

be even and odd.
In recent times,many coupled/tripled/quadrupled/multi-

dimensional fixed point theorems in various abstract metric
spaces have come to be simple consequences of their cor-
responding unidimensional results (see, e.g., [5–10] and the
references therein). Following this line of research, we present
here a correct version ofTheorem 2 for three reasons mainly:
(1) for the sake of completeness; (2) to describe how coupled
results in partial metric spaces can be deduced from the
unidimensional case; (3) to show some possible hypotheses
to ensure the existence of common coupled fixed points when
we work with two different mappings. Before doing it, we
need to introduce the following preliminaries.

Definition 6. Let ≼ be a binary relation on𝑋.

(i) Two points 𝑥, 𝑦 ∈ 𝑋 are called ≼-comparable if 𝑥 ≼ 𝑦
or 𝑦 ≼ 𝑥.

(ii) A subset 𝐴 ⊆ 𝑋 is said to be ≼-well ordered if every
two points of 𝐴 are ≼-comparable.

(iii) A mapping 𝑇 : 𝑋 → 𝑋 is called ≼-nondecreasing if
𝑥 ≼ 𝑦 implies 𝑇𝑥 ≼ 𝑇𝑦.

Definition 7. One will say that (𝑋, 𝑝, ≼) is a partially ordered
partial metric space (sometimes, it is also known as ordered
partial metric space) if 𝑝 is a partial metric on 𝑋 and ≼ is a
partial order on𝑋.

Definition 8 (Nashine et al. [4]). Let (𝑋, ≼) be a partially
ordered set. A pair of mappings 𝑆, 𝑇 : 𝑋 → 𝑋 is said to
be weakly increasing if 𝑆𝑥 ≼ 𝑇𝑆𝑥 and 𝑇𝑥 ≼ 𝑆𝑇𝑥 for all 𝑥 ∈ 𝑋.
The mapping 𝑆 is said to be 𝑇-weakly isotone increasing if for
all 𝑥 ∈ 𝑋, we have 𝑆𝑥 ≼ 𝑇𝑆𝑥 ≼ 𝑆𝑇𝑆𝑥.

Very recently, Nashine et al. [4] proved the following
result.

Theorem 9 (Nashine et al. [4], Theorem 3.6). Let (𝑋, 𝑝, ≼)
be a complete partially ordered partial metric space. Let 𝑇, 𝑆 :
𝑋 → 𝑋 be two mappings such that

𝑝 (𝑇𝑥, 𝑆𝑦) ≤ 𝑀(𝑥, 𝑦) (24)

for all ≼-comparable 𝑥, 𝑦 ∈ 𝑋, where

𝑀(𝑥, 𝑦) = max(𝜑 (𝑝 (𝑥, 𝑦)) , 𝜑 (𝑝 (𝑥, 𝑇𝑥)) , 𝜑 (𝑝 (𝑦, 𝑆𝑦)) ,

𝜑(
𝑝 (𝑦, 𝑇𝑥) + 𝑝 (𝑥, 𝑆𝑦)

2
))

(25)

and 𝜙 : [0,∞) → [0,∞) is a continuous function with 𝜙(𝑡) <
𝑡 for each 𝑡 > 0, 𝜙(0) = 0. We suppose the following:

(i) 𝑆 is 𝑇-weakly isotone increasing,
(ii) 𝑆 and 𝑇 are continuous.

Then, the setF(𝑇, 𝑆) of common fixed points of 𝑇 and 𝑆 is
nonempty, and 𝑝(𝑧, 𝑧) = 𝑝(𝑇𝑧, 𝑇𝑧) = 𝑝(𝑆𝑧, 𝑆𝑧) = 𝑝(𝑧, 𝑆𝑧) =
𝑝(𝑧, 𝑇𝑧) = 0 for 𝑧 ∈ F(𝑇, 𝑆). Moreover, the setF(𝑇, 𝑆) is well
ordered if and only if 𝑇 and 𝑆 have one, and only one, common
fixed point.

Based on this result, we present a coupled version that can
be interpreted as a correct version of Mutlu et al.’s theorem.

Theorem 10. Let (𝑋, 𝑝, ≼) be a complete partially ordered
partial metric space and let 𝐹, 𝐺 : 𝑋

2

→ 𝑋 be two continuous
mappings such that, for all 𝑥, 𝑦, 𝑢, V ∈ 𝑋 verifying 𝑥 ≼ 𝑢, 𝑦 ≽ V
or 𝑥 ≽ 𝑢, 𝑦 ≼ V,

𝑝 (𝐹 (𝑥, 𝑦) , 𝐺 (𝑢, V))

+ 𝑝 (𝐹 (𝑦, 𝑥) , 𝐺 (V, 𝑢)) ≤ 𝑀
𝐹,𝐺
(𝑥, 𝑦, 𝑢, V) ,

(26)

where

𝑀
𝐹,𝐺
(𝑥, 𝑦, 𝑢, V)

= max {𝜑 (𝑝 (𝑥, 𝑢) + 𝑝 (𝑦, V)) ,

𝜑 (𝑝 (𝑥, 𝐹 (𝑥, 𝑦)) + 𝑝 (𝑦, 𝐹 (𝑦, 𝑥))) ,

𝜑 (𝑝 (𝑢, 𝐺 (𝑢, V)) + 𝑝 (V, 𝐹 (V, 𝑢))) ,

𝜑((𝑝(𝑥, 𝐺(𝑢, V)) + 𝑝(𝑦, 𝐺(V, 𝑢)) + 𝑝(𝑢, 𝐹(𝑥, 𝑦))

+𝑝 (V, 𝐹 (𝑦, 𝑥)))) × (2)−1} .
(27)
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And 𝜑 : [0,∞) → [0,∞) is a continuous function with
𝜙(0) = 0 and 𝜙(𝑡) < 𝑡 for each 𝑡 > 0. Also assume that for
all 𝑥, 𝑦 ∈ 𝑋, we have the fact that

𝐺 (𝑥, 𝑦) ≼ 𝐹 (𝐺 (𝑥, 𝑦) , 𝐺 (𝑦, 𝑥))

≼ 𝐺 (𝐹 (𝐺 (𝑥, 𝑦) , 𝐺 (𝑦, 𝑥)) , 𝐹 (𝐺 (𝑦, 𝑥) , 𝐺 (𝑥, 𝑦))) ,

𝐺 (𝑦, 𝑥) ≽ 𝐹 (𝐺 (𝑦, 𝑥) , 𝐺 (𝑥, 𝑦))

≽ 𝐺 (𝐹 (𝐺 (𝑦, 𝑥) , 𝐺 (𝑥, 𝑦)) , 𝐹 (𝐺 (𝑥, 𝑦) , 𝐺 (𝑦, 𝑥))) .

(28)

Then, the setF(𝐹, 𝐺) of common coupled fixed points of 𝐹 and
𝐺 is nonempty, and

𝑝 (𝑧, 𝑧) = 𝑝 (𝜔, 𝜔) = 𝑝 (𝑧, 𝐹 (𝑧, 𝜔))

= 𝑝 (𝜔, 𝐹 (𝜔, 𝑧)) = 𝑝 (𝑧, 𝐺 (𝑧, 𝜔))

= 𝑝 (𝜔, 𝐺 (𝜔, 𝑧)) = 𝑝 (𝐹 (𝑧, 𝜔) , 𝐹 (𝑧, 𝜔))

= 𝑝 (𝐹 (𝜔, 𝑧) , 𝐹 (𝜔, 𝑧)) = 𝑝 (𝐺 (𝑧, 𝜔) , 𝐺 (𝑧, 𝜔))

= 𝑝 (𝐺 (𝜔, 𝑧) , 𝐺 (𝜔, 𝑧)) = 0

(29)

for all (𝑧, 𝜔) ∈F(𝐹, 𝐺).

To prove it, we use the following notation and basic facts.
Let 𝑝 be a partial metric on 𝑋 and define 𝑝

2
: 𝑋
2

× 𝑋
2

→

[0,∞) by

𝑝
2
((𝑥, 𝑦) , (𝑢, V)) = 𝑝 (𝑥, 𝑢) + 𝑝 (𝑦, V)

∀ (𝑥, 𝑦) , (𝑢, V) ∈ 𝑋2.
(30)

Then, (𝑋2, 𝑝
2
) is a partial metric space. Now, let ≼ be a binary

relation on𝑋 and define the relation ⊑ on𝑋2 by

(𝑥, 𝑦) ⊑ (𝑢, V) ⇐⇒ [𝑥 ≼ 𝑢, 𝑦 ≽ V] . (31)

Then, ⊑ is also a binary relation on 𝑋2 with the following
property: if ≼ is a partial order on𝑋, then ⊑ is a partial order
on𝑋2.

Given two mappings 𝐹, 𝐺 : 𝑋
2

→ 𝑋, let us denote by
𝑇
2

𝐹
, 𝑇
2

𝐺
: 𝑋
2

→ 𝑋
2 the mappings

𝑇
2

𝐹
(𝑥, 𝑦) = (𝐹 (𝑥, 𝑦) , 𝐹 (𝑦, 𝑥)) ,

𝑇
2

𝐺
(𝑥, 𝑦) = (𝐺 (𝑥, 𝑦) , 𝐺 (𝑦, 𝑥))

∀ (𝑥, 𝑦) ∈ 𝑋
2

.

(32)

If 𝐹 is 𝑝-continuous, then 𝑇
2

𝐹
is 𝑝
2
-continuous. Using the

notation given in (25), the contractivity condition (26) can
be rewritten as (24) in the sense that

𝑝
2
(𝑇
2

𝐹
(𝑥, 𝑦) , 𝑇

2

𝐺
(𝑢, V)) ≤ 𝑀((𝑥, 𝑦) , (𝑢, V)) (33)

for all (𝑥, 𝑦), (𝑢, V) ∈ 𝑋
2 such that (𝑥, 𝑦) ⊑ (𝑢, V) or (𝑢,

V) ⊑ (𝑥, 𝑦) (i.e., ⊑-comparable points of 𝑋2). Furthermore,
inequalities (28) are equivalent to

𝑇
2

𝐺
(𝑥, 𝑦) ⊑ 𝑇

2

𝐹
𝑇
2

𝐺
(𝑥, 𝑦) ⊑ 𝑇

2

𝐺
𝑇
2

𝐹
𝑇
2

𝐺
(𝑥, 𝑦) ∀ (𝑥, 𝑦) ∈ 𝑋

2

;

(34)

that is, 𝑇2
𝐺
is 𝑇2
𝐹
-weakly isotone increasing in the partially

ordered set (𝑋2, ⊑). Applying Theorem 9, the set F(𝑇2
𝐹
, 𝑇
2

𝐺
)

of common fixed points of 𝑇2
𝐹
and 𝑇

2

𝐺
is nonempty, and

𝑝
2
((𝑧, 𝜔), (𝑧, 𝜔)) = 𝑝

2
(𝑇
2

𝐹
(𝑧, 𝜔), 𝑇

2

𝐹
(𝑧, 𝜔)) = 𝑝

2
(𝑇
2

𝐺
(𝑧, 𝜔),

𝑇
2

𝐺
(𝑧, 𝜔)) = 𝑝

2
((𝑧, 𝜔), 𝑇

2

𝐹
(𝑧, 𝜔)) = 𝑝

2
((𝑧, 𝜔), 𝑇

2

𝐺
(𝑧, 𝜔)) = 0

for (𝑧, 𝜔) ∈ F(𝑇2
𝐹
, 𝑇
2

𝐺
). Notice that a common fixed point of

𝑇
2

𝐹
and 𝑇2

𝐺
is nothing but a common coupled fixed point of 𝐹

and 𝐺. This means that the set F(𝐹, 𝐺) of common coupled
fixed points of 𝐹 and 𝐺 is nonempty and

𝑝 (𝑧, 𝑧) = 𝑝 (𝜔, 𝜔) = 𝑝 (𝑧, 𝐹 (𝑧, 𝜔))

= 𝑝 (𝜔, 𝐹 (𝜔, 𝑧)) = 𝑝 (𝑧, 𝐺 (𝑧, 𝜔)) = 𝑝 (𝜔, 𝐺 (𝜔, 𝑧))

= 𝑝 (𝐹 (𝑧, 𝜔) , 𝐹 (𝑧, 𝜔)) = 𝑝 (𝐹 (𝜔, 𝑧) , 𝐹 (𝜔, 𝑧))

= 𝑝 (𝐺 (𝑧, 𝜔) , 𝐺 (𝑧, 𝜔)) = 𝑝 (𝐺 (𝜔, 𝑧) , 𝐺 (𝜔, 𝑧)) = 0

(35)

for all common coupled fixed points (𝑧, 𝜔) ∈ 𝑋2 of 𝐹 and 𝐺.

6. Conclusions

We first note that we can suggest further corrected forms
for the paper [2]. We prefer Theorem 10 since it is the best
possible corrected result inspired from the very defective
main result in [2], that is, Theorem 2.

Secondly, we can list several consequences ofTheorem 10,
for instance, by taking 𝐹 = 𝐺 and/or by replacing 𝜑(𝑡) = 𝑘𝑡

with 0 ≤ 𝑘 < 1. One can also get several corollaries by
replacing 𝑀

𝐹,𝐺
(𝑥, 𝑦, 𝑢, V) with the various combinations of

the terms in 𝑀
𝐹,𝐺
(𝑥, 𝑦, 𝑢, V). Furthermore, it is easy to state

the analog of Theorem 10 in the context of “complete partial
metric space,” instead of “complete partially ordered partial
metric space.” Regarding the skeleton of the paper, we avoid
listing all these results that can be easily derived by the reader.

Finally, independently from the structure of the abstract
space (e.g., metric space, partial metric space, G-metric
space, b-metric space, etc.), we underline the fact that
multidimensional fixed point theorems and, in particular,
coupled fixed point theorems can be derived from the existing
corresponding results in the literature (see, e.g., [5–8]).
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