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We give refinements and generalizations of the Dresher and Bellman inequalities for positive linear functionals. We also give
reverse of the new obtained generalized version of these inequalities. Finally, we apply our results on time scales integrals to obtain
refinements and generalizations of time scales Dresher’s and Bellman’s inequalities.

1. Introduction

Dresher’s and Bellman’s inequalities are obtained from the
classical Holder and Minkowski inequalities and are well
known in the theory of inequalities and means. For intro-
duction and some applications of these classical inequalities,
we refer to [1-5]. Due to the importance of Dresher’s
and Bellman’s inequalities, there are various generalizations,
refinements, and variants that appeared in the literature. In
this paper, we give refinements and further generalizations
of the generalized version of these inequalities for positive
linear functionals and time scales integrals. For this, first we
recall the definition of positive linear functionals and the two
functional inequalities from [5].

Definition 1 (positive linear functional). Let E be a nonempty
set and let L be a linear class of real valued functions f : E —
R having the following properties:

(L) If f,g € Land a,b € R, then (af + bg) € L.
(L,) If f(t) =1forallt € E, then f € L.

An isotonic positive linear functional is a functional A : L —
R having the following properties:

(A)If f,g e Land a,b € R, then A(af + bg) = aA(f) +
bA(g).

(A,) If f € Land f(¢t) > Oforallt € E, then A(f) > 0.

Remark 2. Sums and Lebesgue integrals are the most familiar
examples of positive linear functionals. In [6] it is shown
that time scales integrals including the Cauchy, Riemann,
Lebesgue, multiple Riemann, multiple Lebesgue delta, nabla,
and diamond-« also satisfy the properties of positive linear
functionals.

Theorem 3 (Dresher’s inequality [5, Theorem 4.21]). Let E
and L be such that (L) and (L,) are satisfied and suppose that
both A and B satisfy (A;) and (A,). If f;, g; : E — [0, co) with

n p n r
fﬁ(Zﬁ-) ,g,-’)(zgi> €L, (1)
i=1 i=1

where p>1>r>0andB(g;) >0 for1 <i<n, then

A PN e A N
Gesn)  3Ea)

Theorem 4 (Bellman’s inequality [5, Theorem 4.29]). LetE, L,
and A be such that (L,), (L,), (A,), and (A,) are satisfied. For
p > L assumethat f, g : E — [0, 00) are such that f¥, g, (f+
9)f € L. Suppose that f,, g, > 0 are such that

fo-A(ff) >0,

g5 —A(gf)>o0.

(3)
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Then the following inequality holds:
(- a0m) " +(gh-a(e")")
<(fo+90)"-A ((f+g)P) :

Remark 5. The inequality in Theorem 4 also holds if p < 0.
Moreover, it holds in reverse order if 0 < p < 1.

(4)

Recently, the author, Rabia Bibi, gives the following
refinement of Bellman’s inequality.

Theorem 6 (refinement of Bellman’s inequality [7, Theorem
2.1]). Let L satisfy conditions (L,) and (L,) and let A satisfy
conditions (A,) and (A,) on a nonempty set E. For p > 2,
assume that f, g are nonnegative functions on E such that
(f + 9)F, fP,g" € Land A((f + g)f) > 0. Suppose that
fo» 9o > 0 are such that

A(f7) >0,

gy -A(g") > 0.

Then the following inequality holds:

©)

(-2 +(gh-a(eM)") < <fé’
A(f(F+9)")

‘A< A7+ a)) >>/
+<9§ “
Aot

~A((f+9)").

In Section 2, we give refinements of Dresher’s inequality
for positive linear functionals (Theorem 3). In Section 3, we
generalize Dresher’s inequality and new refinements obtained
in Section 2. Further, we obtain the reverse of new generalized
Dresher’s inequality. Section 4 provides the generalizations
of Bellman’s inequality and its refinement (Theorem 18) and
reverse of the new generalized Bellman’s inequality. Finally,
in Section 5, we apply the obtained results to time scales
integrals and obtain improvements of Dresher’s and Bellman’s
inequalities on time scales.

In order to prove our main results, we use the classical
Holder and Minkowski inequalities, and the following refine-
ments of them (see 8]).

f-(f+9)

Alg(f+9)"")

g_(f+g) A((f‘f'g)P)

Theorem 7 (see [8, Theorem 13]). Let L satisfy conditions
(L,) and (L,) and let A satisfy conditions (A,) and (A,) on a
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nonempty set E. Let p > 2 and defineq by 1/p+1/q = 1. Then,
for all nonnegative functions w, g, h € L such that

>

wgh, wg?, wh, w ‘g W ——
)

the inequality

A (wgh)

< [A(wg")—A(w‘g—

Alla (wh?)

A (wgh)
A (wh)

P\ 11/P
)| e

holds. In the case 0 < p < 2, inequality in (8) is reversed.

Theorem 8 (see [8, Theorem 14]). Let L and A be as in
Theorem 7. If p > 2, then for all nonnegative functions w, g, h
on E such that w(g+h)?, wg?, wh? € L, and A(w(g+h)?) > 0,
the inequality

AP (w(g+h)) < (A(wg")

4w A(wg<g+h>f’*>“’>>””
A(w(g+h)P)

+<A(whp)

—A(w

holds.

g-(g+h)

€

(wh (g+h)"" 1)

h—(g+h) (w(g+h)P)

)

Remark 9. From the proof of Theorem 8 (see [8]), it is obvious
that inequality (9) holds in reverse order for 0 < p < 1 or
l<p<2

We also need the following classical Radon’s inequality in
order to prove the reverse of Dresher’s inequality.

Theorem 10 (see [1, Theorem 3, page 181]). Let a; > 0 and let
b>0fori=1,...,n.If p>1, then

(Zz 1 z)P < n_
(CrL b)) (B! =

If p < 1, then inequality (10) holds in reverse order.

(10)

2. Refinements of Dresher’s Inequality

Our first result gives the refinement of Theorem 3, for p > 2.
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Theorem 11. Let E and L be such that (L,) and (L,) are
satisfied and suppose that both A and B satisfy (A,) and (A,).
Suppose that w, f;, g; : E — [0, 00) are such that

n p n r
PW<ZL> )wg?,w(Zg,) €L, (1)
i=1 i=1

where p > 2, 1 > r > 0such that p > 2(p—r) and Blwg.) > 0
for1 <i<mn. Then

((zlﬁfw”P”
( zlgl)
)

» ( 1/(p-r) (12)
; B(wg;) ] R
holds, where
o (ALt
<3 |(5em)
(13)
pl(p-r)
_B(pfr)/rp( wg?) Z’ IAI/P( wf; )
Yy B (wg))

Proof. By using the Minkowski inequality for positive linear
functionals, we get

a0 (w($a) ) S0 ).

”( (Za))ziﬂ”wwy

(14)

Afwff) -

3
By using the discrete case of Theorem 7, we get
n n A (U)fp) >1/P
AI/P Py — ! BI/P r
zn: A(wfip):|1/(17 7) Zn: (A(wflp)>1/1’
< -
L B(wg) S|\ Blwg)
(15)

pl(p-r) 7 P~1/P
B(p r)[rp ( r)

n r/p
-(Z#”wwﬂ .

Now by combining (14) and (15), we obtain inequality (12).
O

In next theorem, we give a new inequality of the Dresher
type for positive linear functionals.

Theorem 12. Let E and L be such that (L,) and (L,) are
satisfied and suppose that both A and B satisfy (A,) and (A,).
Suppose that w, f;, g; : E — [0, 00) are such that

n P n p-1
) ol
wgir’w<zgi> ﬂUgi(Zgi) €L,

where p > 2,1 >r >0o0rl <r < 2and Bwg;) > 0 for
1 <i<n Then

(16)

((Zlﬁfq e

e R

i=1

b (ag?) B (w]er -

holds, provided that the denominator of the right-hand side is
positive.

Proof. By using Theorem 8, we get

(o3

no A(wf (30 )P
(lﬁ 2 wen 1)

)

A(wls- zuﬁ((wn@&ﬁr*wA@wz;ﬁVm@]wp” )
oo (B (v (50 B (w (5 0))])

X 'B(wéii (2o gi)H)
-1 B (w (X 91’)’)

)

(18)

By using discrete Holder’s inequality, we get



A(wf, (T, )

p—l)
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-

Il
—

(o3
(wf?) -

( (ZI lfl) )
Alw|fi- 2 fi(AQwf (T £ 1A (w (S5 £))

"

|
M=

i=1

( B(wg}) - B(w]g; - ¥

Yie1 9i (B (wgi (X gi)r_l) /B
Z (wgz Zi 1 gi)ril)

Zg,

{oonfe

i)

(w (X gi)r))

W

19
B( (Zz 1g1) ) ( )
n - n p 1/(p-1) (p=n/p
§ A(wff) - A(w]fi- T £ (A(wfi (T A7) 1A (w(EL D)) ]
n r—1 n r r
i=1| B (wgi) -B (w |gi - Y1 i (B (wgi (X1 9:) ) /B (w (X1 90) )) )
—1N | e\ /P
4 a B(“’gi(Z?ﬂ g) 1)
X Z<B(wgz) B< gz_zgi n r
) i=1 B (w (Zizl gi) )
Now by combining (18) and (19), we obtain inequality (17). where p > 1> r > 0 and BW,%,), BW,&}) > 0. Then
O
1/(p-7)
A(W, (E, +G)?
3. Generalizations of Dresher’s Inequality (i ( k)r)
B (Vvl (gn + ?t) )
Let Wy (xq, Xp, -5 1), F(xp, Xgs s %)y Grly, X, -5 1), (22)
F (X1, %y, ..., %,), and E,(x;,%x,,...,%,) be real valued A(WiEP) 1/ A(WG?) Y(p=r)
functions of I, m, k, n, and t variables, respectively. Then, < [—r] + Bwen
throughout this section, we use the following notations: B(W.7}) B(W, ;)

Wy =W, (s) = Wy (w; (5), w, (5),..., wy (s)),
Fy=Fu(9)=E,(f1(5), 2080 fun (5)),

G = G () = G (91 (), 92 (8) -5 gic (5)) (20)
Fn=F, () =F, (815,825, 5, ),

€ =%,05)=%,(6,),6,0),....6,()),

where {wi(s)}gzl, (i, {gi(s)}f‘lp {Bi(s)}L,> and
{(Sii(s)}f:1 are real valued functions defined on E.

The following results present the generalizations of Theo-
rems 3, 11, and 12, respectively.

Theorem 13. Let W, F,,, G, F,, &, be defined as in (20) such
that W; > 0 and F,,, Gy, F,,, &, > 0. Suppose that A and B
satisfy (A,) and (A,) and

WD, WG W, (F,, + Gy)” W, W%, o

W (F,+%,) €L,

Proof. By using the Minkowski inequality for positive linear
functionals, we get

AP (Wi (F, +G)")
< AP (WER) + AP (WGP, (23)

BV (W, (%, +8,)") > B/ (W) + B (W),
By using discrete Hélder’s inequality, we get

A(WF})

AN (WED) + AP (WGT) = (B(Wgﬂ)
I"'n

A(WGP)

B(W,})

>1/P

1/p
-B/? (Wz%)+< ) B (W)

:|U(Pﬂ

A(WF})
e
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o\ 11/ (-1 (p-n)/p
A (‘/Vle) (Bl/r (W.O/Tr)
B(W;%;) o

l/r (W ? ))"/P
(24)

Now by combining (23) and (24), we obtain inequality (22).
O

Theorem 14. Let W}, F,,, Gy, F ., &, be defined as in (20) such
that W; > 0 and F,,, G, F,,, &, > 0. Suppose that A and B
satisfy (A,) and (A,) and

WiES, WG W, (F, + G)  WF,, W], (5)

‘/Vl (‘G/:n + ?t)r € L’

where p > 2,1 > r > 0 such that p > 2(p — r) and
BW, &), BW,&;) > 0. Then

AW, (E, +G)P) 1"

B(‘/Vl(‘fn-f_(gt) )

(26)
1(p-1)

Awe) ]

[ A (‘/Vle) :|1/(PT)
< - Yoy
B(W,@})

B(WF7)

AWiE, +6))]""

B (VVI (gn + ‘Cgt)r)

AWEE) - A(Wi[E,

~ (Fp +G) (A(WE,, (B, + G ) A (W, (F,, + G)F))

holds, where

P\ /P
F = ( A (‘/VlFm) ) _ B(P—T)/'P (Vvlg:l)

B(WF})

" BT (WF,) + B (W)

P 1/p
T ( A (‘/Vle) ) _ B(p—r)/rp (sz‘?:)

B(W¥%))

(27)

pl(p=1)
AP (WiEp) + AP (WGF)

BT (WF,) + B (W)

Proof. Proof is similar to the proof of Theorem 11. O

Theorem 15. Let W, F,,, G, F,, &, be defined as in (20) such
that Wy > 0 and F,,,G, F,, &, > 0. Suppose that A and B
satisfy (A,) and (A,) and

WiED, WGE, W, (E,, + Gy s WiE,, (B, +G)'

WG (F, + G WL WG W, (F,+%,), (28)

‘/Vlgn (gn + ?t)P1 "/Vl?t (gn + gt)ri1 € L>

wherep >2,1>r>0,0rl <r < 2and BW,%,), BW,&}) >
0. Then

p

B(WF}) -

A(WGE) -

A(Wi[Gy = (B, + G) (A(WGk (E + GO ™) JA (Wi (B + G)Y

/(p=1)
B(Wz|9,,—(9,,+56t)(3(wg (F,+ %)) IBW,(F,+%,)) |)} (29)

)
)

B(W¥)

holds, provided that the denominators of the right-hand side
are positive.

Proof. Proof is similar to the proof of Theorem 12. O

Next, we obtain the reverse of Theorem 13.

Theorem 16. Let W}, F,,, G, F,,, G, be defined as in (20) such
that Wy > 0 and F,,, Gy, F,,, &, > 0. Suppose that A and B
satisfy (A,) and (A,) and

WiEL WIGE Wi (B, + G)' s W, WG,

VVI (gn + gt)r € L’

)|
-B(W|% - (7, +9) (B(W (F,+9)) ") IBW (F,+%)))

1/(p-r)
T)]

where p <0 < r < 1 and BW,ZF), BW,&;) > 0. Then
1/(p-r)

AW, (B, +G))
B(W(%,+%,)")

s

A(WFP) 1/(p-7)
> m i .74
[swion] |

B(W#7)

Proof. First by using the Minkowski inequality for positive
linear functionals and p < 0 < r < 1 (so that p —r < 0)
and then by using Radon’s inequality, we get

AWi(E,+G)") 1"

B (Vvl (gn + ?t)r)




(AYP (WFE) + AMP (WzGi))p 1/(p=r)

(B (Wi7;,) + B (W, %))

AWER) \/ (A(wich)\ "
> —— | =t :
<B(W;>> B(W))

(32)

O

4. Generalizations of Bellman’s Inequality

In the following results we get the generalizations of Bellman’s
inequality, Theorems 4 and 18, respectively.

Theorem 17. Let W, F,,, G, be defined as in (20) such that
W, > 0 and F,,,G, > 0. Suppose that A satisfies (A,;) and
(A,). For p € R, assume that W,FL, W,GY, W|(F,, + G,)f € L.
Suppose that f,, g, > 0 are such that

fE-AWFE) >0,

(33)
g5 - A(WGE) > 0.
Ifp>1lorp<0,then
p
(7 -aonp) (et -awap))")

< (fo "'go)p‘A(VVl (Fm+Gk)p) .
If0 < p < 1, then inequality (34) holds in reverse order.

Proof. Let p > 1. Let xy,x,, y;, ¥, be nonnegative real
numbers. Now from the discrete Minkowski inequality we
have

1/p
((Xl + J’l)p +(x, + )’z)P)
y y (35)
P p
< (xf+x§) +(yf+y§) .
By applying the substitution

x| — f - AWE]).,

7 — g -A(WG),
(36)

) — AWIED),
7 — A(WiGy)
in (35) and by using Minkowski inequality, we have
1/p /p\P
(- AawiER)" + (ot - a(wich)) ")
p
< (for90)" = (4 (WiED) + 477 (WiGP))" 7

(f0+90)P_A(Wl (Fm+Gk)P)-

IN
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If p < 0, then (35) holds in reverse order. Now by using
the negativity of p, we get

(x1+)’1)P+(x2+J’2)p
1/p 1/p\?
< (40" + (0 +2D)")

The remaining proof is similar to the case for p > 1, except
that here we apply the substitutions from (36) in (38).

If0 < p < 1, then the reversed inequality in (34) can
be proved in a similar way. In this case, (35) holds in reverse
order. O

(38)

Theorem 18. Let W), F,,, G, be defined as in (20) such that
W, > 0and F,,, G, > 0. Suppose that A satisfies (A,) and (A,).
For p > 2, assume that

WiF2, W,GL, W, (E,, +Gy)! \WE,, (E,,+ G,
(39)
WGy (Fm + Gk)Pil €L

and A(W,(F,, + G,)f) > 0. Suppose that f,, g, > 0 are such
that

fi ~AWE) >0,
(40)
95 - A(WGE) > 0.

Then the following inequality holds:

((fé)—A(WzFf:.))l/p+(g0p—A(W,G£))1/p)P < [( b

e i

+(90P )
PP
(v )|

-A(W,(E,+G)").
Proof. The proof is similar to the proof of Theorem 17; only
here we apply the substitution

(‘/VZFm (Fm + Gk)P_l)

F, F,+G 4
mi(mjL k) A(VVI(Fm+Gk)p)

A (Vlek (Fm + Gk)p71>
A(W,(E, +Gp)F)

Gy~ (F, + Gy)

X} — f§ - AWFh),

¥l — gb-A(WGY),

A(WE, (E, +G)'™)
A(W; (F, +Gy)F)

_(Fm+Gk)

)
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Gy

£ vty

-1\ P
A (Wsz (F,, +Gy) )
- (Fm + Gk) P
AW (F, +Gy))
(42)
in (35) and then apply Theorem 8. O

5. Applications on Time Scales Integrals

A time scale T is an arbitrary closed subset of R. Time scales
calculus provides the unification and extension of discrete
and continuous analysis. It is useful for the simultaneous
study of discrete and continuous data. For example, when
T = R, the time scale integral is an ordinary integral, and
when T = Z, the time scale integral becomes a sum. Here,
we give the definition and results for diamond-« integral,
but all the results of this section also hold for other time
scales integrals, by using the fact that time scales integrals
satisfy the properties of positive linear functionals. For a
detailed introduction of time scales integral, we refer to
[9-13]. Dresher’s and Bellman’s inequalities for time scales
integrals are given in [6].

Definition 19 (diamond-« integral [13, Definition 3.2]). Let
f: T — R be continuous function and let a,b € T. Then
the diamond-« integral of f from a to b is defined by

b b b
Jf(t)()at:ocj f(t)At+(1—oc)J f(t)Vt,
0<ac<l.

Remark 20. From the above definition it is clear that for & = 1
the diamond-« integral reduces to the standard delta integral
and for = 0 the diamond-« integral reduces to the standard
nabla integral.

Moreover, if T = R, then

b b
J f@ oatzj f@)ds (44)

if T = Z, then

Jf(t)()t—och(t)+(1 «) Zf(t), (45)

t=a+1

if T = hZ, where h > 0, then

be (£) Ot

a

b/h-1 b/h (46)
=h<cx Y flm+-a) Y f(kh));

k=a/h k=ajh+1

7
if T = qN°, where g > 1, then
b logq(b)—l
[ rooe=@-v(a ¥ ¢F(@)ra-a
a k:logq(a)
(47)

logi(b 4" f (a )>

k= logq( a)+1

The following results are immediate consequence of the
results obtained in Sections 2, 3, and 4, respectively.

Corollary 21. Leta,b € T witha < b. Suppose that w, f;, g; €
C([a, ]T,[O oo)) Ifp>2,1>r>0suchthat p>2(p—r)

andj T(t)0ut > 0 for 1 < i <n, then

/(p-1)
l L w® (3L, £ O) 0.t ] o

[Pw®) (3 g, 0) 0.t
(48)

<>

i=1

[Jw) £7 (1) 0ut (’H)_K
[Pw() g; ()04t ’

where

w |/ [Pw® o)
o Z(J )

w (t) g; () Oat

b (p—n)/rp
J w(t) g; (t) Oat> (49)

pl(p-r)

s (JLwo ff ©00)
s (Pwog 0o

Corollary 22. Leta,b € T witha < b. Suppose thatw, f;, g; €
C([a,b],[0,00)). If p 2 2,1 >r > 0o0rl < r < 2and

Ij w(t)g; ()04t > 0 for 1 <i < n, then

/(p-r)
!Ihw<t>(2?1ﬁ<t>>Po 11 !

[ w®) (S, g (0) 0t
(50)

1/(p-1)
[Fw (@) f7 ) 0t — [} w O Uy (1) 0t
[P w () g7 ()0t = [ w(®) Vi (£) 0t

<3|

i=1



holds, provided that the denominator of the right-hand side is
positive, where

Ui (t) = ‘f: (1)

b -1
g ) £, (XL, £ ) 0at

[ w®) (X £ ©) 0t
(51)
Vi () = |g; ()
i ( )gz (t) (Zz 1 9i (t))
i=1 _[a w(®) (X, g (1) 0t

Corollary 23 Leta,b € T witha < b. Suppose that {wi(t)}i.:l,
VO g, € Clably [0,00)), and W, E,, G,
defined as in (20) are such that W, > 0 and F,,,G,, > 0. If

p =157 >0and [ WOFL O [ WGt > 0,
then

< [, W6 0) (B 0 + Gy () 0ut >1/(M

Lf W, (8) (F,, (£) + G (1) Ot

< <J: WO F, ) 0t >1/W) (52)
[P W, B, () 0,
w6 e\
' ( [P W, (0 Gy (1) 0, >
holds, where

W, () = Wy (w; (£), w0, (1) ..., wy (),
E,0)=E,(fit), /L®)s.... fn (D), (53)
G () =G (g1 (1), 9, ()., g (1))

Corollary 24. Let W, F,,, G, satisfy the conditions of Corol-
lary 23 with p > 2, 1 >r > 0and p > 2(p —r). Then

< [PWi (1) (B, (8) + G (0)F 0t >1/(p—r)

Jo WA (6) (B () + G () 0t
< < Jf ‘/Vl (t) Frlr)t (t) Oat >1/(Pr)
Jj ‘/Vl (t) F71;1 (t) oat

w06 oo\
+| -
[ Wi G () 0t

(54)
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holds, where
1
. [PW O )04\
[ W) B, (1) 0t

b (p-r)/rp
—(J W (t) F,, (t) ()at) S

p/(p=1)

(55)
(J Wl(t>GP<t)<>t>“’
[T W (6) Gy (1) Ot
pl(p-r)
b (p-n)/rp
(J W, (1) Gl (£) O t) S
such that
S
(Fwor @) +(fwoc o) 6o

(W@, 00) " + ([ woc oot

Corollary 25. Let W, F,,, G, satisfy the conditions of Corol-
lary 23 with p > 2,1 >r >0, 0or1 <r < 2. Then

1/(p-r)
Ot
:)
1/(p-r)
[ LwoR©w- [wozoo ) -
[PWi () Ery (6) 0t — [ W ()7 (8) Ot

< [P W) (E,, () + G (1)
[P W) (E,, () + G, ()

/(p-1)
[ LwOG 0= [wor oo
[P W (1) Gy () 0t = [ Wi (1) T (1) Ot

holds, provided that the denominators on the right-hand side
are positive, where

U (t) = |F, (1) = (F,, (1) + G (1))

[P W0 B, (0 (B, () + G (0)7 ™ 00t ||
[7W, () (F,, (1) + Gy () 0t

7 (t) = |F,, () = (F,, () + G, (1))

: [ Wi () B,y (1) (B (6) + G () ™ 0t
[ W, (1) (B, (6) + G () 0t
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W (t) = |Gy (1) = (F,, (1) + Gy (1))

WG 0 E 0+ Gew) 0ut|
[L W) (B, 0+ G @) 0t |

T (t) = |Gy (t) = (E,, () + G, (1))

LW OGO E 0+ G 0) " 0]
[ W (1) (Fy (6) + Gy (6)) 0t

(58)

Corollary 26. Let W), F,,,, G, satisfy the conditions of Corol-
lary 23 with p <0 < r < 1. Then

WO E, 0+ O o\

Lb W, (1) (F,, (t) + G, ()" Oyt

p=7)

[7 Wi () 2 () 0t

3 (59)
I, Wi @) B (2) 0t

b » 1/(p-1)
[ L MOGI® 0t

[P Wi (6 GL (1) 0.t

Corollary 27. Let W, F,,, Gy satisfy the conditions of Corol-
lary 23. Suppose that f,, g, > 0 are such that

b
fé’—J W, (t) FE (£) Oyt > 0,

.\ (60)
gg—J W, (1) GE (£) 0yt > 0.

Ifp>1orp<0,then

b 1/p
((ﬁ—jmmwﬁan)
b 1/p\ P
+(g§—] MGG)GfU)QJ) ) <(fo+gr)
b
- I W, (t) (E,, (t) + G ()7 O, t.

If0 < p < 1, then the above inequality holds in reverse order.

Corollary 28. Let W, F,,, Gy satisfy the conditions of Corol-
lary 23 with p > 2. Suppose that J: W(t)(E,,(t) + G, ()P0t >
0 and f,, g, > 0 are such that

b
ﬁ—Lmammﬂ%»a

) (62)
g~ w00

Then the following inequality holds:

(18-t " (- a o) ") | (2

2 i

. (gop (63)

o i

-A(W,(E,+Gy)").

A(WE, (F, +G)"")

F, - (E, +Gy) A(Wl - Gk)P)

A (Wsz (Fp+ Gk)pil)

Gk_(Fm+Gk) A(‘/\/I(Fm+Gk)P)
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