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A reaction-diffusion system coupled by two equations subject to homogeneous Neumann boundary condition on one-dimensional
spatial domain (0, ℓ𝜋) with ℓ > 0 is considered. According to the normal form method and the center manifold theorem for
reaction-diffusion equations, the explicit formulas determining the properties of Hopf bifurcation of spatially homogeneous and
nonhomogeneous periodic solutions of system near the constant steady state (0, 0) are obtained.

1. Introduction

As an important dynamic bifurcation phenomenon in
dynamical systems, Hopf bifurcation of periodic solutions
has attracted great interest of many authors in the last several
decades [1–8]. In general, the study of Hopf bifurcation
includes the existence and the properties such as the direc-
tion of bifurcation and the stability of bifurcating periodic
solutions. In application, however, it is more difficult to
determine the properties of Hopf bifurcation than to find
the existence of a Hopf bifurcation. An approach applied to
determine the properties of Hopf bifurcation is to derive the
projected equation of original equations on the associated
center manifold, that is, the so-called normal form. Then
one may explore the local dynamical behaviors of a higher
dimensional or even infinitely dimensional dynamical system
near a certain nonhyperbolic steady state according to the
normal form obtained. The normal form of Hopf bifurcation
in ordinary differential equations (ODEs) with or without
delays has been established well [1, 3, 5] since in this case the
equilibrium is always constant and there are also no effects of
spatial diffusion.

Under some certain conditions, the reaction-diffusion
equations under the homogeneous Neumann boundary con-
dition may have the constant steady state and thus one can
study the Hopf bifurcation of system at this constant steady
state. Compared with the ODEs, it is more difficult to derive

the normal form of Hopf bifurcation for reaction-diffusion
equations at the constant steady state. Although Hassard
et al. [3] established the method computing the normal
formofHopf bifurcation in reaction-diffusion equationswith
the homogeneous Neumann boundary condition and also
considered the Hopf bifurcation of spatially homogeneous
periodic solutions in Brusselator system, using the same
method, Jin et al. [9] and Ruan [10] as well as Yi et al. [11, 12]
considered the Hopf bifurcation of spatially homogeneous
periodic solutions for Gierer-Meinhardt system and CIMA
reaction, respectively. There are few results regarding Hopf
bifurcation of spatially nonhomogeneous periodic solutions
for spatially homogeneous reaction-diffusion equations [7].

Based on the reason mentioned above, in this paper we
consider the normal form of Hopf bifurcation of reaction-
diffusion equations at the constant steady state following
the idea in [3]. In order to have a clearer structure, we
are concerned with the following general reaction-diffusion
system coupled by two equations defined onone-dimensional
spatial domain (0, ℓ𝜋) with ℓ > 0 and subject to Neumann
boundary conditions; that is,

𝑢
𝑡
= 𝑑1𝑢𝑥𝑥 +𝑓1 (𝜆, 𝑢, V) , 𝑥 ∈ (0, ℓ𝜋) , 𝑡 > 0,

V
𝑡
= 𝑑2V𝑥𝑥 +𝑓2 (𝜆, 𝑢, V) , 𝑥 ∈ (0, ℓ𝜋) , 𝑡 > 0,

𝑢
𝑥
(0, 𝑡) = V

𝑥
(0, 𝑡) = 𝑢

𝑥
(ℓ𝜋, 𝑡) = V

𝑥
(ℓ𝜋, 𝑡) = 0,

𝑡 > 0,
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𝑢 (𝑥, 0) = 𝑢0 (𝑥) ,

V (𝑥, 0) = V0 (𝑥) ,

𝑥 ∈ (0, ℓ𝜋) ,

(1)
in which 𝑑1, 𝑑2 > 0 are the diffusion coefficients, 𝜆 ∈ R is
the parameter, and 𝑓1, 𝑓2 : R × R2 → R are 𝐶𝑟 (𝑟 ≥ 5)
functions with 𝑓

𝑘
(𝜆, 0, 0) = 0 (𝑘 = 1, 2) for any 𝜆 ∈ R.

Although Yi et al. [7] described the algorithm determining
the properties of Hopf bifurcation of spatially homogeneous
and nonhomogeneous periodic solutions for (1) at (0, 0) and
also considered the Hopf bifurcation of a diffusive predator-
prey system with Holling type-II functional response and
subject to the homogeneous Neumann boundary condition,
they did not give the normal form of Hopf bifurcation
of spatially homogeneous and nonhomogeneous periodic
solutions of the general reaction-diffusion system (1) at (0, 0).

This paper is organized as follows. In the next section,
following the abstract method according to [3], we describe
the algorithm determining the properties of Hopf bifurcation
of spatially homogeneous and nonhomogeneous periodic
solutions for system (1) at the constant steady state (0, 0). In
Section 3, the explicit formulas determining the properties of
Hopf bifurcation of spatially homogeneous periodic solutions
for system (1) at (0, 0) are obtained. The explicit formulas
determining the properties of Hopf bifurcation of spatially
nonhomogeneous periodic solutions for (1) at (0, 0) are also
derived in Section 4.

2. Algorithm Determining the Properties of
Hopf Bifurcation

In this section, we will describe the explicit algorithm deter-
mining the direction of Hopf bifurcation and the stability of
the bifurcating periodic solutions of system (1) at (0, 0).

Define the real-valued Sobolev space 𝑋 by

𝑋 = {(𝑢, V) ∈𝐻
2
(0, ℓ𝜋) ×𝐻

2
(0, ℓ𝜋) | 𝑢

𝑥
= V
𝑥
= 0, 𝑥

= 0, ℓ𝜋} .

(2)

In terms of𝑋, the complex-valued Sobolev space𝑋C is given
by

𝑋C = 𝑋⊕ 𝑖𝑋 = {𝑥1 + 𝑖𝑥2, 𝑥1, 𝑥2 ∈𝑋} , (3)
and the inner product ⟨⋅, ⋅⟩ on 𝑋C is defined by

⟨𝑈1, 𝑈2⟩ = ∫
ℓ𝜋

0
(𝑢1𝑢2 + V1V2) 𝑑𝑥,

for 𝑈1 = (𝑢1, V1) ∈ 𝑋C, 𝑈2 = (𝑢2, V2) ∈ 𝑋C.

(4)

Let 𝐴(𝜆) = 𝑓1𝑢(𝜆, 0, 0), 𝐵(𝜆) = 𝑓1V(𝜆, 0, 0), 𝐶(𝜆) =

𝑓2𝑢(𝜆, 0, 0), and 𝐷(𝜆) = 𝑓2V(𝜆, 0, 0) and define the linear
operator 𝐿(𝜆) with the domain 𝐷

𝐿(𝜆)
= 𝑋C by

𝐿 (𝜆) = (
𝑑1

𝜕
2

𝜕𝑥2 + 𝐴 (𝜆) 𝐵 (𝜆)

𝐶 (𝜆) 𝑑2
𝜕2

𝜕𝑥2 + 𝐷 (𝜆)

) . (5)

Assume that, for some 𝜆0 ∈ R, the following condition holds:

(H) There exists a neighborhood 𝑂 of 𝜆0 such that, for
𝜆 ∈ 𝑂, 𝐿(𝜆) has a pair of simple and continuously
differentiable eigenvalues𝛼(𝜆)±𝑖𝜔(𝜆)with 𝛼(𝜆0) = 0,
𝜔(𝜆0) = 𝜔0 > 0, and 𝛼󸀠(𝜆0) ̸= 0. In addition, all other
eigenvalues of 𝐿(𝜆) have nonzero real parts for 𝜆 ∈ 𝑂.

Then from [3, 7] we know that system (1) undergoes a Hopf
bifurcation at (0, 0) when 𝜆 crosses through 𝜆0.

Define the second-order matrix sequence 𝐿
𝑗
(𝜆) by

𝐿
𝑗
(𝜆) = (

𝐴 (𝜆) −
𝑑1𝑗

2

ℓ2
𝐵 (𝜆)

𝐶 (𝜆) 𝐷 (𝜆) −
𝑑1𝑗

2

ℓ2

), 𝑗 ∈ N0. (6)

Then the characteristic equation of 𝐿
𝑗
(𝜆) is

𝛽
2
−𝛽𝑇
𝑗
(𝜆) +𝐷

𝑗
(𝜆) = 0, 𝑗 ∈ N0, (7)

where

𝑇
𝑗
(𝜆) = 𝐴 (𝜆) +𝐷 (𝜆) −

(𝑑1 + 𝑑2) 𝑗
2

ℓ2
,

𝐷
𝑗
(𝜆) =

𝑑1𝑑2𝑗
4

ℓ4
− (𝑑1𝐷 (𝜆) + 𝑑2𝐴 (𝜆))

𝑗2

ℓ2

+𝐴 (𝜆)𝐷 (𝜆) − 𝐵 (𝜆) 𝐶 (𝜆) .

(8)

The eigenvalues of 𝐿(𝜆) can be determined by the
eigenvalues of 𝐿

𝑗
(𝜆) (𝑗 ∈ N0) and we have the following

conclusion.

Lemma 1. If 𝛽(𝜆) ∈ C is an eigenvalue of the operator 𝐿(𝜆),
then there exists some 𝑛 ∈ N0 such that 𝛽(𝜆) is the eigenvalue
of 𝐿
𝑛
(𝜆) and vice versa.

Proof. It is well known that the eigenvalue problem

−𝜑
󸀠󸀠

= 𝜇𝜑,

𝑥 ∈ (0, ℓ𝜋) ,

𝜑
󸀠
(0) = 𝜑

󸀠
(ℓ𝜋) = 0

(9)

has eigenvalues 𝑗2/ℓ2 (𝑗 = 0, 1, 2, . . .) with eigenfunctions
cos(𝑗/ℓ)𝑥. Assume that 𝛽(𝜆) ∈ C is an eigenvalue of
the operator 𝐿(𝜆) and the corresponding eigenfunction is
(𝜙, 𝜓) ∈ 𝑋C; that is,

𝐿 (𝜆) (
𝜙

𝜓
) = 𝜆(

𝜙

𝜓
) . (10)

Notice that (𝜙, 𝜓) ∈ 𝑋C can be represented as

(
𝜙

𝜓
) =

∞

∑
𝑗=0

(
𝑎
𝑗

𝑏
𝑗

) cos
𝑗

ℓ
𝑥, (11)
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where 𝑎
𝑗
, 𝑏
𝑗
∈ C (𝑗 ∈ N0). Then (10) can be written into

∞

∑
𝑗=0

𝐿
𝑗
(𝜆)(

𝑎
𝑗

𝑏
𝑗

) cos
𝑗

ℓ
𝑥 = 𝛽 (𝜆)

∞

∑
𝑗=0

(
𝑎
𝑗

𝑏
𝑗

) cos
𝑗

ℓ
𝑥. (12)

From the orthogonality of the function sequence
{cos(𝑗/ℓ)𝑥}∞

𝑗=0, one can get from (12) that, for each 𝑗 ∈ N0,

𝐿
𝑗
(𝜆)(

𝑎
𝑗

𝑏
𝑗

) = 𝛽 (𝜆)(
𝑎
𝑗

𝑏
𝑗

) . (13)

Since (𝜙, 𝜓) ∈ 𝑋C is the eigenfunction of 𝐿(𝜆) corresponding
to the eigenvalue 𝛽(𝜆), (𝜙, 𝜓) ̸= 0 and so there must be some
𝑛 ∈ N0 such that 0 ̸= (𝑎

𝑛
, 𝑏
𝑛
) ∈ C × C. Therefore, 𝛽(𝜆) is the

eigenvalue of the matrix 𝐿
𝑛
.

If 𝛽(𝜆) is the eigenvalue of some matrix 𝐿
𝑛
, then there

exists a nonzero vector (𝑎
𝑛
, 𝑏
𝑛
) ∈ C × C such that (13) holds.

Let

(
𝜙

𝜓
) = (

𝑎
𝑛

𝑏
𝑛

) cos 𝑛

ℓ
𝑥. (14)

Then (𝜙, 𝜓) ̸= 0 and

𝐿 (𝜆) (
𝜙

𝜓
) = 𝐿 (𝜆) (

𝑎
𝑛

𝑏
𝑛

) cos 𝑛

ℓ
𝑥 = 𝐿

𝑛
(
𝑎
𝑛

𝑏
𝑛

) cos 𝑛

ℓ
𝑥

= 𝜆(
𝑎
𝑛

𝑏
𝑛

) cos 𝑛

ℓ
𝑥 = 𝛽 (𝜆) (

𝜙

𝜓
) .

(15)

This demonstrates that 𝛽(𝜆) is an eigenvalue of 𝐿(𝜆) and thus
the proof is complete.

Lemma 1 shows that, under assumption (H), there is
a unique 𝑛 ∈ N0 such that ±𝑖𝜔0 are purely imaginary
eigenvalues of 𝐿

𝑛
(𝜆0); that is, 𝑇𝑛(𝜆0) = 0 and 𝐷

𝑛
(𝜆0) > 0.

Furthermore, it is easy to see that 𝑇
𝑗
(𝜆0) ̸= 0 for any 𝑗 ̸= 𝑛.

Therefore, 𝐿
𝑗
(𝜆0) (𝑗 ̸= 𝑛) has eigenvalues with zero real parts

if and only if𝐷
𝑗
(𝜆0) = 0. Assume that 𝛽(𝜆) = 𝛼(𝜆) + 𝑖𝜔(𝜆) is

the eigenvalue of 𝐿(𝜆) for 𝜆 sufficiently approaching 𝜆0.Then
by the smoothness of 𝑓

𝑘
(𝑘 = 1, 2) we know that 𝛽(𝜆) is also

the eigenvalue of 𝐿
𝑛
(𝜆); namely, 𝛽(𝜆) satisfies the following

equation:

𝛽
2
−𝛽𝑇
𝑛
(𝜆) +𝐷

𝑛
(𝜆) = 0. (16)

Under the assumption (H), differentiating the above equation
with respect to 𝜆 at 𝜆0 yields

𝑑𝛼 (𝜆0)

𝑑𝜆
=
1
2
[𝐴
󸀠
(𝜆0) +𝐷

󸀠
(𝜆0)] . (17)

Based on the above discussion, condition (H) has the
following equivalent form:

𝑇
𝑛
(𝜆0) = 0,

𝐷
𝑛
(𝜆0) > 0,

𝐴
󸀠
(𝜆0) +𝐷

󸀠
(𝜆0) ̸= 0

for some 𝑛 ∈ N0, 𝐷
𝑗
(𝜆0) ̸= 0 for any 𝑗 ∈ N0.

(18)

Then we know that 𝜔0 = √𝐷
𝑛
(𝜆0) and 𝐵(𝜆0), 𝐶(𝜆0) cannot

be equal to zero simultaneously when the hypothesis (H) is
satisfied. Therefore, the eigenvector of 𝐿

𝑛
(𝜆0) corresponding

to the eigenvalue 𝑖𝜔0 can be chosen as

(
𝑎
𝑛

𝑏
𝑛

) = (

1

𝑖𝜔0 − 𝐴 (𝜆0) + 𝑑1𝑛
2/ℓ2

𝐵 (𝜆0)

) (19)

and thus the eigenfunction of 𝐿(𝜆
0
) corresponding to the

eigenvalue 𝑖𝜔0 has the form

𝑞 = (
𝑎
𝑛

𝑏
𝑛

) cos 𝑛

ℓ
𝑥

= (

1

𝑖𝜔0 − 𝐴 (𝜆0) + 𝑑1𝑛
2/ℓ2

𝐵 (𝜆0)

) cos 𝑛

ℓ
𝑥.

(20)

Let the linear operator 𝐿∗(𝜆0) with the domain 𝐷
𝐿
∗
(𝜆0)

=

𝑋C be defined by

𝐿
∗
(𝜆0) = (

𝑑1
𝜕2

𝜕𝑥2 + 𝐴 (𝜆0) 𝐶 (𝜆0)

𝐵 (𝜆0) 𝑑2
𝜕2

𝜕𝑥2 + 𝐷 (𝜆0)

) . (21)

Then 𝐿∗(𝜆0) is the adjoint operator of the operator𝐿(𝜆0) such
that ⟨𝑈, 𝐿(𝜆0)𝑉⟩ = ⟨𝐿∗(𝜆0)𝑈, 𝑉⟩ with 𝑈,𝑉 ∈ 𝑋C. Similar
to the choice of the eigenfunction 𝑞 of the operator 𝐿(𝜆0)
corresponding to the eigenvalue 𝑖𝜔0, we can choose

𝑞
∗
= (

𝑎∗
𝑛

𝑏∗
𝑛

) cos 𝑛

ℓ
𝑥

= (

𝜔0 + 𝑖 (𝐴 (𝜆0) − 𝑑1𝑛
2/ℓ2)

2𝜔0 ∫
ℓ𝜋

0 cos2 (𝑛/ℓ) 𝑥 𝑑𝑥

−𝑖
𝐵 (𝜆0)

2𝜔0 ∫
ℓ𝜋

0 cos2 (𝑛/ℓ) 𝑥 𝑑𝑥

) cos 𝑛

ℓ
𝑥

(22)

such that
𝐿
∗
(𝜆0) 𝑞

∗
= − 𝑖𝜔0𝑞,

⟨𝑞
∗
, 𝑞⟩ = 1,

⟨𝑞
∗
, 𝑞⟩ = 0.

(23)

Define 𝑋𝐶 and 𝑋𝑆 by 𝑋𝐶 = {𝑧𝑞 + 𝑧𝑞 | 𝑧 ∈ C} and 𝑋𝑆 = {𝑈 ∈

𝑋 | ⟨𝑞∗, 𝑈⟩ = 0}, respectively. Then𝑋 can be decomposed as
the direct sum of 𝑋𝐶 and 𝑋𝑆; that is, 𝑋 = 𝑋𝐶 ⊕ 𝑋𝑆. Thus, for
any 𝑈 = (𝑢, V) ∈ 𝑋, there exists 𝑧 ∈ C and 𝑤 = (𝑤1, 𝑤2) ∈ 𝑋

𝑠

such that
𝑈 = 𝑧𝑞+ 𝑧 𝑞 +𝑤,

or
{{

{{

{

𝑢 = 𝑧𝑎
𝑛
cos 𝑛

ℓ
𝑥 + 𝑧 𝑎

𝑛
cos 𝑛

ℓ
𝑥 + 𝑤1,

V = 𝑧𝑏
𝑛
cos 𝑛

ℓ
𝑥 + 𝑧𝑏

𝑛
cos 𝑛

ℓ
𝑥 + 𝑤2.

(24)
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Define 𝐹(𝜆, 𝑈) by

𝐹 (𝜆, 𝑈) = (
𝑓1 (𝜆, 𝑢, V) − 𝐴 (𝜆) 𝑢 − 𝐵 (𝜆) V

𝑓2 (𝜆, 𝑢, V) − 𝐶 (𝜆) 𝑢 − 𝐷 (𝜆) V
) . (25)

Then system (1) can be rewritten into the following abstract
form:

𝑑𝑈

𝑑𝑡
= 𝐿 (𝜆)𝑈+𝐹 (𝜆, 𝑈) . (26)

When 𝜆 = 𝜆0, system (26) is reduced to

𝑑𝑈

𝑑𝑡
= 𝐿 (𝜆0) 𝑈+𝐹0 (𝑈) , (27)

where 𝐹0(𝑈) = 𝐹(𝜆, 𝑈)|
𝜆=𝜆0

. In terms of (23) and decomposi-
tion (24), system (27) can be transformed into the following
system in (𝑧, 𝑤) coordinates:

𝑑𝑧

𝑑𝑡
= 𝑖𝜔0𝑧 + ⟨𝑞

∗
, 𝐹0⟩ ,

𝑑𝑤

𝑑𝑡
= 𝐿 (𝜆0) 𝑤+𝐻 (𝑧, 𝑧, 𝑤) ,

(28)

where

𝐻(𝑧, 𝑧, 𝑤) = 𝐹0 − ⟨𝑞
∗
, 𝐹0⟩ 𝑞 − ⟨𝑞

∗
, 𝐹0⟩ 𝑞,

𝐹0 = 𝐹0 (𝑧𝑞 + 𝑧 𝑞 +𝑤) .
(29)

For 𝑋 = (𝑥1, 𝑥2), 𝑌 = (𝑦1, 𝑦2), and 𝑍 = (𝑧1, 𝑧2) ∈

𝑋C, define the symmetric multilinear forms 𝑄(𝑋, 𝑌) and
𝐶(𝑋, 𝑌, 𝑍), respectively, by

𝑄 (𝑋, 𝑌) = (

2
∑
𝑘,𝑗=1

𝜕2𝑓1 (𝜆0, 𝜉1, 𝜉2)

𝜕𝜉
𝑘
𝜕𝜉
𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜉1=𝜉2=0
𝑥
𝑘
𝑦
𝑗

2
∑
𝑘,𝑗=1

𝜕2𝑓2 (𝜆0, 𝜉1, 𝜉2)

𝜕𝜉
𝑘
𝜕𝜉
𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜉1=𝜉2=0
𝑥
𝑘
𝑦
𝑗

), (30)

𝐶 (𝑋, 𝑌, 𝑍)

= (

2
∑
𝑘,𝑗,𝑙=1

𝜕3𝑓1 (𝜆0, 𝜉1, 𝜉2)

𝜕𝜉
𝑘
𝜕𝜉
𝑗
𝜕𝜉
𝑙

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜉1=𝜉2=0
𝑥
𝑘
𝑦
𝑗
𝑧
𝑙

2
∑
𝑘,𝑗,𝑙=1

𝜕3𝑓2 (𝜆0, 𝜉1, 𝜉2)

𝜕𝜉
𝑘
𝜕𝜉
𝑗
𝜕𝜉
𝑙

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝜉1=𝜉2=0
𝑥
𝑘
𝑦
𝑗
𝑧
𝑙

).
(31)

Then, for 𝑈 = (𝑢, V) ∈ 𝑋, we have

𝐹0 (𝑈) =
1
2
𝑄 (𝑈,𝑈) +

1
6
𝐶 (𝑈,𝑈,𝑈) +𝑂 (|𝑈|

4
) . (32)

For the simplicity of notations, we will use 𝑄
𝑋𝑌

and 𝐶
𝑋𝑌𝑍

to
denote 𝑄(𝑋, 𝑌) and 𝐶(𝑋, 𝑌, 𝑍), respectively.

Let

𝐻(𝑧, 𝑧, 𝑤) =
𝐻20
2

𝑧
2
+𝐻11𝑧𝑧 +

𝐻02
2

𝑧
2
+𝑂 (|𝑧|

3
)

+𝑂 (|𝑧| |𝑤|) .

(33)

Then from (29) and (32), one can get

𝐻20 = 𝑄
𝑞𝑞

−⟨𝑞
∗
, 𝑄
𝑞𝑞
⟩ 𝑞 − ⟨𝑞

∗
, 𝑄
𝑞𝑞
⟩ 𝑞,

𝐻11 = 𝑄
𝑞𝑞

−⟨𝑞
∗
, 𝑄
𝑞𝑞
⟩ 𝑞 − ⟨𝑞

∗
, 𝑄
𝑞𝑞
⟩ 𝑞.

(34)

From the center manifold theorem in [3], we can rewrite𝑤 in
the form

𝑤 =
𝑤20
2

𝑧
2
+𝑤11𝑧𝑧 +

𝑤02
2

𝑧
2
+𝑂 (|𝑧|

3
) . (35)

The second equation of (28), (33), and (35) yields

𝑤20 = [2𝑖𝜔0𝐼 − 𝐿 (𝜆0)]
−1

𝐻20,

𝑤11 = − [𝐿 (𝜆0)]
−1

𝐻11.
(36)

Substituting (35) into the first equation of (28) gives the
equation of reaction-diffusion system (1) restricted on the
center manifold at (𝜆0, 0, 0) as

𝑑𝑧

𝑑𝑡
= 𝑖𝜔0𝑧 + ∑

2≤𝑘+𝑗≤3

𝑔
𝑘𝑗

𝑘!𝑗!
𝑧
𝑘
𝑧
𝑗
+𝑂 (|𝑧|

4
) , (37)

where 𝑔20 = ⟨𝑞∗, 𝑄
𝑞𝑞
⟩, 𝑔11 = ⟨𝑞∗, 𝑄

𝑞𝑞
⟩, 𝑔02 = ⟨𝑞∗, 𝑄

𝑞 𝑞
⟩, and

𝑔21 = 2 ⟨𝑞
∗
, 𝑄
𝑤11𝑞

⟩+⟨𝑞
∗
, 𝑄
𝑤20𝑞

⟩+⟨𝑞
∗
, 𝐶
𝑞𝑞𝑞

⟩ . (38)

The dynamics of (28) can be determined by the dynamics of
(37).

In addition, it can be observed from [3] that when 𝜆

approaches sufficiently 𝜆0, the Poincaré normal form of (26)
has the form

𝑧̇ = (𝛼 (𝜆) + 𝑖𝜔 (𝜆)) 𝑧 + 𝑧

𝑀

∑
𝑗=1

𝑐
𝑗
(𝜆) (𝑧𝑧)

𝑗
, (39)

where 𝑧 is a complex variable,𝑀 ≥ 1, and 𝑐
𝑗
(𝜆) are complex-

valued coefficients with

𝑐1 (𝜆0) =
𝑖

2𝜔0
(𝑔20𝑔11 − 2 󵄨󵄨󵄨󵄨𝑔11

󵄨󵄨󵄨󵄨
2
−
1
3
󵄨󵄨󵄨󵄨𝑔02

󵄨󵄨󵄨󵄨
2
)+

𝑔21
2

=
𝑖

2𝜔0
(⟨𝑞
∗
, 𝑄
𝑞𝑞
⟩ ⟨𝑞
∗
, 𝑄
𝑞𝑞
⟩− 2 󵄨󵄨󵄨󵄨󵄨

⟨𝑞
∗
, 𝑄
𝑞𝑞
⟩
󵄨󵄨󵄨󵄨󵄨

2

−
1
3
󵄨󵄨󵄨󵄨󵄨
⟨𝑞
∗
, 𝑄
𝑞 𝑞

⟩
󵄨󵄨󵄨󵄨󵄨

2
)+⟨𝑞

∗
, 𝑄
𝑤11𝑞

⟩+
1
2
⟨𝑞
∗
, 𝑄
𝑤20𝑞

⟩

+
1
2
⟨𝑞
∗
, 𝐶
𝑞𝑞𝑞

⟩ .

(40)

The direction of Hopf bifurcation and the stability of the
bifurcating periodic solutions of (1) at (𝜆0, 0, 0) can be
determined by the sign of Re 𝑐1(𝜆0) andwe have the following
conclusion.

Theorem 2. Assume that condition (H) (or equivalently (18))
holds.Then system (1) undergoes a supercritical (or subcritical)
Hopf bifurcation at (0, 0) when 𝜆 = 𝜆0 if

1
𝛼󸀠 (𝜆0)

Re 𝑐1 (𝜆0) < 0 (𝑟𝑒𝑠𝑝. > 0) . (41)

In addition, if all other eigenvalues of 𝐿(𝜆0) have negative real
parts, then the bifurcating periodic solutions are stable (resp.,
unstable) when Re 𝑐1(𝜆0) < 0 (𝑟𝑒𝑠𝑝., > 0).
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3. Spatially Homogeneous Hopf Bifurcation

From the description in the previous section we know that
Hopf bifurcation of (1) at (𝜆0, 0, 0) is spatially homogeneous
if condition (18) holds when 𝑛 = 0. In the present section, we
compute Re 𝑐1(𝜆0) in (40) in order to determine the direction
of spatially homogeneous Hopf bifurcation and the stability
of bifurcating periodic solutions of (1) at (𝜆0, 0, 0) following
the algorithm described in this pervious section.

Lemma 3. If condition (18) is satisfied when 𝑛 = 0, then𝐻20 =

𝐻11 = 0.

Proof. From (20) and (22) one can see

𝑎0 = 1,

𝑏0 =
𝑖𝜔0 − 𝐴 (𝜆0)

𝐵 (𝜆0)
,

𝑎
∗

0 =
𝜔0 + 𝑖𝐴 (𝜆0)

2ℓ𝜋𝜔0
,

𝑏
∗

0 = −
𝑖𝐵 (𝜆0)

2ℓ𝜋𝜔0
,

(42)

where

𝜔0 = √𝐴 (𝜆0)𝐷 (𝜆0) − 𝐵 (𝜆0) 𝐶 (𝜆0)

= √−𝐴2 (𝜆0) − 𝐵 (𝜆0) 𝐶 (𝜆0).

(43)

Let all the partial derivatives of 𝑓
𝑘
(𝜆, 𝑢, V) (𝑘 = 1, 2) be

evaluated at (𝜆0, 0, 0), and let 𝑐
𝑘0, 𝑑𝑘0, and 𝑒

𝑘0 (𝑘 = 1, 2) be
defined, respectively, by

𝑐
𝑘0 = 𝑓

𝑘𝑢𝑢
+ 2𝑓
𝑘𝑢V𝑏0 +𝑓

𝑘VV𝑏
2
0 ,

𝑑
𝑘0 = 𝑓

𝑘𝑢𝑢
+𝑓
𝑘𝑢V (𝑏0 + 𝑏0) +𝑓

𝑘VV
󵄨󵄨󵄨󵄨𝑏0

󵄨󵄨󵄨󵄨
2
,

𝑒
𝑘0 = 𝑓

𝑘𝑢𝑢𝑢
+𝑓
𝑘𝑢𝑢V (2𝑏0 + 𝑏0) +𝑓

𝑘𝑢VV (2
󵄨󵄨󵄨󵄨𝑏0

󵄨󵄨󵄨󵄨
2
+ 𝑏

2
0 )

+𝑓
𝑘VVV

󵄨󵄨󵄨󵄨𝑏0
󵄨󵄨󵄨󵄨
2
𝑏0.

(44)

Then from (30) and (31) we can get

𝑄
𝑞𝑞

= (
𝑐10

𝑐20
) ,

𝑄
𝑞𝑞

= (
𝑑10

𝑑20
) ,

𝐶
𝑞𝑞𝑞

= (
𝑒10

𝑒20
) .

(45)

Therefore,

⟨𝑞
∗
, 𝑄
𝑞𝑞
⟩ = ∫

ℓ𝜋

0
(𝑎
∗

0 𝑐10 + 𝑏
∗

0 𝑐20)

= ℓ𝜋 (𝑎
∗

0 𝑐10 + 𝑏
∗

0 𝑐20) ,

⟨𝑞
∗
, 𝑄
𝑞𝑞
⟩ = ∫

ℓ𝜋

0
(𝑎
∗

0 𝑐10 + 𝑏
∗

0 𝑐20)

= ℓ𝜋 (𝑎
∗

0 𝑐10 + 𝑏
∗

0 𝑐20) ,

⟨𝑞
∗
, 𝑄
𝑞𝑞
⟩ = ∫

ℓ𝜋

0
(𝑎
∗

0𝑑10 + 𝑏
∗

0𝑑20)

= ℓ𝜋 (𝑎
∗

0𝑑10 + 𝑏
∗

0𝑑20) ,

⟨𝑞
∗
, 𝑄
𝑞𝑞
⟩ = ∫

ℓ𝜋

0
(𝑎
∗

0 𝑑10 + 𝑏
∗

0 𝑑20)

= ℓ𝜋 (𝑎
∗

0 𝑑10 + 𝑏
∗

0 𝑑20) .

(46)

From (34) and (46), one can obtain

𝐻20

= (

𝑐10 − ℓ𝜋 [(𝑎∗0 + 𝑎
∗

0 ) 𝑐10 + (𝑏∗0 + 𝑏
∗

0) 𝑐20]

𝑐20 − ℓ𝜋 [(𝑎
∗

0𝑏0 + 𝑎∗0 𝑏0) 𝑐10 + (𝑏
∗

0𝑏0 + 𝑏∗0 𝑏0) 𝑐20]

) ,

𝐻11

= (

𝑑10 − ℓ𝜋 [(𝑎∗0 + 𝑎
∗

0 ) 𝑑10 + (𝑏∗0 + 𝑏
∗

0) 𝑑20]

𝑑20 − ℓ𝜋 [(𝑎
∗

0𝑏0 + 𝑎∗0 𝑏0) 𝑑10 + (𝑏
∗

0𝑏0 + 𝑏∗0 𝑏0) 𝑑20]

) .

(47)

Notice from (42) that

𝑎
∗

0 + 𝑎
∗

0 = 𝑏
∗

0𝑏0 + 𝑏
∗

0 𝑏0 =
1
ℓ𝜋

,

𝑏
∗

0 + 𝑏
∗

0 = 𝑎
∗

0𝑏0 + 𝑎
∗

0 𝑏0 = 0.
(48)

The conclusion follows by substituting (48) into (47).

Lemma 3 and (36) imply 𝑤20 = 𝑤11 = 0 when 𝑛 = 0 in
(18) and thus we have

𝑔21 = ⟨𝑞
∗
, 𝐶
𝑞𝑞𝑞

⟩ = ∫
ℓ𝜋

0
(𝑎
∗

0 𝑒10 + 𝑏
∗

0 𝑒20)

= ℓ𝜋 (𝑎
∗

0 𝑒10 + 𝑏
∗

0 𝑒20) .

(49)

It follows from (40) that

2 Re 𝑐1 (𝜆0) = Re( 𝑖

𝜔0
⟨𝑞
∗
, 𝑄
𝑞𝑞
⟩ ⟨𝑞
∗
, 𝑄
𝑞𝑞
⟩

+⟨𝑞
∗
, 𝐶
𝑞𝑞𝑞

⟩)
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= Re[

[

𝑖
ℓ𝜋 (𝑎
∗

0 𝑐10 + 𝑏
∗

0 𝑐20) ℓ𝜋 (𝑎
∗

0𝑑10 + 𝑏
∗

0𝑑20)

𝜔0

+ ℓ𝜋 (𝑎
∗

0 𝑒10 + 𝑏
∗

0 𝑒20)
]

]

.

(50)

We represent 𝐴(𝜆0), 𝐵(𝜆0), and 𝐶(𝜆0) by 𝐴, 𝐵, and
𝐶, respectively, for the simplicity of notations and under
assumption (18) with 𝑛 = 0, substituting 𝑏0 in (42) into (44)
yields that, for 𝑘 = 1, 2,

Re 𝑐
𝑘0 =

𝑓
𝑘𝑢𝑢

𝐵2 − 2𝑓
𝑘𝑢V𝐴𝐵 + 𝑓

𝑘VV (2𝐴
2 + 𝐵𝐶)

𝐵2 ,

Im 𝑐
𝑘0 = 2𝜔0

𝑓
𝑘𝑢V𝐵 − 𝑓

𝑘VV𝐴

𝐵2 ,

𝑑
𝑘0 =

𝑓
𝑘𝑢𝑢

𝐴 − 2𝑓
𝑘𝑢V𝐵 − 𝑓

𝑘VV𝐶

𝐵
,

Re 𝑒
𝑘0 =

𝑓
𝑘𝑢𝑢𝑢

𝐵
2
− 3𝑓
𝑘𝑢𝑢V𝐴𝐵 + 2𝑓

𝑘𝑢VV𝐴
2
+ 𝑓
𝑘VVV𝐴𝐶

𝐵2 ,

Im 𝑒
𝑘0 = 𝜔0

𝑓
𝑘𝑢𝑢V𝐵 − 2𝑓

𝑘𝑢VV𝐴 − 𝑓
𝑘VVV𝐶

𝐵2 .

(51)

From (42), (50), and (51) one can derive

2 Re 𝑐1 (𝜆0) =
C0 (𝜆0)

4𝜔2
0𝐵

2 , (52)

where

C0 (𝜆0) = {[𝑓1𝑢𝑢𝐴
2
+ (𝑓2𝑢𝑢 − 2𝑓1𝑢V) 𝐴𝐵−𝑓1VV𝐴𝐶

− 2𝑓2𝑢V𝐵
2
−𝑓2VV𝐵𝐶] (𝑓1𝑢𝑢𝐵+𝑓1VV𝐶+ 2𝑓2𝑢V𝐵

− 2𝑓2VV𝐴)+ (𝑓1𝑢𝑢𝐴− 2𝑓1𝑢V𝐵−𝑓1VV𝐶) [𝑓1𝑢𝑢𝐴𝐵

+ 2𝑓1𝑢V𝐵𝐶−𝑓1VV𝐴𝐶+𝑓2𝑢𝑢𝐵
2
− 2𝑓2𝑢V𝐴𝐵

+𝑓2VV (2𝐴
2
+𝐵𝐶)] − 2 (𝐴

2
+𝐵𝐶)

⋅ [(𝑓1𝑢𝑢𝑢 +𝑓2𝑢𝑢V) 𝐵
2
− 2 (𝑓1𝑢𝑢V +𝑓2𝑢VV) 𝐴𝐵

−𝑓2VVV𝐵𝐶]} .

(53)

Thus we have the following result.

Theorem4. Assume that condition (18) is satisfied when 𝑛 = 0
andC0(𝜆0) is defined by (53). Then the spatially homogeneous
Hopf bifurcation of system (1) at (𝜆0, 0, 0) is supercritical (resp.,
subcritical) if

C0 (𝜆0)

𝐴󸀠 (𝜆0) + 𝐷󸀠 (𝜆0)
< 0 (𝑟𝑒𝑠𝑝. > 0) . (54)

Moreover, if each eigenvalue of 𝐿
𝑗
(𝜆0) has negative real parts

for all 𝑗 ∈ N, then the above spatially homogeneous bifurcating
periodic solutions are stable (resp., unstable) when

C0 (𝜆0) < 0 (𝑟𝑒𝑠𝑝. > 0) . (55)

4. Spatially Nonhomogeneous
Hopf Bifurcation

Notice that the spatially nonhomogeneous periodic solu-
tions of (1) at (𝜆0, 0, 0) from Hopf bifurcation are unstable.
Accordingly, in this section we will calculate Re 𝑐1(𝜆0) in (40)
in order to determine the direction of Hopf bifurcation of
spatially nonhomogeneous periodic solutions of system (1) at
(𝜆0, 0, 0). To this end, we always assume that 𝑛 ∈ N in (18)
throughout this section and still represent 𝐴(𝜆0), 𝐵(𝜆0), and
𝐶(𝜆0) by𝐴, 𝐵, and𝐶, respectively.Thus 𝑞∗ defined in (22) has
the form

𝑞
∗
= (

𝑎∗
𝑛

𝑏∗
𝑛

) cos 𝑛

ℓ
𝑥

= (

𝜔0 + 𝑖 (𝐴 − 𝑑1𝑛
2/ℓ2)

ℓ𝜋𝜔0

−𝑖
𝐵

ℓ𝜋𝜔0

) cos 𝑛

ℓ
𝑥,

(56)

where

𝜔0 = √(𝐴 −
𝑑1𝑛

2

ℓ2
)(𝐷 −

𝑑2𝑛
2

ℓ2
) − 𝐵𝐶

= √−(𝐴 −
𝑑1𝑛

2

ℓ2
)

2

− 𝐵𝐶.

(57)

Since when 𝑛 ∈ N,

∫
ℓ𝜋

0
cos3 𝑛

ℓ
𝑥 𝑑𝑥 = 0, (58)

one can obtain

⟨𝑞
∗
, 𝑄
𝑞𝑞
⟩ = ⟨𝑞

∗
, 𝑄
𝑞𝑞
⟩ = ⟨𝑞

∗
, 𝑄
𝑞𝑞
⟩ = ⟨𝑞

∗
, 𝑄
𝑞𝑞
⟩

= 0.
(59)

Thus, in order to calculate Re 𝑐1(𝜆0), it remains to compute

⟨𝑞
∗
, 𝑄
𝑤11𝑞

⟩ ,

⟨𝑞
∗
, 𝑄
𝑤20𝑞

⟩ ,

⟨𝑞
∗
, 𝐶
𝑞𝑞𝑞

⟩ .

(60)
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Let all the second- and third-order partial derivatives of
𝑓
𝑘
(𝜆, 𝑢, V) (𝑘 = 1, 2) with respect to 𝑢 and V be evaluated at

(𝜆0, 0, 0) and let

𝑐
𝑘𝑛

= 𝑓
𝑘𝑢𝑢

+ 2𝑓
𝑘𝑢V𝑏𝑛 +𝑓

𝑘VV𝑏
2
𝑛
,

𝑑
𝑘𝑛

= 𝑓
𝑘𝑢𝑢

+𝑓
𝑘𝑢V (𝑏𝑛 + 𝑏

𝑛
) +𝑓
𝑘VV

󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨
2
,

𝑒
𝑘𝑛

= 𝑓
𝑘𝑢𝑢𝑢

+𝑓
𝑘𝑢𝑢V (2𝑏𝑛 + 𝑏

𝑛
) +𝑓
𝑘𝑢VV (2

󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨
2
+ 𝑏

2
𝑛
)

+𝑓
𝑘VVV

󵄨󵄨󵄨󵄨𝑏𝑛
󵄨󵄨󵄨󵄨
2
𝑏
𝑛
,

𝑘 = 1, 2.

(61)

Then from (30) and (31), one can observe

𝑄
𝑞𝑞

= (
𝑐1𝑛

𝑐2𝑛
) cos2 𝑛

ℓ
𝑥 =

1
2
(
𝑐1𝑛

𝑐2𝑛
)(1+ cos 2𝑛

ℓ
𝑥) ,

𝑄
𝑞𝑞

= (
𝑑1𝑛

𝑑2𝑛
) cos2 𝑛

ℓ
𝑥 =

1
2
(
𝑑1𝑛

𝑑2𝑛
)(1+ cos 2𝑛

ℓ
𝑥) ,

𝐶
𝑞𝑞𝑞

= (
𝑒1𝑛

𝑒2𝑛
) cos3 𝑛

ℓ
𝑥.

(62)

In view of (34), (59), and (62), we have

𝐻20 = 𝑄
𝑞𝑞

=
1
2
(
𝑐1𝑛

𝑐2𝑛
)(1+ cos 2𝑛

ℓ
𝑥) ,

𝐻11 = 𝑄
𝑞𝑞

=
1
2
(
𝑑1𝑛

𝑑2𝑛
)(1+ cos 2𝑛

ℓ
𝑥) .

(63)

Equalities (63) show that the calculation of [2𝑖𝜔0 − 𝐿(𝜆0)]
−1

and [𝐿(𝜆0)]
−1 will be restricted on the subspaces spanned by

eigenmodes 1 and cos(2𝑛/ℓ)𝑥.
Let

𝛼1 =
(12𝑑1𝑑2 − 3𝑑2

1) 𝑛4

ℓ4
−
3 (𝑑2 − 𝑑1) 𝐴𝑛2

ℓ2
− 3𝜔2

0 ,

𝛼2 =
6 (𝑑1 + 𝑑2) 𝑛

2𝜔0
ℓ2

,

𝛼3 =
𝑑2
1𝑛

4

ℓ4
+

(𝑑2 − 𝑑1) 𝐴𝑛
2

ℓ2
− 3𝜔2

0 ,

𝛼4 = −
2 (𝑑1 + 𝑑2) 𝑛

2𝜔0
ℓ2

.

(64)

Then, under condition (18), one can derive

[2𝑖𝜔0𝐼 − 𝐿2𝑛 (𝜆0)]
−1

=
1

𝛼1 + 𝑖𝛼2

⋅(

2𝑖𝜔0 + 𝐴 +
(3𝑑2 − 𝑑1) 𝑛

2

ℓ2
𝐵

𝐶 2𝑖𝜔0 − 𝐴 +
4𝑑1𝑛

2

ℓ2

),

[2𝑖𝜔0𝐼 − 𝐿0 (𝜆0)]
−1

=
1

𝛼3 + 𝑖𝛼3

⋅(
2𝑖𝜔0 + 𝐴 −

(𝑑1 + 𝑑2) 𝑛
2

ℓ2
𝐵

𝐶 2𝑖𝜔0 − 𝐴

) .

(65)

From (36) and (61), we have

𝑤20 = {
[2𝑖𝜔0𝐼 − 𝐿2𝑛 (𝜆0)]

−1

2
cos 2𝑛

ℓ
𝑥

+
[2𝑖𝜔0𝐼 − 𝐿0 (𝜆0)]

−1

2
}(

𝑐1𝑛

𝑐2𝑛
) =

1
2 (𝛼1 + 𝑖𝛼2)

⋅(

[2𝑖𝜔0 + 𝐴 +
(3𝑑2 − 𝑑1) 𝑛

2

ℓ2
] 𝑐1𝑛 + 𝐵𝑐2𝑛

𝐶𝑐1𝑛 + (2𝑖𝜔0 − 𝐴 +
4𝑑1𝑛

2

ℓ2
) 𝑐2𝑛

)

⋅ cos 2𝑛
ℓ

𝑥 +
1

2 (𝛼3 + 𝑖𝛼4)

⋅(
[2𝑖𝜔0 + 𝐴 −

(𝑑1 + 𝑑2) 𝑛
2

ℓ2
] 𝑐1𝑛 + 𝐵𝑐2𝑛

𝐶𝑐1𝑛 + (2𝑖𝜔0 − 𝐴) 𝑐2𝑛

).

(66)

Similarly, we can get

𝑤11 =
1
2𝛼5

(

[𝐴 +
(3𝑑2 − 𝑑1) 𝑛

2

ℓ2
]𝑑1𝑛 + 𝐵𝑑2𝑛

𝐶𝑑1𝑛 + (
4𝑑1𝑛

2

ℓ2
− 𝐴)𝑑2𝑛

)

⋅ cos 2𝑛
ℓ

𝑥 +
1
2𝛼6

⋅(
[𝐴 −

(𝑑1 + 𝑑2) 𝑛
2

ℓ2
]𝑑1𝑛 + 𝐵𝑑2𝑛

𝐶𝑑1𝑛 − 𝐴𝑑2𝑛

),

(67)

where

𝛼5 =
(12𝑑1𝑑2 − 3𝑑2

1) 𝑛4

ℓ4
−
3 (𝑑2 − 𝑑1) 𝐴𝑛

2

ℓ2
+𝜔

2
0 ,

𝛼6 =
𝑑2
1𝑛

4

ℓ4
+

(𝑑2 − 𝑑1) 𝐴𝑛2

ℓ2
+𝜔

2
0 .

(68)
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From (30) we have

𝑄
𝑤20𝑞

= (
𝑓1𝑢𝑢𝜉 + 𝑓1𝑢V𝜂 + 𝑓1VV𝛾

𝑓2𝑢𝑢𝜉 + 𝑓2𝑢V𝜂 + 𝑓2VV𝛾
) cos 𝑛

ℓ
𝑥 cos 2𝑛

ℓ
𝑥

+(
𝑓1𝑢𝑢𝜏 + 𝑓1𝑢V𝜒 + 𝑓1VV𝜁

𝑓2𝑢𝑢𝜏 + 𝑓2𝑢V𝜒 + 𝑓2VV𝜁
) cos 𝑛

ℓ
𝑥,

𝑄
𝑤11𝑞

= (
𝑓1𝑢𝑢𝜉 + 𝑓1𝑢V𝜂 + 𝑓1VV𝛾

𝑓2𝑢𝑢𝜉 + 𝑓2𝑢V𝜂 + 𝑓2VV𝛾
) cos 𝑛

ℓ
𝑥 cos 2𝑛

ℓ
𝑥

+(
𝑓1𝑢𝑢𝜏 + 𝑓1𝑢V𝜒 + 𝑓1VV𝜁

𝑓2𝑢𝑢𝜏 + 𝑓2𝑢V𝜒 + 𝑓2VV𝜁
) cos 𝑛

ℓ
𝑥,

(69)

with

𝜉 =
(2𝑖𝜔0 + 𝐴 + (3𝑑2 − 𝑑1) 𝑛

2
/ℓ

2
) 𝑐1𝑛 + 𝐵𝑐2𝑛

2 (𝛼1 + 𝑖𝛼2)
,

𝜂 =
(2𝑖𝜔0 + 𝐴 + (3𝑑2 − 𝑑1) 𝑛

2/ℓ2) (𝑑1𝑛
2/ℓ2 − 𝐴 − 𝑖𝜔0) + 𝐵𝐶

2𝐵 (𝛼1 + 𝑖𝛼2)

⋅ 𝑐1𝑛 +
(5𝑑1𝑛

2/ℓ2 − 2𝐴 + 𝑖𝜔0)

2 (𝛼1 + 𝑖𝛼2)
𝑐2𝑛,

𝛾 =
[𝐶𝑐1𝑛 + (2𝑖𝜔0 − 𝐴 + 4𝑑1𝑛

2/ℓ2) 𝑐2𝑛] (𝑑1𝑛
2/ℓ2 − 𝐴 − 𝑖𝜔0)

2𝐵 (𝛼1 + 𝑖𝛼2)
,

𝜏 =
(2𝑖𝜔0 + 𝐴 − (𝑑1 + 𝑑2) 𝑛

2/ℓ2) 𝑐1𝑛 + 𝐵𝑐2𝑛

2 (𝛼3 + 𝑖𝛼4)
,

𝜒 =
(2𝑖𝜔0 + 𝐴 − (𝑑1 + 𝑑2) 𝑛

2/ℓ2) (𝑑1𝑛
2/ℓ2 − 𝐴 − 𝑖𝜔0) + 𝐵𝐶

2𝐵 (𝛼3 + 𝑖𝛼4)

⋅ 𝑐1𝑛 +
(𝑑1𝑛

2/ℓ2 − 2𝐴 + 𝑖𝜔0)

2 (𝛼3 + 𝑖𝛼4)
𝑐2𝑛,

𝜁 =
[𝐶𝑐1𝑛 + (2𝑖𝜔0 − 𝐴) 𝑐2𝑛] (𝑑1𝑛

2/ℓ2 − 𝐴 − 𝑖𝜔0)

2𝐵 (𝛼3 + 𝑖𝛼4)
,

𝜉 =
(𝐴 + (3𝑑2 − 𝑑1) 𝑛

2/ℓ2) 𝑑1𝑛 + 𝐵𝑑2𝑛

2𝛼5
,

𝜂 =
(𝐴 + (3𝑑2 − 𝑑1) 𝑛

2/ℓ2) (𝑖𝜔0 − 𝐴 + 𝑑1𝑛
2/ℓ2) + 𝐵𝐶

2𝐵𝛼5
𝑑1𝑛

+
(𝑖𝜔0 − 2𝐴 + 5𝑑1𝑛

2/ℓ2)

2𝛼5
𝑑2𝑛,

𝛾 =
(𝑖𝜔0 − 𝐴 + 𝑑1𝑛

2/ℓ2) [𝐶𝑑1𝑛 + (4𝑑1𝑛
2/ℓ2 − 𝐴) 𝑑2𝑛]

2𝐵𝛼5
,

𝜏 =
(𝐴 − (𝑑1 + 𝑑2) 𝑛

2/ℓ2) 𝑑1𝑛 + 𝐵𝑑2𝑛

2𝛼6
,

𝜒 =
(𝐴 − (𝑑1 + 𝑑2) 𝑛

2/ℓ2) (𝑖𝜔0 − 𝐴 + 𝑑1𝑛
2/ℓ2) + 𝐵𝐶

2𝐵𝛼6
𝑑1𝑛

+
(𝑖𝜔0 − 2𝐴 + 𝑑1𝑛

2/ℓ2)

2𝛼6
𝑑2𝑛,

𝜁 =
(𝑖𝜔0 − 𝐴 + 𝑑1𝑛

2/ℓ2) (𝐶𝑑1𝑛 − 𝐴𝑑2𝑛)

2𝐵𝛼6
.

(70)

Notice that, for 𝑛 ∈ N,

∫
ℓ𝜋

0
cos2 𝑛

ℓ
𝑥 𝑑𝑥 =

ℓ𝜋

2
,

∫
ℓ𝜋

0
cos 2𝑛

ℓ
𝑥cos2 𝑛

ℓ
𝑥 𝑑𝑥 =

ℓ𝜋

4
.

(71)

It follows from (69) that

⟨𝑞
∗
, 𝑄
𝑤20𝑞

⟩ =
ℓ𝜋

4
[𝑎
∗

𝑛
(𝑓1𝑢𝑢𝜉 +𝑓1𝑢V𝜂 +𝑓1VV𝛾)

+ 𝑏
∗

𝑛
(𝑓2𝑢𝑢𝜉 +𝑓2𝑢V𝜂 +𝑓2VV𝛾)]

+
ℓ𝜋

2
[𝑎
∗

𝑛
(𝑓1𝑢𝑢𝜏 +𝑓1𝑢V𝜒+𝑓1VV𝜁)

+ 𝑏
∗

𝑛
(𝑓2𝑢𝑢𝜏 +𝑓2𝑢V𝜒+𝑓2VV𝜁)] ,

⟨𝑞
∗
, 𝑄
𝑤11𝑞

⟩ =
ℓ𝜋

4
[𝑎
∗

𝑛
(𝑓1𝑢𝑢𝜉 +𝑓1𝑢V𝜂 +𝑓1VV𝛾)

+ 𝑏
∗

𝑛
(𝑓2𝑢𝑢𝜉 +𝑓2𝑢V𝜂 +𝑓2VV𝛾)]

+
ℓ𝜋

2
[𝑎
∗

𝑛
(𝑓1𝑢𝑢𝜏 +𝑓1𝑢V𝜒+𝑓1VV𝜁)

+ 𝑏
∗

𝑛
(𝑓2𝑢𝑢𝜏 +𝑓2𝑢V𝜒+𝑓2VV𝜁)] .

(72)

Substituting 𝑏
𝑛
= (𝑖𝜔0−𝐴(𝜆0)+𝑑1𝑛

2/ℓ2)/𝐵(𝜆0) into (61) gives

Re 𝑐
𝑘𝑛

=
𝑓
𝑘𝑢𝑢

𝐵2 − 2𝑓
𝑘𝑢V (𝐴 − 𝑑1𝑛

2/ℓ2) 𝐵 + 𝑓
𝑘VV [2 (𝐴 − 𝑑1𝑛

2/ℓ2)
2
+ 𝐵𝐶]

𝐵2 ,

Im 𝑐
𝑘𝑛

=
2𝜔0 [𝑓𝑘𝑢V𝐵 − 𝑓

𝑘VV (𝐴 − 𝑑1𝑛
2/ℓ2)]

𝐵2 ,
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𝑑
𝑘𝑛

=
𝑓
𝑘𝑢𝑢

(𝐴 − 𝑑1𝑛
2/ℓ2) − 2𝑓

𝑘𝑢V𝐵 − 𝑓
𝑘VV𝐶

𝐵
,

Re 𝑒
𝑘𝑛

=
𝑓
𝑘𝑢𝑢𝑢

𝐵2 − 3𝑓
𝑘𝑢𝑢V (𝐴 − 𝑑1𝑛

2/ℓ2) 𝐵 + 2𝑓
𝑘𝑢VV (𝐴 − 𝑑1𝑛

2/ℓ2)
2
+ 𝑓
𝑘VVV (𝐴 − 𝑑1𝑛

2/ℓ2) 𝐶

𝐵2 ,

Im 𝑒
𝑘𝑛

=
𝜔0 [𝑓𝑘𝑢𝑢V𝐵 − 2𝑓

𝑘𝑢VV (𝐴 − 𝑑1𝑛
2/ℓ2) − 𝑓

𝑘VVV𝐶]

𝐵2 ,

𝑘 = 1, 2.
(73)

Then from (70) and (73), we have

Re 𝜉 =
[(𝐴 + (3𝑑2 − 𝑑1) 𝑛

2/ℓ2)Re 𝑐1𝑛 + 𝐵Re 𝑐2𝑛 − 2𝜔0 Im 𝑐
1𝑛
] 𝛼1 + [(𝐴 + (3𝑑2 − 𝑑1) 𝑛

2/ℓ2) Im 𝑐1𝑛 + 𝐵 Im 𝑐2𝑛 + 2𝜔0 Re 𝑐1𝑛] 𝛼2

2 (𝛼2
1 + 𝛼2

2)
,

Im 𝜉 =
[(𝐴 + (3𝑑2 − 𝑑1) 𝑛

2/ℓ2) Im 𝑐1𝑛 + 𝐵 Im 𝑐2𝑛 + 2𝜔0 Re 𝑐1𝑛] 𝛼1 − [(𝐴 + (3𝑑2 − 𝑑1) 𝑛
2/ℓ2)Re 𝑐1𝑛 + 𝐵Re 𝑐2𝑛 − 2𝜔0 Im 𝑐1𝑛] 𝛼2

2 (𝛼2
1 + 𝛼2

2)
,

Re 𝜂

=
[(𝐴 + (3𝑑2 − 𝑑1) 𝑛

2/ℓ2) (𝑑1𝑛
2/ℓ2 − 𝐴) + 𝐵𝐶 + 2𝜔2

0]Re 𝑐1𝑛 − 3𝜔0 ((𝑑1 − 𝑑2) 𝑛
2/ℓ2 − 𝐴) Im 𝑐1𝑛 + 𝐵 (5𝑑1𝑛

2/ℓ2 − 2𝐴)Re 𝑐2𝑛 − 𝐵𝜔0 Im 𝑐2𝑛

2𝐵 (𝛼2
1 + 𝛼2

2)

⋅ 𝛼1

+
[(𝐴 + (3𝑑2 − 𝑑1) 𝑛

2/ℓ2) (𝑑1𝑛
2/ℓ2 − 𝐴) + 𝐵𝐶 + 2𝜔2

0] Im 𝑐1𝑛 + 3𝜔0 ((𝑑1 − 𝑑2) 𝑛
2/ℓ2 − 𝐴)Re 𝑐1𝑛 + 𝐵 (5𝑑1𝑛

2/ℓ2 − 2𝐴) Im 𝑐2𝑛 + 𝐵𝜔0 Re 𝑐2𝑛
2𝐵 (𝛼2

1 + 𝛼2
2)

⋅ 𝛼2,

Im 𝜂

=
[(𝐴 + (3𝑑2 − 𝑑1) 𝑛

2/ℓ2) (𝑑1𝑛
2/ℓ2 − 𝐴) + 𝐵𝐶 + 2𝜔2

0] Im 𝑐1𝑛 + 3𝜔0 ((𝑑1 − 𝑑2) 𝑛
2/ℓ2 − 𝐴)Re 𝑐1𝑛 + 𝐵 (5𝑑1𝑛

2/ℓ2 − 2𝐴) Im 𝑐2𝑛 + 𝐵𝜔0 Re 𝑐2𝑛
2𝐵 (𝛼2

1 + 𝛼2
2)

⋅ 𝛼1

−
[(𝐴 + (3𝑑2 − 𝑑1) 𝑛

2/ℓ2) (𝑑1𝑛
2/ℓ2 − 𝐴) + 𝐵𝐶 + 2𝜔2

0]Re 𝑐1𝑛 − 3𝜔0 ((𝑑1 − 𝑑2) 𝑛
2/ℓ2 − 𝐴) Im 𝑐1𝑛 + 𝐵 (5𝑑1𝑛

2/ℓ2 − 2𝐴)Re 𝑐2𝑛 − 𝐵𝜔0 Im 𝑐2𝑛

2𝐵 (𝛼2
1 + 𝛼2

2)

⋅ 𝛼2,

Re 𝛾 =
(𝑑1𝑛

2/ℓ2 − 𝐴) [𝐶Re 𝑐1𝑛 − (𝐴 − 4𝑑1𝑛
2/ℓ2)Re 𝑐2𝑛 − 2𝜔0 Im 𝑐2𝑛] + 𝜔0 [𝐶 Im 𝑐1𝑛 − (𝐴 − 4𝑑1𝑛

2/ℓ2) Im 𝑐2𝑛 + 2𝜔0 Re 𝑐2𝑛]
2𝐵 (𝛼2

1 + 𝛼2
2)

𝛼1

+
(𝑑1𝑛

2/ℓ2 − 𝐴) [𝐶 Im 𝑐1𝑛 − (𝐴 − 4𝑑1𝑛
2/ℓ2) Im 𝑐2𝑛 + 2𝜔0 Re 𝑐2𝑛] − 𝜔0 [𝐶Re 𝑐1𝑛 − (𝐴 − 4𝑑1𝑛

2/ℓ2)Re 𝑐2𝑛 − 2𝜔0 Im 𝑐2𝑛]

2𝐵 (𝛼2
1 + 𝛼2

2)
𝛼2,

Im 𝛾 =
(𝑑1𝑛

2/ℓ2 − 𝐴) [𝐶 Im 𝑐1𝑛 − (𝐴 − 4𝑑1𝑛
2/ℓ2) Im 𝑐2𝑛 + 2𝜔0 Re 𝑐2𝑛] − 𝜔0 [𝐶Re 𝑐1𝑛 − (𝐴 − 4𝑑1𝑛

2/ℓ2)Re 𝑐2𝑛 − 2𝜔0 Im 𝑐2𝑛]

2𝐵 (𝛼2
1 + 𝛼2

2)
𝛼1
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−
(𝑑1𝑛

2/ℓ2 − 𝐴) [𝐶Re 𝑐1𝑛 − (𝐴 − 4𝑑1𝑛
2/ℓ2)Re 𝑐2𝑛 − 2𝜔0 Im 𝑐2𝑛] + 𝜔0 [𝐶 Im 𝑐1𝑛 − (𝐴 − 4𝑑1𝑛

2/ℓ2) Im 𝑐2𝑛 + 2𝜔0 Re 𝑐2𝑛]
2𝐵 (𝛼2

1 + 𝛼2
2)

𝛼2,

Re 𝜏 =
[(𝐴 + (𝑑1 + 𝑑2) 𝑛

2
/ℓ

2
)Re 𝑐1𝑛 + 𝐵Re 𝑐2𝑛 − 2𝜔0 Im 𝑐1𝑛] 𝛼3 + [(𝐴 + (𝑑1 + 𝑑2) 𝑛

2
/ℓ

2
) Im 𝑐1𝑛 + 𝐵 Im 𝑐2𝑛 + 2𝜔0 Re 𝑐1𝑛] 𝛼4

2 (𝛼2
3 + 𝛼2

4)
,

Im 𝜏 =
[(𝐴 + (𝑑1 + 𝑑2) 𝑛

2/ℓ2) Im 𝑐1𝑛 + 𝐵 Im 𝑐2𝑛 + 2𝜔0 Re 𝑐1𝑛] 𝛼3 − [(𝐴 + (𝑑1 + 𝑑2) 𝑛
2/ℓ2)Re 𝑐1𝑛 + 𝐵Re 𝑐2𝑛 − 2𝜔0 Im 𝑐1𝑛] 𝛼4

2 (𝛼2
3 + 𝛼2

4)
,

Re𝜒

=
[(𝐴 − (𝑑1 + 𝑑2) 𝑛

2/ℓ2) (𝑑1𝑛
2/ℓ2 − 𝐴) + 𝐵𝐶 + 2𝜔2

0]Re 𝑐1𝑛 − 𝜔0 ((3𝑑1 + 𝑑2) 𝑛
2/ℓ2 − 3𝐴) Im 𝑐1𝑛 + 𝐵 (𝑑1𝑛

2/ℓ2 − 2𝐴)Re 𝑐2𝑛 − 𝐵𝜔0 Im 𝑐2𝑛

2𝐵 (𝛼2
3 + 𝛼2

4)

⋅ 𝛼3

+
[(𝐴 − (𝑑1 + 𝑑2) 𝑛

2/ℓ2) (𝑑1𝑛
2/ℓ2 − 𝐴) + 𝐵𝐶 + 2𝜔2

0] Im 𝑐1𝑛 + 𝜔0 ((3𝑑1 + 𝑑2) 𝑛
2/ℓ2 − 3𝐴)Re 𝑐1𝑛 + 𝐵 (𝑑1𝑛

2/ℓ2 − 2𝐴) Im 𝑐2𝑛 + 𝐵𝜔0 Re 𝑐2𝑛
2𝐵 (𝛼2

3 + 𝛼2
4)

⋅ 𝛼4,

Im𝜒

=
[(𝐴 − (𝑑1 + 𝑑2) 𝑛

2/ℓ2) (𝑑1𝑛
2/ℓ2 − 𝐴) + 𝐵𝐶 + 2𝜔2

0] Im 𝑐1𝑛 + 𝜔0 ((3𝑑1 + 𝑑2) 𝑛
2/ℓ2 − 3𝐴)Re 𝑐1𝑛 + 𝐵 (𝑑1𝑛

2/ℓ2 − 2𝐴) Im 𝑐2𝑛 + 𝐵𝜔0 Re 𝑐2𝑛
2𝐵 (𝛼2

3 + 𝛼2
4)

⋅ 𝛼3

−
[(𝐴 − (𝑑1 + 𝑑2) 𝑛

2
/ℓ

2
) (𝑑1𝑛

2
/ℓ

2
− 𝐴) + 𝐵𝐶 + 2𝜔2

0]Re 𝑐1𝑛 − 𝜔0 ((3𝑑1 + 𝑑2) 𝑛
2
/ℓ

2
− 3𝐴) Im 𝑐1𝑛 + 𝐵 (𝑑1𝑛

2
/ℓ

2
− 2𝐴)Re 𝑐2𝑛 − 𝐵𝜔0 Im 𝑐2𝑛

2𝐵 (𝛼2
3 + 𝛼2

4)

⋅ 𝛼4,

Re 𝜁 =
(𝑑1𝑛

2
/ℓ

2
− 𝐴) (𝐶Re 𝑐1𝑛 − 𝐴Re 𝑐2𝑛 − 2𝜔0 Im 𝑐2𝑛) + 𝜔0 (𝐶 Im 𝑐1𝑛 − 𝐴 Im 𝑐2𝑛 + 2𝜔0 Re 𝑐2𝑛)

2𝐵 (𝛼2
3 + 𝛼2

4)
𝛼3

+
(𝑑1𝑛

2/ℓ2 − 𝐴) (𝐶 Im 𝑐1𝑛 − 𝐴 Im 𝑐2𝑛 + 2𝜔0 Re 𝑐2𝑛) − 𝜔0 (𝐶Re 𝑐1𝑛 − 𝐴Re 𝑐2𝑛 − 2𝜔0 Im 𝑐2𝑛)

2𝐵 (𝛼2
3 + 𝛼2

4)
𝛼4,

Im 𝜁 =
(𝑑1𝑛

2/ℓ2 − 𝐴) (𝐶 Im 𝑐1𝑛 − 𝐴 Im 𝑐2𝑛 + 2𝜔0 Re 𝑐2𝑛) − 𝜔0 (𝐶Re 𝑐1𝑛 − 𝐴Re 𝑐2𝑛 − 2𝜔0 Im 𝑐2𝑛)

2𝐵 (𝛼2
3 + 𝛼2

4)
𝛼3

−
(𝑑1𝑛

2/ℓ2 − 𝐴) (𝐶Re 𝑐1𝑛 − 𝐴Re 𝑐2𝑛 − 2𝜔0 Im 𝑐2𝑛) + 𝜔0 (𝐶 Im 𝑐1𝑛 − 𝐴 Im 𝑐2𝑛 + 2𝜔0 Re 𝑐2𝑛)
2𝐵 (𝛼2

3 + 𝛼2
4)

𝛼4,

Re 𝜂 =
[(𝐴 + (3𝑑2 − 𝑑1) 𝑛

2/ℓ2) (𝑑1𝑛
2/ℓ2 − 𝐴) + 𝐵𝐶] 𝑑1𝑛 + 𝐵 (5𝑑1𝑛

2/ℓ2 − 2𝐴)𝑑2𝑛

2𝐵𝛼5
,

Re 𝜂 =
𝜔0 [(𝐴 + (3𝑑2 − 𝑑1) 𝑛

2/ℓ2) 𝑑1𝑛 + 𝐵𝑑2𝑛]

2𝛼5
,

Re 𝛾 =
(𝑑1𝑛

2/ℓ2 − 𝐴) [𝐶𝑑1𝑛 + (4𝑑1𝑛
2/ℓ2 − 𝐴) 𝑑2𝑛]

2𝐵𝛼5
,

Im 𝛾 =
𝜔0 [𝐶𝑑1𝑛 + (4𝑑1𝑛

2/ℓ2 − 𝐴) 𝑑2𝑛]

2𝐵𝛼5
,

Re𝜒 =
[(𝐴 − (𝑑1 + 𝑑2) 𝑛

2/ℓ2) (𝑑1𝑛
2/ℓ2 − 𝐴) + 𝐵𝐶] 𝑑1𝑛 + 𝐵 (𝑑1𝑛

2/ℓ2 − 2𝐴)𝑑2𝑛

2𝐵𝛼6
,

Im𝜒 =
𝜔0 [(𝐴 − (𝑑1 + 𝑑2) 𝑛

2/ℓ2) 𝑑1𝑛 + 𝐵𝑑2𝑛]

2𝛼6𝐵 (𝜆0)
,

Re 𝜁 =
(𝐶𝑑1𝑛 − 𝐴𝑑2𝑛) (𝑑1𝑛

2
/ℓ

2
− 𝐴)

2𝐵𝛼6
,

Im 𝜁 =
𝜔0 (𝐶𝑑1𝑛 − 𝐴𝑑2𝑛)

2𝐵𝛼6
.

(74)
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Since ℓ𝜋𝑎
∗

𝑛
= 1 − 𝑖(𝐴 − 𝑑1𝑛

2/ℓ2)/𝜔0 and ℓ𝜋𝑏
∗

𝑛
= −𝑖𝐵/𝜔0,

one can get

Re ⟨𝑞∗, 𝑄
𝑤20𝑞

⟩ =
1
4
[𝑓1𝑢𝑢 (Re 𝜉 + 2 Re 𝜏)

+𝑓1𝑢V (Re 𝜂 + 2 Re𝜒) +𝑓1VV (Re 𝛾 + 2 Re 𝜁)]

+
(𝐴 − 𝑑1𝑛

2/ℓ2)

4𝜔0
[𝑓1𝑢𝑢 (Im 𝜉 + 2 Im 𝜏)

+𝑓1𝑢V (Im 𝜂 + 2 Im𝜒) +𝑓1VV (Im 𝛾 + 2 Im 𝜁)]

+
𝐵

4𝜔0
[𝑓2𝑢𝑢 (Im 𝜉 + 2 Im 𝜏)

+𝑓2𝑢V (Im 𝜂 + 2 Im𝜒) +𝑓2VV (Im 𝛾 + 2 Im 𝜁)] ,

Re ⟨𝑞∗, 𝑄
𝑤11𝑞

⟩ =
1
4
[𝑓1𝑢𝑢 (𝜉 + 2𝜏)

+𝑓1𝑢V (Re 𝜂 + 2 Re𝜒) +𝑓1VV (Re 𝛾 + 2 Re 𝜁)]

+
(𝐴 − 𝑑1𝑛

2/ℓ2)

4𝜔0
[𝑓1𝑢𝑢 (𝜉 + 2𝜏)

+𝑓1𝑢V (Re 𝜂 + 2 Re𝜒) +𝑓1VV (Re 𝛾 + 2 Re 𝜁)]

+
𝐵

4𝜔0
[𝑓2𝑢V (Im 𝜂 + 2 Im𝜒)

+𝑓2VV (Im 𝛾 + 2 Im 𝜁)] .

(75)

In addition, it follows from ∫
ℓ𝜋

0 cos4(𝑛/ℓ)𝑥 𝑑𝑥 = 3ℓ𝜋/8
and (62) that

⟨𝑞
∗
, 𝐶
𝑞𝑞𝑞

⟩ =
3ℓ𝜋
8

(𝑎
∗

𝑛
𝑒1𝑛 + 𝑏

∗

𝑛
𝑒2𝑛) . (76)

Therefore,

Re ⟨𝑞∗, 𝐶
𝑞𝑞𝑞

⟩ =
3
8𝐵2 {𝑓1𝑢𝑢𝑢𝐵

2

− 3𝑓1𝑢𝑢V (𝐴−
𝑑1𝑛

2

ℓ2
)𝐵+ 2𝑓1𝑢VV (𝐴−

𝑑1𝑛
2

ℓ2
)

2

+𝑓1VVV (𝐴−
𝑑1𝑛

2

ℓ2
)𝐶+(𝐴−

𝑑1𝑛
2

ℓ2
)

⋅ [𝑓1𝑢𝑢V𝐵− 2𝑓1𝑢VV (𝐴−
𝑑1𝑛

2

ℓ2
)−𝑓1VVV𝐶]

+𝐵[𝑓2𝑢𝑢V𝐵− 2𝑓2𝑢VV (𝐴−
𝑑1𝑛

2

ℓ2
)−𝑓2VVV𝐶]} .

(77)

Now, by (40), we have

Re 𝑐1 (𝜆0) = Re ⟨𝑞∗, 𝑄
𝑤11𝑞

⟩+
1
2
Re ⟨𝑞∗, 𝑄

𝑤20𝑞
⟩+

1
2

⋅Re ⟨𝑞∗, 𝐶
𝑞𝑞𝑞

⟩

=
1
8
[𝑓1𝑢𝑢 (Re 𝜉 + 2 Re 𝜏 + 2𝜉 + 4𝜏)

+𝑓1𝑢V (Re 𝜂 + 2 Re𝜒+ 2 Re 𝜂 + 4 Re𝜒)

+𝑓1VV (Re 𝛾 + 2 Re 𝜁 + 2 Re 𝛾 + 4 Re 𝜁)]

+
(𝐴 − 𝑑1𝑛

2/ℓ2)

8𝜔0
[𝑓1𝑢𝑢 (Im 𝜉 + 2 Im 𝜏 + 2𝜉 + 4𝜏)

+𝑓1𝑢V (Im 𝜂 + 2 Im𝜒+ 2 Re 𝜂 + 4 Re𝜒)

+𝑓1VV (Im 𝛾 + 2 Im 𝜁 + 2 Re 𝛾 + 4 Re 𝜁)]

+
𝐵

8𝜔0
[𝑓2𝑢𝑢 (Im 𝜉 + 2 Im 𝜏)

+𝑓2𝑢V (Im 𝜂
𝐼
+ 2 Im𝜒+ 2 Im 𝜂 + 4 Im𝜒)

+𝑓2VV (Im 𝛾 + Im 𝜁 + 2 Im 𝛾 + 4 Im 𝜁)]

+
3

16𝐵2 {𝑓1𝑢𝑢𝑢𝐵
2
− 3𝑓1𝑢𝑢V (𝐴−

𝑑1𝑛
2

ℓ2
)𝐵

+ 2𝑓1𝑢VV (𝐴−
𝑑1𝑛

2

ℓ2
)

2

+𝑓1VVV (𝐴−
𝑑1𝑛

2

ℓ2
)𝐶

+(𝐴−
𝑑1𝑛

2

ℓ2
)

⋅ [𝑓1𝑢𝑢V𝐵− 2𝑓1𝑢VV (𝐴−
𝑑1𝑛

2

ℓ2
)−𝑓1VVV𝐶]

+𝐵[𝑓2𝑢𝑢V𝐵− 2𝑓2𝑢VV (𝐴−
𝑑1𝑛

2

ℓ2
)−𝑓2VVV𝐶]} .

(78)

Thus we have the following result.

Theorem 5. Assume that condition (18) holds for 𝑛 ∈ N. Then
the spatially nonhomogeneous Hopf bifurcation of system (1) at
(𝜆0, 0, 0) is supercritical (resp., subcritical) if

Re 𝑐1 (𝜆0)

𝐴󸀠 (𝜆0) + 𝐷󸀠 (𝜆0)
< 0 (𝑟𝑒𝑠𝑝. > 0) ; (79)

here Re 𝑐1(𝜆0) is given by (78).
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