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The main purpose of this work is to give sufficient conditions for the uniform stability of the zero solution of a certain fourth-order
vector delay differential equation of the following form: XD+ FX XX+ OX) +GX(t—1) + HX(t—71)) = 0. By constructing

a Lyapunov functional, we obtained the result of stability.

1. Introduction

As is well known, the stability is a very important problem
in the theory and applications of delay differential equa-
tions. Therefore, in the literature, some methods have been
developed to obtain information on the stability behaviour
of the delay differential equations when there is no analytical
expression for the solutions. One of these methods is known
as Lyapunov’s second method; since Lyapunov [1] proposed
his famous second method on the stability of motion, the
problems related to the investigation of stability of solutions
of certain second-, third-, and fourth-order linear and non-
linear, scalar, and vector differential equations have been
given great attention in the past five decades due to the
importance of the subject.

During this period, stability of solutions for various
higher-order linear and nonlinear differential equations has
been extensively studied and many results have been obtained
in the literature (see, e.g., Krasovskii [2], Yoshizawa [3],
Reissig et al. [4], Abou-El-Ela and Sadek [5-7], Bereketoglu
and Kart [8], Sadek [9], Tun¢ [10-13], Abou-El-Ela et al.
[14], and the references cited in those works), among which
the results performed on asymptotic stability properties of
linear and nonlinear scalar and vector differential equations
of fourth-order can briefly be summarized as follows.

First in 1990 Abou-El-Ela and Sadek [5] found sufficient
conditions for the asymptotic stability of the zero solution of
the scalar nonlinear differential equation of the form

b flaR)E+ R+ 00+ f(0)=0. (1)

Later in 2004 Sadek [9] determined sufficient conditions,
under which all solutions of the nonhomogeneous vector
differential equation

x@ +F(X,X)X+0(X)+G(X)+AX
2)
=P(t,X, X, X, X)

tend to zeroast — oo.

Recently in 2012 Abou-El-Ela et al. [14] investigated
sufficient conditions for the uniform stability of the zero
solution of the real fourth-order vector delay differential
equation

XY+ AX+0(X)+G(X)+HX(t-r)=0. )

In the present paper, we are concerned with the uniform
stability of the zero solution X = 0 of real nonlinear
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autonomous vector delay differential equation of the fourth-
order

XY+ F(XX)X+0(X)+G(X(t-1)
(4)
+H(X(t-1) =

where X € R"; F is an n x n-symmetric matrix; ®, G, and H
are n-vector continuous functions; ®(0) = G(0) = H(0) = 0;
and r is a bounded delay and positive constant.

Equation (4) represents a system of real fourth-order
differential equation with delay

xf“)+if,-k(xl,...,xn;xl,...,xn)kk+¢i(5e1,...,5en)
k=1
+g (X, @t-7),....%, @t -71))
+h(x (t=1),....,x,(t—1)) = (i=1,2,...,n).
(5)

The Jacobian matrices J(F(Y, Z2)Y | Z), J(F(Y,Z2)Z | Z),
JEY,2)Y | Y), J(FY,Z2)Z | Y),]o(Z), J5(Y), and J(X)

are given by
n a ;
Zf:kyk> <Z j;k)’k>>

]k 1 k=1

](F(Y,Z)YIZ)=<

](F(Y,Z)ZIZ)=<

2
wa(58n)

Zﬁm)

Jkl

—F(YZ)+<Z U )

klyJ

& Of )
Jl;ﬁk k) (giayJZk ,
0 0g;
1¢<Z>—<af’>, JG(Y)=(§),
J

J

oh;
]H(X) (830)’

J

I(F(Y,Z)YIY)=<
(6)

](F(Y,Z)ZIY)=<

where (i,j = 1,2,...,n), (x,...,%,), (Vp>ees Vu)s (Z15-- 45
z,)s (fu)s (1550, (915 -+ > gn)> and (hy, ..., h,) represent
X,Y,Z,F, ®,G, and H, respectively. It will also be assumed
as basic throughout the paper that the Jacobian matrices
JEY,2)Y | 2), J(F(Y,2)Z | Z2), J(F(Y,2)Y | Y), J(F(Y,
2)Z | Y), Jo(Z), J5(Y), and J(X) exist and are continuous.
The symbol (X,Y) will be used to denote the usual scalar
product in R” for any X, Y in R"; thatis, (X, Y) = Y., x;¥;5
thus (X, X) = | X||*. It is well known that the real symmetric
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matrix A = (aij), (i,j = 1,2,...,n) is said to be positive-
definite, if and only if the quadratic form X" AX is positive-
definite, where X € R” and X” denotes the transpose of X.

2. Main Result

In order to reach the main result of this paper, we will give
some basic information to the stability criteria for a general
autonomous delay differential system. We consider

?z?(ft),

where f : €;; — R"is a continuous mapping, f(0) = 0,
Gy = 1{p € €([-h,0],R") : |¢ll < H}, and for H; < H, there
exists an L(H,) > 0, with | f(¢)| < L(H,) when [|¢|| < H;.

X (s)=x(t+s), -h<s<0,t>0, (7)

Theorem 1 (see [15]). Let V(¢) :
functional satisfying a local Lipschitz condition, V (0)
that

(i) Wi(l¢(0)]) <

wedges;
(i) Vi) (§) < 0, for ¢ € G .
Then the zero solution of (7) is uniformly stable.

G — R be a continuous
=0, such

V() < Wy(llgll), where Wy, W, are

The following theorem will be our main stability result for

(4).

Theorem 2. In addition to the essential assumptions imposed
on the functions F, ®, G, and H, suppose the existence of
arbitrary positive constants a;, &, 0, &, oc;, and cx;. Suppose
also fori = 1,2,...,n the following conditions are satisfied.
(i) F(Y,2), J(F(Y,2)Y | Z), and J(F(Y,Z)Z | Z) are
symmetric; o, > A{(F(Y,2)) > oy > 0, forall Y, Z €
R".
(ii) G(0) = 0, J5(Y) is symmetric and )Li(_[ol Jo(oY)do) =
ogocﬁ/oc;z, forallY € R".

(iil) There is a finite constant A > 0 such that

1

foa, = T )|} oz — (xlocflz L F(Y,oZ)do| = A, (8)
forallY,Z € R".

(i) One has 0 < A(Jo(Y) - [ JooY)da) < &, < 24/

a0, forall Y € R™.

(v) One has A([| F(Y,0Z)do — F(Y,Z)) < 6, < 24/
ooz, forall Y, Z € R".
(Vi) JIFY,2)Y | Y)-F(Y, Z) and J(F(Y, Z)Z | Y) are neg-
ative-definite.
(vii) Also H(0) = 0, Jy(X) is symmetric, and
A, Ti(0X)do) > o, for all X € R,
(viii) J;(X) commutes with J;(X"), for all X, X' € R" and
< Ao = J(X)) < eDyal, for all X € R", and
2

-
Dy = oy + yaz00
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(ix) Also ®(0) = 0, Jo(Z) is symmetric, and 0 <
Ai(JOI Jo(0Z)do — 1) < soocgoci/cxf, forall Z € R",
where &, is a positive constant such that

,2
. 1 o A
& <&=min{ —, , ——,
o oz 4o osoa, D

2
20, A
“3_:‘4 =N 9)
406[1 D, \ %1%
104 2A
—~ —— =& |-
4D, \ ajo0y

Then the zero solution of (4) is uniformly stable, pro-
vided that

&

dyvn (o, + “1“2)’

A
200 500 \/n {oy + oy, (dy +dy +2)}F

(((xi/txiz) &- so) o,

o \n(d, +2d, +1) + ayayd,n |

r<min[

(10)

where

12

1 o
d =¢e+—, dy=e+ —2—. (11)
o K30y

The following two lemmas are important for proving
Theorem 2.

Lemma 3. Let A be a real symmetric n x n-matrix and
adzMA)za>0 (i=1,2,...,n), (12)

!
where a', a are constants. Then

a (X, X) > (AX, X) > a(X, X),
(13)
a? (X, X) > (AX, AX) > a* (X, X).

For a proof of the above lemma, see Bellman [16].
Lemma 4. Assumethat X =Y,Y = Z, and Z = W. Then
(1) (d/dp) [, (H(0X), X)do = (H(X),Y);
(2) (d/dr) fol (G(oY),Y)do = (G(Y), Z);
(3) (d/dt) fol (©(02), Z)do = (D(Z), W);
(4) (d/db) [} (oF(Y,02)Z, Z)do < (F(Y, 2)Z,W);

A

(5) (d/dt) [, (F(Y,02)Z,Y)do <
| [} F(Y,02)dol(Z, Z).

(F(Y,2)Y,W) +

3
Proof. The proof is as follows:
d 1
(1) o Jo (H (0X),X)do
- Jl oy (0X)Y, X) do
0
1
+ J (H (0X),Y)do
0
1 1
= J o {(Jy (0X)X,Y)do + J (H (0X),Y)do
0 0
1 a 1
= J oc— (H(0X),Y)do + J (H (6X),Y)do
0o 0o 0
= 0 (H (0X),Y)|y = (H(X),Y).
(14)
The proofs of (2) and (3) are similar to that of (1):
d 1
4) - L (0F (Y,07) Z, Z) do
= Jl (6F (Y,02) Z,W) do
0
1
+ J JFEY,02)02|Y)Z,Z)do
0
(15)

+ Jla(](F(Y,aZ)GZ | cZ)W, Z) do
0

< Jl (0F (Y,02) Z,W) do

0
1

+J o{J(F(Y,0Z2)0Z |0Z)Z,W)da,
0

since J(FZ | Y) is negative-definite from assumption (vi) and
J(FZ | Z) is symmetric from assumption (i). Then

1
ij (0F (Y,02) Z, Z) do
dt Jo

A

Jl (oF (Y,02) Z,W) do
0

1
+ J cri (oF (Y,02) Z,W) do
0 do

o (oF (Y,0Z) Z,W)|,

=(F(,2)Z,W),



d 1
() L (F(Y,02) Z,Y) do

1
_4 J (F(Y,02)Y,Z) do
dt Jo

1
= i J (F(Y,02)Y,W)do
dt Jo

1

+j J(F(Y,02)Y | Y)Z,Z) do
0

1

+ J (o] (F(Y,0Z2)Y | 6Z)W, Z) do.
0

(16)

Since J(FY | Z) is negative-definite from assumption (i),
we have

Jl (o] (F(Y,62)Y | cZ)W, Z) do
0

1

- J (0] (F(Y,02)Y | 062) Z,W) do
0

17)
1

:J o9 (F(Y,02)Y,W) do
0 oo

1

—(F(L,2)Y,W) - L (F(Y.02) Y, W) do,

and then

%Jl (F(Y,02) Z,Y) do
0
—(F(V,2) Y, W) + jl J(F(Y.02)Y |Y)Z,Z) do
0
—(F(Y,Z)Y,W) + Jl (F(Y,02)Z,Z) do
0

+ Jl {J(F,02)Y |Y)-F(,02)}Z,Z)do
0

<(F(Y,Z)Y,W) + rF(Y,OZ)da (Z,7),
0

(18)

since J(FY | Y)— F is negative-definite from assumption (vi).

O

3. Proof of Theorem 2

For the proof of the main stability theorem, it will be con-

venient to consider instead of (4) the equivalent system
X=Y, Y=z  Z=W,

W=-F(Y,Z)W-®(Z)-G(Y)-H(X)

t

+ ‘L Jo (Y (s)Z(s)ds+ L T (X (s)Y (s)ds.
(19)

International Journal of Differential Equations

The proof of Theorem 2 depends on a scalar differentiable
function V(X,,Y,, Z,,W,); now we define the Lyapunov
functional V as

V(XY Z, W)

=2d, J: (H (0X),X)do +d, (a,Y,Y)

1
—d; {0, Y,Y) +2 J (G(aY),Y)do
0

1

+2d, J- (D (6Z2),Z)do
0

1
- d, <z,z>+zj (oF (Y,02) Z,Z) do +d, (W, W)
0

+2(H(X),Y)+2d,(H(X),Z)
+2d, jl (F(Y,02)Z,Y)do
0

+2d,(G(Y),2Z) +2d, (Y,W) +2(Z,W)

0 t
. 24 j 1Y (0] O ds

—r Jt+s

0 t
ey j j 1Z(O)] d6 ds,
—r Jt+s

(20)

where ¢ and A are positive constants, which will be deter-
mined later. Let

F (Y,Z) = Ll F(Y,0Z)do. (21)

Since A,(F(Y, Z)) > «; > 0, for all Y, Z € R”, it follows that

Ai(F(Y,2)2a, >0, VY,ZeR" (22)
Further we define
I(Y)= Ll J; (oY) do, (23)
and then it follows from (ii) and (iv) that
AT () > “f’;ﬁ >0, (24)
Oy

forallY € R", and

0<A(Jo(Y)-T(Y)) <8, VYeR" (25)
Since
i(I) (02)=]p (02) Z, @ (0) =0, (26)
Jdo
then

1

®(2) = J Jo (02) Zdo. (27)

0
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Therefore

2d, Ll (D(0Z),Z)do

2d, J (Jp (0y0,2) 0,2, Z) do,do,

I
zdIJIH (o (0,2 ZZ>d01]d02 (28)

0

v

2d, L w(Z,Z)do, by ()

2d, j
0

Also since

—_

2 (Z,Z)0,doy =dyoa, (Z,Z) .

0 t 0 t
24 J YOI dods, 2AJ J 120 dO ds
—r Jt+s -r Jt+s
+ + (29)

are nonnegative, consequently we obtain

WV (Xp Y Z W)

>2d, Ll (H (0X),X)do +d, (a,Y,Y) —d; {a,Y,Y)

+2 1 (G(0Y),Y)do + (ayd, —dy)(Z,Z)
0

2 Jl (6F(Y,02)Z,Z)ydo +d, (W,W)
0
+2(H (X),Y)
+2d,(H(X),Z) +2d, Jl (F(Y,0Z2) Z,Y) do
0

+2d,(G(Y),Z) +2d, (Y, W) + 2(Z,W).
(30)

Then we can find

2V > 2d, Jl (H(0X),X)do - |T7*H (X)||2 +d, (a,Y,Y)
0
—d (aY,Y) - d’ '|F11/2Y||2 +2 Jl (G(0Y),Y) do
0

P2+ (ad, - dy) 120 - &2 T2z

2 Ll (oF (Y,02) Z, Z) do — ||F1”2z||2 +d, W]
- ||F;1/2W||2 +|EPw o+ BPZ 4 szj/ZY"2

+ [T 2HCO) + 1Y + d1r1/22"2 .
(31)

The matrices F, and I are symmetric because F and ] are
symmetric. The eigenvalues of F, and I are positive because
of (22) and (24).

Consequently the square roots F; /2 and T'/? exist; these
are again symmetric and nonsingular for all Y, Z € R".

Therefore we get

1
2V >2d, J (H(0X),X)do - (I""H (X),H (X))
0
+dy (YY) —dy (@Y, Y) - d5 (YY)

1
2 I (G(0Y),Y)do - (IY,Y) + (eyd, — d,) | 2]
0

1
~di(TZ,Z) +2 J (oF (Y,0Z) Z,Z)ydo — (F,Z,Z)
0

+dy W - (F/'w, W)
(32)

From /\,»(Fl_l) < 1/ and /\,»(F_l) < ocff/ogocﬁ, because
of (22) and (24), we get from Lemma 3 and Cauchy-Schwartz
inequality that

2V > 2d, jl (H(0X),X)do - (I""H (X),H (X))
0

2 Jl (G (aY),Y)do — (TY,Y)
0

+ (“2d2 —ayd, - d% |, “) DR

(33)
+ (od, —dy =1 IT0) 121

2 Jl (oF (Y,02)Z,Z)do - (F,Z,Z)
0

(d - —) Wi

From the definitions of d,, d, in (11), it follows that
2V (X, Y, Z W) 2 Vi + V, + Vi, + e [WP, (34)
where
Vv, = 2d, Ll (H(0X),X)do - (I""H(X),H (X)),
V, = (apd, — agdy — 5 |y ) IV
2 JOI (G(0Y),Y)ydo - (IY,Y), (35)

V; 1= (apd, — d, - d} 1) 121

2 Jl (6F (Y,62) Z, Z)y do - (F,Z, Z) .
0



Since

£ﬂﬂw@ﬂ@mﬁ2%wﬂﬂﬂ@m%
(36)

by integrating both sides from o, = 0 to 0; = 1 and because
of H(0) = 0, we obtain

1

(H(X),H (X)) =2 L Uy (0,X) X, H (0,X)) doy. (37)
Thus

1
Vv, =2d, J (H (6X),X)do

0

1
—or! JO {Jg (0,X) X, H (0,X)) do, (38)

1
=2 L (H(0,X),{dy] ~T"" ]y (0,X)} X) do.
But from

0 _
= (H(0,0,X),{d,] =T ]y (0, X)} X)
? (39)

= <(71]H (0102X) X {dZI - Iﬁl]H (le)} X> ’

by integrating both sides from 0, = 0 to 0, = 1 and because
of H(0) = 0, we find

(H (0,0,X),{dy] =Ty (0, X)} X)

1
- L o1 (g1 (016,X) X, {dy = T35 (0, %)} X ) oy
(40)

Therefore by using (11), (24), (vii), (viii), and Lemma 3, we
have

1 1
V=2 L L o, (Jy (0,0,X) X,
{dZI -1y (alX)} X> do, do,
1 1 .
=2 L L 0, {Ju (0,0,X) {do] =Ty (0, X)} X,

X> do,do,

International Journal of Differential Equations

1 1
22sj J (Jy (0,0,X) 0, X, X) do, do,
0o Jo

+

20‘;2 11
o, (Jyy (0,0,X) X,
el N CXCICTAY

{ay] = Jy (0, X)} X) do, doy
1 1
ZZsJ- H <]H(0255)55,X>d02]d01
o Lo
1 _ 1
> Zej ocfl <X,X> do, = Zsj afl (X, X) 0ydo,
0 0

= ea) (X, X) = eay | X|.

(41)
To estimate V, we need
xyd, —ayd, - d% ”Fl ”
=dy {oy = d, |Jc V) - d; | Fy [}
(42)

+d, {d, ”]G (Y)“ - oy}
>d, {a, - d, "]G (Y)” -d, "F1”} >

since from (11) and (ii) we find that

12 2 2
o oo o
dy I )| —oy > | e+ — 324—oc4:s 324>0.
! !
X% | oy oy

Now

o, —d; “]G (Y)” -d, ||F1 “

12
&y

1
=0 - 0‘_1 ”]G (Y)” - ”Fl“

K30y

—e{l7e O + |17}
(44)

2
= o [0 foaea = o O} et |

—e{lle M+ [E
A

o000

>

1-2
—-€ (ocloc2 + 000300400, ), from (iii) .

Thus we obtain from (viii)

a—d |l M| -4, |F| = - €D, (45)

X030y
From the identity

1

1
J o (Jg(eY)Y,Y)do = (G(Y),Y) —J (G(0Y),Y) do,
0 0
(46)
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we get from (25) and by Lemma 3

ZJI(G(GY),Y)da—(G(Y),Y)
0
1 1
:J (G(oY),Y)dcr—J o0 {Jg(0Y)Y,Y)do
0 0
:JIG(F(GY)Y,Y)da—chr(]G(ch)Y,Y)da (47)
0 0

== jl o ({6 (©Y) =T (@Y)}Y,Y) do
0

1 2
> =& |IY]".
5 LY

So we have from (9) and (11)

1
V,>d, < - 5D0> Iy)* - 551 Y|

QX304

12
oy A ) 1 2
> —eD, |- =8, by
{%%(%% )= l}n F o s

2
1({ 2a°A 2
z Z(—z > —61> IvIe,
o os0

2 2
since € < (0c3oc4/4ocf1 DO)(ZOQ'1 A/oclocgoci - &y).
To estimate V; we need

a,d, —d, — d T
=d, {a, —d, T - d, | ||}
+d, {d, || -1}
oy —dy T - d, |[Fy )} )

1 {0‘2 - d, ”]G (Y)” —d, ||F1 "}

by (11), (25), and (45). So from the identity

1

Jla<1~‘(y,02)z,z> do = J (F(Y,02) Z,Z) do
0 0

_ jl o (F, (Y,0Z) Z, Z) do,
0
(50)

7
we find
1
2 J 0(F(Y,02)Z,Zydo - (F,Z,Z)
0
1 1
= J o(F(Y,02)Z,Z)do - J o(F,(Y,02)Z,Z) do
0 0
1
=— J o {({F(Y,02) - F,(Y,02)} Z, Z) do
0
1 2
> 28,127, by 0.
(51)
Thus from (9), we obtain
1 A 1
v, > {— < - sDO) - -52} 1Z11?
o \ a0y 2
(52)
1 2A
> Z( . —62) 1zI*,
a0
since € < (o, /4D0)(2A/ocfoc3oc4 —&,). Then it follows that
2V (XY Zpy W)
2
ez L L[ 20°A 3 2
> ea |IXI + <a1agag S IE

1 2A
+( 5— -8 J1ZI* +eIW?.
4\ ajos0y

Since the coefficients are positive constants from the
definitions of §;, §,, and e in (iv), (v), and (9), then there exists
a positive constant D, such that

V (XY, Z, W) 2 Dy (IX17 + Y17 + 1217 + [WIP).
(54)

To prove that

V (X, Y, Z, W;) < D, (IXIP + Y17 + 1217 + W),

(55)

by using the hypotheses of Theorem 2 we find
IE,] < Vadaaryer, by (i) . (56)

Since
WOD 02z, @©=0 (57
do
then from (ix) we have
1 1
1@ = | | Joto2)2do) < | 110 02)121do

(58)

< n<a2+

3 2
oo
30y
— |1Zl,
!
Oy



and also since

oG (oY)
Jdo

=Jg(0oY)Y, G(0) =0, (59)

then from (iv) we have

1 1
IG (V)] = L Jo (0Y) Ydo| < L Ve @V IY]l do

< oo Vn||Y].
Since

0H (0X)

H(0) =0, (61)

then from (viii) we get

1
|H (X)] = jo 1.1 (0X) Xdo

1
< | Vs @0] 1X11do
0 (62)

< a,ValXIl.

By using Cauchy-Schwartz inequality |{u,v)| <
(1/2)(lul® + [v1*) and from

0 t
| | @R dods

t+s

t

— 2u L O—t+7) Y O dO

t
< 2u Y|P L @—t+r)do

= pr’ Y17,
(63)

0 t
ZAJ J 1Z O] d6 ds

t+s

Y r ©O—t+r)Z O do

t
<21 ||Z||2J O—t+r)do

t—r

= A )Z).
Hence there exists a positive constant D, satisfying

V (XY, Z, W,) < D, (IX17 + Y17 + 1217 + [WIP).
(64)
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Now from (19), (20), and Lemma 4, we have

d
d—‘t/ — d, (H(X),Y) +dy (.Y, Z) — d, (Y, Z)
+(G(Y),Z) +d, (D (Z),W)
-d, (Z,W)+(F(Y,2)Z,W)
+d, <W,—F(Y,Z)W—<D(Z) -G(Y)-H(X)
+ L_r Jo (Y (s) Z (s)ds
t
+ J;_ T (X ()Y (s) ds>
+ (]H(X)Y,Y) +(H(X),Z) +d, (]H(X)Y,Z)
+d, (H(X),W)+d,(F(Y,2)Y,W)
+d, "F1" (Z,2)
+d, (W,GY)+d, {Jo(Y)Z,Z)
+d, <Y,—F(Y,Z)W
—®(2)-G(Y)-H(X)
+ L Jo (Y () Z(s)ds
+ L T (X (s)Y (s) ds> + (W, W)
+ <z, -F(Y,Z)W
_O(2)-G(Y)-H(X) + L Jo (Y (5)) Z (s) ds
| O ©ds) +dy 2+ r TP
— j IY©OI d6 + Ar |ZI* - A j 1Z©O) do.
(65)
Then we get
d
d—‘t’ = d, (Y, Z) - d, (a,Y, Z) - d, (W, F (Y, Z) W)

—d, (Y, (2)) + {J4 (X)V,Y)
+d, |F (2, 2) +dy (Jg (V) Z, Z) + (W, W)

+d (Jy (X)Y,Z) —(Z,0(2)) - d, (Y,G(Y))

+ <d1W +Z+d,Y, Lt_ T (X (5)Y (s) ds>
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t
+ <d1W +Z+d,Y, J Jo (Y (s)) Z (s) ds>
t—r

t

+ur Y] - u j IY @)1 do + Ar | 2|1

t
2 j 1Z©)]? de.
t—r

(66)
and it follows that
‘;—‘t’ — (@Y,Y) —d, (,G (V)
2,2y +d, (Jg(Y) Z, Z)
+dy |F|(2.2) — dy (W,F (Y, )W) + (W, W)
t
+ <d1W +Z+d,Y, J T (X (5)Y (s) ds>
t-r
+ <d1W +Z+d,Y, Jt Jo (Y () Z (s) ds>
2 ! 2 2
+ur Y| —u L 1Y (O)° d6 + Ar | Z||
) r 1ZO)I? dO +V, + Vs,
o (67)
where
V,=dy (0, Z,Y) = d, (Y, D (2))
(2,0 (2)) + {02, Z),
(68)
V= —d, {a,2,Y) +d, (J; (X)Y, Z)
+ (]H (X)Y, Y> - <(X4Y, Y) .
But
1
Vim-| (s 22.2)- (@2.2)
+dy {(Jo (02) Z,Y) = (a,Z,Y)}] do
(69)

1
- L o (02) - a1} Z, Z) do

1
_d, L o (67) - a1} 2,Y) do.

9

Since Ai(JOl Jo(0Z)do — a,I) is nonnegative by (ix), then
from (11) we get

2 1

V, < ] J {Jo (0Z) = a,1} Y, Y) do
4 Jo

2 2
1 “4,1 3 2 14
<—| e+ 0 00, & Y, Y
4( oc3oc4> 0% (1Y) (70)

1 -2 2
_ Z(s%%a; +1) g0 Y]

2
<gos Y,

since € < 0422/0%044 by (9). Also

Vs = ={(@Y,Y) = U () V,Y) +d, (0, 2,Y)
~di (Ju (X) Y, Z)}
== (ol = Ty X} Y.Y) = d; (fen] = Ty (X)} Y, Z) .
(71)

But A, (et,I - J;;(X)) is nonnegative by (viii) and from (11),
we get

2
1

Vi< = {a, -y (X)} Z,Z)

N

In
NN

2
(s + i) eDyot; (Z,Z)
% (72)

1
= (eay +1)%eD, |2

. 1
since € < —.

2
<eDy |27, "
1

Therefore

V< —{d, (Y,G(Y)) = {a,, )} + ggas Y7
- ((0z.2) - a, |F | 121 - 4, T6] 1217)

—{d, (W,F (Y, Z) W) — (W, W)} + eD, | Z|I*

, <d1W +Z+dy, r T (X ()Y (5) ds>
t—r (73)

-r

t
+ <d1W +Z+d,Y, J Jo (Y (s)) Z (s) ds>
t
2 ! 2
VP = [ 1Y @F do

t
+ArZ)F - A J 1Z(6)* de.
t—r
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We know that (Y,G(Y)) = (Y,T(Y)Y) and by Lemma 3,

we get

dv ol

— < dy 2t -y |IY) + g YT

dt o
4

— (0 = dy |Jg| - 4, |F])) 121 + eDy 112117

—{oyd; - 1} W?

d1W+Z+d2Y,r_ ]H(X(s))Y(s)ds> (74)

t
d1W+Z+d2Y,j

t—r

oY ) Z()ds)
tur Y| - p j IY O do + Ar ||

t
2 j 1Z O] d6.
t—r

Since |Jg(X)| < a,+/n by (viii) and by using Cauchy-
Schwartz inequality, we obtain

‘ d1W+Z+d2Y,Jt ]H(X(s))Y(s)ds>
t—r

t
|| oy ©ds

t
< (d Wl +11ZI1 + dy 1Y) L aVnlY (s)ll ds
(75)

B (it [ reor as)

S (e [ v oras)

Z“ZM (uYn j Y ()P d5> |

Also, since [J(Y)I < oya,+/n by (iii) and by using
Cauchy-Schwartz inequality, we find

Kle +Z+4d,Y, Jt Jo (Y (s) Z (s) ds>
t-r

t
< W+ Z+ Y| ||L Jo (Y () Z (5) ds

t
< (d Wl +1ZI + dy 1Y) L aj Vil Z (s)ll ds

(76)
10‘10‘2 Vn

< DBV (e [ 1z as)

P B (70 [z as)

LU (s [ 1zt ds).
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Therefore it follows from (11) and (45) that

v _ o dyo\n
ar < VALY A R R

4

_ dz‘xl;xz \/;lr _ [/”} Y2

0‘4\/_ “l%\/ﬁr—

20006304 2

10‘4\/—

Ar) 1Z|?

dl‘xl‘xz \Vn ) ||W||

£-
2

(55
-
<d1(x4\/_ d2a4\/_ Vi
(5

+

IR

d (xloczx/_ dyo0n+n
2

+

t
LVt N P ds,
2 t-r
(77)
and if we take
y:o‘“/_(d +d,+1), A:“I“N_(d +d,+1),
(78)
then we have
dV (x—is—s . d20c4\/ﬁr_ dzcxloczx/ﬁr
i = o) 0] 2 2
“4\/_((1 +d,+1)r ]»||Y||2
_ { A _ 0‘4\/ﬁr _ 0‘10‘2\/Zr (79)
200630 2 2
“1“2\/_(61 +d,+1) ]»||Z||2
d,as\/n do o
_<£_ 1;\/_},_ 1 122\/_ >||W||
Therefore if
r<min|—%
dl\/ﬁ(“4+al‘x2)’
A
(80)

2000, oy + oo, (dy +dy +2)}

((cxi/cxf)s - so)oc3

agvn(d, +2d, + 1) + ayo,d,\/n
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we obtain
av 2 2 2
— Ko Yo Zo W) < —a (IYIP + 1217 + IWI7), - (8D)

for some a« > 0. Therefore from (54), (64), and (81) the

functional V(X,,Y,,Z,,W,) satisfies all the conditions of

Theorem 1, so that the zero solution of (4) is uniformly stable.
Thus the proof of Theorem 2 is now complete.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] A. M. Lyapunov, Stability of Motion, Academic Press, New York,
NY, USA, 1966.

[2] N. N. Krasovskii, “On conditions of inversion of A. M.
Lyapunov’s theorems on instability for stationary systems of
differential equations,” Doklady Akademii Nauk SSSR (N.S.), vol.
101, pp. 17-20, 1955 (Russian).

[3] T.Yoshizawa, Stability Theory by Lyapunov’s Second Method, The
Mathematical Society of Japan, 1966.

[4] R. Reissig, G. Sansone, and R. Conti, Nonlinear Differential
Equations of Higher-Order, Noordhoft International Publishing,
Leyden, The Netherlands, 1974, translated from the German.

[5] A. M. Abou-El-Ela and A. I. Sadek, “A stability result for
the solutions of a certain system of fourth-order differential
equations,” Annals of Differential Equations, vol. 6, no. 2, pp. 131-
141, 1990.

[6] A. M. A. Abou-El-Ela and A. 1. Sadek, “A stability theorem for
a certain fourth-order vector differential equation,” Annals of
Differential Equations, vol. 10, no. 2, pp. 125-134, 1994.

[7] A. M. A. Abou-El-Ela and A. I. Sadek, “On the asymptotic
behaviour of solutions of certain non-autonomous differential
equations,” Journal of Mathematical Analysis and Applications,
vol. 237, no. 1, pp. 360-375, 1999.

[8] H. Bereketoglu and C. Kart, “Some results for a certain
third-order nonlinear ordinary differential equation,” Bulletin
Mathématique de la Société des Sciences Mathématiques de
Roumanie, vol. 39, no. 1-4, pp- 77-83,1996.

[9] A. L. Sadek, “On the stability of solutions of certain fourth-

order delay differential equations,” Applied Mathematics and

Computation, vol. 148, no. 2, pp. 587-597, 2004.

C. Tung, “Some stability results for the solutions of certain

fourthorder delay differential equations,” Journal of Difference

Equations and Applications, vol. 4, pp. 165-174, 2005.

[11] C. Tung, “On stability of solutions of certain fourth-order delay

differential equations,” Applied Mathematics and Mechanics.

English Edition, vol. 27, no. 8, pp. 1141-1148, 2006.

C. Tung, “On asymptotic stability of solutions to third-order

nonlinear differential equations with retarded argument,” Com-

munications in Applied Analysis, vol. 11, no. 3-4, pp. 515-527,

2007.

C. Tung, “On the stability of solutions to a certain fourth-order

delay differential equation,” Nonlinear Dynamics, vol. 51, no. 1-2,

pp. 71-81, 2008.

[14] A. M. A. Abou-El-Ela, A. I. Sadek, and A. M. Mahmoud, “On
the stability of solutions to a certain fourth-order vector delay

(10]

(12]

(13]

1

differential equation,” Annals of Differential Equations, vol. 28,
no. 1, pp. 110, 2012.

T. A. Burton, Stability and Periodic Solutions of Ordinary and
Functional Differential Equations, Academic Press, New York,
NY, USA, 1985.

R. Bellman, Introduction to Matrix Analysis, Classics in Applied
Mathematics 19, reprint of the second edition (1970), with a
foreword by Gene Golub, Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, Pa, USA, 1997.



