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We consider the numerical integration of a size-structured cell population model. We propose a new second-order numerical
method to attain its solution. The scheme is analyzed and the optimal rate of convergence is derived. We show experimentally the
predicted accuracy of the scheme.

1. Introduction

Populationmodels are important tools in life sciences. Several
types of them are commonly employed in the literature,
and population balance models are one of the most applied
models. These models describe the evolution of the pop-
ulation by considering that it is structured by means of
several physiological characteristics. Their main features can
be found in [1–3] and references therein. Cell populations
can also be described in this framework.They are structured,
inter alia, by the age spent in the cell cycle, cell size, or
other features such as the content of groups of proteins called
cyclin and intensity of certain markers. For a reference, we
can mention recent literature which describes very different
problems such as oscillations in a cyclin content structured
model [4], the growth of yeast populations in morpholog-
ically structured ones [5, 6], or gene expression in a label-
structured population [7]. References therein also provide
information about the study of cell populations by means
of structured models. We consider the linear size-structured
population model proposed by Diekmann et al. [8]. This is
a starting point in the study of more complex problems. In
this model, cell mitosis happens in a symmetric way and a
cell does not divide until it reaches a minimal size 𝑎 > 0. This
means that there is a positive minimum cell size. However,
we consider that there must be a maximal size, normalized

to 𝑥 = 1, at which point every cell might divide or die. The
model we study is given by a conservation law

𝑢
𝑡
(𝑥, 𝑡) + (𝑔 (𝑥) 𝑢 (𝑥, 𝑡))

𝑥
= − 𝜇 (𝑥) 𝑢 (𝑥, 𝑡) − 𝑏 (𝑥) 𝑢 (𝑥, 𝑡)

+ 4𝑏 (2𝑥) 𝑢 (2𝑥, 𝑡) ,

(1)

𝑎/2 < 𝑥 < 1, 𝑡 > 0, a boundary condition

𝑢 (

𝑎

2

, 𝑡) = 0, 𝑡 > 0, (2)

and an initial size distribution

𝑢 (𝑥, 0) = 𝜑 (𝑥) ,

𝑎

2

≤ 𝑥 ≤ 1. (3)

The independent variables 𝑥 and 𝑡 represent size and time,
respectively.Thedependent variable𝑢(𝑥, 𝑡) is the size-specific
density of cells with size𝑥 at time 𝑡 andwe assume that the size
of any individual varies according to the following ordinary
differential equation:

𝑑𝑥

𝑑𝑡

= 𝑔 (𝑥) . (4)

The nonnegative functions 𝑔, 𝜇, and 𝑏 represent the growth,
mortality, and division rate, respectively. These are usually
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called the vital functions and define the life history of the
individuals. Note that all of them depend on the size 𝑥

(the internal structuring variable). We should point out that,
in (1), the reproduction process into two equal parts has
been considered in the two terms in which the division rate
appears. Here, we should note that the term 4𝑏(2𝑥)𝑢(2𝑥, 𝑡)

is interpreted as zero whenever 𝑥 > 1/2. We perform
this feature with the use of functions 𝑢 and 𝑏 extended
with the value zero on the interval [1, 2]. Condition (2)
reflects that cells with a size less than 𝑎/2 cannot exist and
is a consequence of the fact that cells only divide after the
minimal size 𝑎 > 0.

In accordance with accepted biological wisdom, there
exists a maximum size. This means that cells will divide
or die with probability one before reaching it. Thus, if we
consider the survival property, that is, the probability that an
individual of size 𝑥

0
reaches size 𝑥,

Π (𝑥) = exp(−∫

𝑥

𝑥0

𝜇 (𝑠) + 𝑏 (𝑠)

𝑔 (𝑠)

𝑑𝑠) ,

𝑎

2

≤ 𝑥
0
≤ 𝑥 < 1,

(5)

the hypothesis of considering a maximum size implies that
lim
𝑥→1

−Π(𝑥) = 0. One of the forms in which this fact
could be reflected consists of taking into account the growth
functions introduced by Von Bertalanffy. These kinds of
functions satisfy ∫1

𝑥0

(𝑑𝑠/𝑔(𝑠)) = ∞, which is enough to verify
the required condition whenever 𝜇 and 𝑏 are positive and
bounded functions. Note that if 𝑔 is a continuous function
defined in [𝑎/2, 1], then this hypothesis implies that 𝑔(1) = 0.
Moreover, the solution to the problemmust satisfy𝑢(1, 𝑡) = 0,
𝑡 > 0, because we suppose that initially there are no cells of
maximum size [2].

In general, physiologically structured population models
are difficult to solve. Although theoretical properties of
the models such as existence, uniqueness, smoothness of
solutions, and long-time behaviour (with the study of steady
states and their stability) could be studied without a solution
expression, the knowledge of their qualitative or quantitative
behaviour in a more tangible way is sometimes necessary.
Therefore, numerical methods provide a valuable tool to
obtain such information. In the case of general structured
population models, many numerical methods have been
proposed to solve them (see [9, 10] and references therein),
and the difficulties found in their convergence analysis can
be observed in [11], for instance.

In the case of population balance models such as (1)–
(3), Liou et al. [12] proposed an alternative procedure for
their solution based on a successive generations approach that
provides analytical solutions in some cases. However, numer-
ical integration may be necessary for more complicated
situations. Mantzaris et al. [13] presented a finite difference
scheme and Angulo and López-Marcos [14] a characteristic
curve scheme with the first convergence analysis. However,
until that moment, a maximum size for the cells was not
considered. For the case of a bounded size interval, the works
of Mantzaris et al. [15–17] provided a broad comparison of
numerical methods based on finite differences and spectral
and finite elements method, respectively. In their work,

the authors compared the efficiency of themethods presented
but they did not demonstrate their convergence and did not
pay attention to either the compatibility of the initial and
boundary conditions or the discontinuities caused by the
maximum size. Note that the lack of smoothness properties
of the solution would negatively affect the efficiency of such
higher order methods. In our previous work [18], we formu-
lated two first-order numerical procedures, a finite difference
scheme and a characteristics method, and analyzed com-
pletely their convergence. The work supplied a detailed trac-
ing of the different discontinuities arising in the simulation.

When selecting a numerical method, efficiency must be
taken into account [19]. In general, on a long-time integration
(e.g., see a study of the stable size distribution in [18]), the use
of methods that preserve some of the qualitative properties
of the solution can perform better and, thus, characteristic
curves methods would be good candidates. In this paper,
we consider a novel characteristics method based on the
discretization of the integral representation of the solution to
the problem along the characteristics lines. This procedure
was previously used in [18] for this problem, obtaining a
valuable first-order method. Here, in order to produce a
second-order scheme, we consider a different discretization
of the integral representation to the solution. Second-order
methods maintain good compromise between the required
smoothness of the vital functions based on realistic biological
data and the efficiency of the numerical schemes. Never-
theless, this alternative discretization produces an implicit
numerical method that, in principle, increases the stability
property but also the computational cost. However, due to
the special structure of the problem, a suitable implemen-
tation of the numerical method provides a cheaper explicit
procedure.

In Section 2, we describe the numerical method to
approximate the solution to (1)–(3) and comment upon the
efficient implementation being used. Section 3 is devoted
to the convergence analysis of the method. In Section 4,
we present some numerical experiments which confirm
the theoretical results and describe the performance of the
numerical method in different situations related to the lack of
smoothness properties of the vital functions and the solution.

2. Numerical Method

As we mentioned in Section 1, there are some schemes
proposed to obtain the solution to (1)–(3). Most of them are
of first-order convergence. On the one hand, this convergence
property produces a lack of efficiency which can be reduced
with higher order methods. On the other hand, the smooth-
ness of the solution to (1)–(3) is not as high as these last
schemes demand. However, second-order methods present a
good balance: they enhance the efficiency even with a lack of
regular data.

Here, we introduce an overall second-order numerical
methodwhich integrates the problem along the characteristic
curves. It employs a theoretical representation of the solution
to (1)–(3) whose framework was introduced in [18]. There-
fore, following such work, we define 𝜇∗(𝑥) = 𝑔

󸀠
(𝑥) + 𝜇(𝑥) +

𝑏(𝑥) and denote by 𝑥(𝑡; 𝑡
∗
, 𝑥
∗
) the characteristic curve which
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takes the value 𝑥
∗
at the time instant 𝑡

∗
of (1). It is the solution

to the following initial value problem:

𝑑

𝑑𝑡

𝑥 (𝑡; 𝑡
∗
, 𝑥
∗
) = 𝑔 (𝑥 (𝑡; 𝑡

∗
, 𝑥
∗
)) , 𝑡 > 𝑡

∗
,

𝑥 (𝑡
∗
; 𝑡
∗
, 𝑥
∗
) = 𝑥
∗
.

(6)

In this way, the solution to (1) is given by

𝑢 (𝑥 (𝑡; 𝑡
∗
, 𝑥
∗
) , 𝑡) = 𝑢 (𝑥

∗
, 𝑡
∗
)

⋅ exp{−∫

𝑡

𝑡∗

𝜇
∗
(𝑥 (𝜏; 𝑡

∗
, 𝑥
∗
)) 𝑑𝜏}

+ ∫

𝑡

𝑡∗

exp{−∫

𝑡

𝜏

𝜇
∗
(𝑥 (𝑠; 𝑡

∗
, 𝑥
∗
)) 𝑑𝑠}

⋅ 4𝑏 (2𝑥 (𝜏; 𝑡
∗
, 𝑥
∗
))

⋅ 𝑢 (2𝑥 (𝜏; 𝑡
∗
, 𝑥
∗
) , 𝜏) 𝑑𝜏, 𝑡 ≥ 𝑡

∗
.

(7)

Note that, in this new layout, we have to solve two types
of problems: the integration of the equation that defines
the characteristic curves (6) and the solution to (7) which
provides the solution to the problem along the characteristics.
We use discretization procedures in order to solve them.

We consider the numerical integration of model (1)–(3)
along the time interval [0, 𝑇]. Thus, given a positive integer
𝑁, we define 𝑘 = 𝑇/𝑁 and introduce the discrete time levels
𝑡
𝑛

= 𝑛𝑘, 0 ≤ 𝑛 ≤ 𝑁. We begin with the integration of (6)
which provides the grid on the space variable (size) of the
method. This grid is nonuniform and invariant with time,
because the growth rate function is, explicitly, independent
of the time variable. However, note that it depends on time
implicitly conditioned on cell size. It is usually called the
natural grid [9]. In this work, we approximate such a grid by
using a second-order scheme for the numerical integration of
(6). More precisely, the modified Euler method provides the
following approximation to the natural grid:

𝑥
0
=

𝑎

2

,

𝑥
𝑗+1

= 𝑥
𝑗
+

𝑘

2

(𝑔 (𝑥
𝑗
) + 𝑔 (𝑥

𝑗
+ 𝑘𝑔 (𝑥

𝑗
))) ,

0 ≤ 𝑗 ≤ 𝐽 − 1.

(8)

Integer 𝐽 represents the index of the last grid point computed
at the size interval and is chosen to satisfy the condition𝐾

0
𝑘 ≤

1 − 𝑥
𝐽
≤ 𝐾
1
𝑘, with 𝐾

0
and 𝐾

1
being suitable constants (we

refer to [9] for further details). Note that the points (𝑥
𝑗
, 𝑡
𝑛
)

and (𝑥
𝑗+1

, 𝑡
𝑛+1

), 0 ≤ 𝑗 ≤ 𝐽 − 1, 0 ≤ 𝑛 ≤ 𝑁 − 1, belong to the
same numerical characteristic curve. Finally, we fix the last
grid point 𝑥

𝐽+1
= 1.

Then, denoting 𝑢
𝑛

𝑗
= 𝑢(𝑥

𝑗
, 𝑡
𝑛
), 0 ≤ 𝑗 ≤ 𝐽 + 1, 0 ≤

𝑛 ≤ 𝑁, let 𝑈
𝑛

𝑗
be a numerical approximation to 𝑢

𝑛

𝑗
. We

propose a one-step method in order to obtain it. Therefore,
starting from an approximation to the initial data (3) of the
problem, for example, the grid restriction of the function 𝜑,

the numerical solution at a new time level is described in
terms of the previous one. Such a general step is obtained by
means of the following second-order discretization of (7): the
integrals are approached by the trapezoidal quadrature rule.
For 0 ≤ 𝑛 ≤ 𝑁 − 1,

𝑈
𝑛+1

𝑗+1
= exp{−

𝑘

2

(𝜇
∗
(𝑥
𝑗
) + 𝜇
∗
(𝑥
𝑗+1

))}

⋅ (𝑈
𝑛

𝑗
+ 2𝑘𝑏 (2𝑥

𝑗
)𝑈

𝑛

2⋅𝑗
)

+ 2𝑘𝑏 (2𝑥
𝑗+1

)𝑈

𝑛+1

2⋅(𝑗+1)
, 𝑗 = 0, . . . , 𝐽 − 1.

(9)

In the previous expression,𝑈𝑛
2⋅𝑗

and𝑈

𝑛+1

2⋅(𝑗+1)
represent approx-

imations to the solutions at sizes 2𝑥
𝑗
and 2𝑥

𝑗+1
(not included

in the discrete grid) and times 𝑡
𝑛 and 𝑡

𝑛+1, respectively. So,
in order to keep the second order, we compute them by linear
interpolation based on the nearest grid points.More precisely,
for the computation of 𝑈𝑚

2⋅𝑙
, approximation to the solution

at 2𝑥
𝑙
, and time 𝑡

𝑚, first we look for the index 𝑀 so that
𝑥
𝑀−1

< 2𝑥
𝑙
≤ 𝑥
𝑀
. Thus,

𝑈

𝑚

2⋅𝑙
=

{
{

{
{

{

𝑈
𝑚

𝑀−1
+

𝑈
𝑚

𝑀
− 𝑈
𝑚

𝑀−1

𝑥
𝑀

− 𝑥
𝑀−1

(2𝑥
𝑙
− 𝑥
𝑀−1

) , if 2𝑥
𝑙
< 1,

0, if 2𝑥
𝑙
≥ 1.

(10)

Obviously, the approximating values at the minimum and
maximum sizes are

𝑈
𝑛+1

0
= 𝑈
𝑛+1

𝐽+1
= 0. (11)

The numerical procedure seems to be implicit. However, if
we compute the approximations at the new time level 𝑡𝑛+1
downwards (i.e., first𝑈𝑛+1

𝐽+1
using (11), then𝑈

𝑛+1

𝑗+1
from 𝐽 − 1 to

0 using (9), and finally𝑈𝑛+1
0

using (11)), it results in an explicit
procedure.The reason is that the right hand side values in (9)
corresponding to the time 𝑡

𝑛+1 are either zero or previously
computed.

3. Convergence Analysis

In this section, we carry out the convergence analysis of
the scheme. It is based on the properties of consistency and
stability of the method. Henceforth, 𝐶 will denote a positive
constant which is independent of 𝑘, 𝑛 (0 ≤ 𝑛 ≤ 𝑁) and 𝑗

(0 ≤ 𝑗 ≤ 𝐽 + 1); 𝐶 possibly has different values in different
places.

The local discretization error is given by the following
equation:

𝜏
𝑛+1

𝑗+1
=

1

𝑘

(𝑢
𝑛+1

𝑗+1
− exp{−

𝑘

2

(𝜇
∗
(𝑥
𝑗
) + 𝜇
∗
(𝑥
𝑗+1

))}

⋅ (𝑢
𝑛

𝑗
+ 2𝑘𝑏 (2𝑥

𝑗
) 𝑢
𝑛

2⋅𝑗
) − 2𝑘𝑏 (2𝑥

𝑗+1
) 𝑢
𝑛+1

2⋅(𝑗+1)
) ,

0 ≤ 𝑗 ≤ 𝐽 − 1, 0 ≤ 𝑛 ≤ 𝑁 − 1.

(12)
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Lemma 1. Let 𝑔 be three times continuously differentiable; let
functions 𝜇, 𝑏, and 𝑢 be two times continuously differentiable.
Thus, as 𝑘 → 0, the following estimates hold:

󵄨
󵄨
󵄨
󵄨
󵄨
𝜏
𝑛+1

𝑗+1

󵄨
󵄨
󵄨
󵄨
󵄨
= 𝑂 (𝑘

2
) , 0 ≤ 𝑗 ≤ 𝐽 − 1, 0 ≤ 𝑛 ≤ 𝑁 − 1. (13)

Proof. From (12) and (7), by adding and subtracting suitable
terms in the expression of the local discretization error, we
obtain the following bound:

󵄨
󵄨
󵄨
󵄨
󵄨
𝜏
𝑛+1

𝑗+1

󵄨
󵄨
󵄨
󵄨
󵄨
≤

1

𝑘

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
𝑛+1

𝑗+1
− 𝑢 (𝑥 (𝑡

𝑛+1
; 𝑥
𝑗
, 𝑡
𝑛
) , 𝑡
𝑛+1

)

󵄨
󵄨
󵄨
󵄨
󵄨

+

1

𝑘

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
𝑛

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

exp{−∫

𝑡𝑛+1

𝑡𝑛

𝜇
∗
(𝑥 (𝜏; 𝑡

𝑛
, 𝑥
𝑗
)) 𝑑𝜏}

− exp{−

𝑘

2

(𝜇
∗
(𝑥
𝑗
)

+ 𝜇
∗
(𝑥 (𝑡
𝑛+1

; 𝑡
𝑛
, 𝑥
𝑗
)))}

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+

1

𝑘

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
𝑛

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
exp{−

𝑘

2

𝜇
∗
(𝑥
𝑗
)}

⋅

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

exp{−

𝑘

2

𝜇
∗
(𝑥 (𝑡
𝑛+1

; 𝑡
𝑛
, 𝑥
𝑗
))}

− exp{−

𝑘

2

𝜇
∗
(𝑥
𝑗+1

)}

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+

4

𝑘

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝑡𝑛+1

𝑡𝑛

exp{−∫

𝑡𝑛+1

𝜏

𝜇
∗
(𝑥 (𝑠; 𝑡

𝑛
, 𝑥
𝑗
)) 𝑑𝑠}

⋅ 𝑏 (2𝑥 (𝜏; 𝑡
𝑛
, 𝑥
𝑗
))

⋅ 𝑢 (2𝑥 (𝜏; 𝑡
𝑛
, 𝑥
𝑗
) , 𝜏) 𝑑𝜏

−

𝑘

2

(exp{−∫

𝑡𝑛+1

𝑡𝑛

𝜇
∗
(𝑥 (𝑠; 𝑡

𝑛
, 𝑥
𝑗
)) 𝑑𝑠}

⋅ 𝑏 (2𝑥
𝑗
) 𝑢 (2𝑥

𝑗
, 𝑡
𝑛
)

+ 𝑏 (2𝑥 (𝑡
𝑛+1

; 𝑡
𝑛
, 𝑥
𝑗
))

⋅ 𝑢 (2𝑥 (𝑡
𝑛+1

; 𝑡
𝑛
, 𝑥
𝑗
) , 𝑡
𝑛+1

))

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

+ 2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

exp{−∫

𝑡𝑛+1

𝑡𝑛

𝜇
∗
(𝑥 (𝑠; 𝑡

𝑛
, 𝑥
𝑗
)) 𝑑𝑠}

− exp{−

𝑘

2

(𝜇
∗
(𝑥
𝑗
) + 𝜇
∗
(𝑥 (𝑡
𝑛+1

; 𝑡
𝑛
, 𝑥
𝑗
)))}

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

⋅

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏 (2𝑥
𝑗
) 𝑢 (2𝑥

𝑗
, 𝑡
𝑛
)

󵄨
󵄨
󵄨
󵄨
󵄨

+ 2 exp{−

𝑘

2

𝜇
∗
(𝑥
𝑗
)}

⋅

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

exp{−

𝑘

2

𝜇
∗
(𝑥 (𝑡
𝑛+1

; 𝑡
𝑛
, 𝑥
𝑗
))}

− exp{−

𝑘

2

𝜇
∗
(𝑥
𝑗+1

)}

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

⋅

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏 (2𝑥
𝑗
) 𝑢 (2𝑥

𝑗
, 𝑡
𝑛
)

󵄨
󵄨
󵄨
󵄨
󵄨

+ 2 exp{−

𝑘

2

(𝜇
∗
(𝑥
𝑗
) + 𝜇
∗
(𝑥
𝑗+1

))}

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏 (2𝑥
𝑗
)

󵄨
󵄨
󵄨
󵄨
󵄨

⋅

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢 (2𝑥
𝑗
, 𝑡
𝑛
) − 𝑢
𝑛

2⋅𝑗

󵄨
󵄨
󵄨
󵄨
󵄨

+

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏 (2𝑥 (𝑡

𝑛+1
; 𝑡
𝑛
, 𝑥
𝑗
)) − 𝑏 (2𝑥

𝑗+1
)

󵄨
󵄨
󵄨
󵄨
󵄨

⋅

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢 (2𝑥 (𝑡

𝑛+1
; 𝑡
𝑛
, 𝑥
𝑗
) , 𝑡
𝑛+1

)

󵄨
󵄨
󵄨
󵄨
󵄨

+

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏 (2𝑥
𝑗+1

)

󵄨
󵄨
󵄨
󵄨
󵄨

⋅

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢 (2𝑥 (𝑡

𝑛+1
; 𝑡
𝑛
, 𝑥
𝑗
) , 𝑡
𝑛+1

) − 𝑢 (2𝑥
𝑗+1

, 𝑡
𝑛+1

)

󵄨
󵄨
󵄨
󵄨
󵄨

+

󵄨
󵄨
󵄨
󵄨
󵄨
𝑏 (2𝑥
𝑗+1

)

󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢 (2𝑥
𝑗+1

, 𝑡
𝑛+1

) − 𝑢
𝑛+1

2⋅(𝑗+1)

󵄨
󵄨
󵄨
󵄨
󵄨
,

(14)

0 ≤ 𝑗 ≤ 𝐽 − 1, 0 ≤ 𝑛 ≤ 𝑁 − 1. Now, taking into account the
convergence properties of the trapezoidal quadrature rule,
the modified Euler method, the interpolation procedure, and
the assumed regularity of functions 𝑔, 𝜇, 𝑏, and 𝑢, we obtain
the estimate (remember that 𝑢 and 𝑏 must be considered
smooth in their extended domains).

In the following result, we prove the convergence of the
numerical method. We denote the error produced by the
numerical approximation by

e𝑛 = (𝑒
𝑛

0
, . . . , 𝑒

𝑛

𝐽
, 𝑒
𝑛

𝐽+1
) , 𝑒

𝑛

𝑗
= 𝑢
𝑛

𝑗
− 𝑈
𝑛

𝑗
, 0 ≤ 𝑗 ≤ 𝐽 + 1,

(15)

0 ≤ 𝑛 ≤ 𝑁, where 𝑢
𝑛

𝑗
are the nodal values of the theoretical

solution and 𝑈
𝑛

𝑗
are the numerical approximations obtained

by means of the numerical method. And

𝑒
𝑚

2⋅𝑙
=

{

{

{

𝑢
𝑚

2⋅𝑙
− 𝑈

𝑚

2⋅𝑙
, 𝑥
𝑀−1

< 2𝑥
𝑙
≤ 𝑥
𝑀

≤ 1,

0, 2𝑥
𝑙
≥ 1,

(16)

0 ≤ 𝑙 ≤ 𝐽, 0 ≤ 𝑚 ≤ 𝑁.

Theorem 2. Under the hypotheses of Lemma 1, if ‖e0‖
∞

=

𝑂(𝑘
2
), as 𝑘 → 0, then

󵄩
󵄩
󵄩
󵄩
e𝑛󵄩󵄩󵄩
󵄩∞

≤ 𝐶𝑘
2
, 0 ≤ 𝑛 ≤ 𝑁. (17)

Proof. From (9) and (12), we have

𝑒
𝑛+1

𝑗+1
= exp{−

𝑘

2

(𝜇
∗
(𝑥
𝑗
) + 𝜇
∗
(𝑥
𝑗+1

))} (𝑒
𝑛

𝑗
+ 2𝑘𝑏 (2𝑥

𝑗
) 𝑒
𝑛

2⋅𝑗
)

− 2𝑘𝑏 (2𝑥
𝑗+1

) 𝑒
𝑛+1

2⋅(𝑗+1)
+ 𝑘𝜏
𝑛+1

𝑗+1
,

(18)

0 ≤ 𝑗 ≤ 𝐽 − 1, 0 ≤ 𝑛 ≤ 𝑁 − 1. Taking into account the
smoothness properties of the functions 𝜇∗ and 𝑏, we arrive at

󵄨
󵄨
󵄨
󵄨
󵄨
𝑒
𝑛+1

𝑗+1

󵄨
󵄨
󵄨
󵄨
󵄨
≤ (1 + 𝐶𝑘)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑒
𝑛

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
+ 𝐶𝑘 (

󵄩
󵄩
󵄩
󵄩
e𝑛󵄩󵄩󵄩
󵄩∞

+

󵄩
󵄩
󵄩
󵄩
󵄩
e𝑛+1󵄩󵄩󵄩󵄩

󵄩∞
) + 𝑘

󵄨
󵄨
󵄨
󵄨
󵄨
𝜏
𝑛+1

𝑗+1

󵄨
󵄨
󵄨
󵄨
󵄨
,

(19)
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0 ≤ 𝑗 ≤ 𝐽 − 1, 0 ≤ 𝑛 ≤ 𝑁 − 1, and
󵄨
󵄨
󵄨
󵄨
󵄨
𝑒
𝑛+1

𝑗+1

󵄨
󵄨
󵄨
󵄨
󵄨
≤ (1 + 𝐶𝑘)

󵄩
󵄩
󵄩
󵄩
e𝑛󵄩󵄩󵄩
󵄩∞

+ 𝐶𝑘

󵄩
󵄩
󵄩
󵄩
󵄩
e𝑛+1󵄩󵄩󵄩󵄩

󵄩∞
+ 𝑘

󵄩
󵄩
󵄩
󵄩
󵄩
𝜏
𝑛+1󵄩󵄩

󵄩
󵄩
󵄩∞

, (20)

0 ≤ 𝑗 ≤ 𝐽 − 1, 0 ≤ 𝑛 ≤ 𝑁 − 1. Then, by means of a recursive
argument, we obtain

󵄨
󵄨
󵄨
󵄨
󵄨
𝑒
𝑛

𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
≤ (1 + 𝐶𝑘)

𝑛 󵄩󵄩
󵄩
󵄩
󵄩
e0󵄩󵄩󵄩󵄩
󵄩∞

+ 𝐶𝑘

𝑛

∑

𝑙=1

(1 + 𝐶𝑘)
𝑛−𝑙 󵄩󵄩

󵄩
󵄩
󵄩
e𝑙󵄩󵄩󵄩󵄩
󵄩∞

+ 𝑘

𝑛

∑

𝑙=1

(1 + 𝐶𝑘)
𝑛−𝑙 󵄩󵄩

󵄩
󵄩
󵄩
𝜏
𝑙󵄩󵄩
󵄩
󵄩
󵄩∞

,

(21)

1 ≤ 𝑗 ≤ 𝐽, 1 ≤ 𝑛 ≤ 𝑁. Therefore,

󵄩
󵄩
󵄩
󵄩
e𝑛󵄩󵄩󵄩
󵄩∞

≤ 𝐶{

󵄩
󵄩
󵄩
󵄩
󵄩
e0󵄩󵄩󵄩󵄩
󵄩∞

+ 𝑘

𝑛

∑

𝑙=1

󵄩
󵄩
󵄩
󵄩
󵄩
e𝑙󵄩󵄩󵄩󵄩
󵄩∞

+ 𝑘

𝑛

∑

𝑙=1

󵄩
󵄩
󵄩
󵄩
󵄩
𝜏
𝑙󵄩󵄩
󵄩
󵄩
󵄩∞

} , (22)

1 ≤ 𝑛 ≤ 𝑁. By the discrete Gronwall lemma and using (13),
we arrive at

󵄩
󵄩
󵄩
󵄩
e𝑛󵄩󵄩󵄩
󵄩∞

≤ 𝐶

󵄩
󵄩
󵄩
󵄩
󵄩
e0󵄩󵄩󵄩󵄩
󵄩∞

+ 𝑂 (𝑘
2
) , (23)

0 ≤ 𝑛 ≤ 𝑁, and the estimate holds.

4. Numerical Results

Now, we present some different experiments in order to test
the numerical method. We consider the minimum size at
which a cell divides as 𝑎 = 1/4. We suppose that there is no
cellular death. Therefore, 𝜇(𝑥) = 0, and we choose the size-
specific growth rate as 𝑔(𝑥) = 0.1(1 − 𝑥).

Test Problem 1. In the first experiment, we take the size-
specific division rate function

𝑏 (𝑥) = 𝑏
0
(𝑥 −

1

4

)

3

(1 − 𝑥)
3
,

1

4

≤ 𝑥 ≤ 1. (24)

We consider that the function vanishes out of interval [1/4, 1].
Coefficient 𝑏

0
is chosen in order to ensure that the maximum

value of 𝑏(𝑥) is 1. Note that the extended function is two times
continuously differentiable.

In order to avoid discontinuities caused by an incompat-
ible initial condition, we take 𝜑 satisfying 𝜑(1/8) = 𝜑

󸀠
(1/8) =

𝜑
󸀠󸀠
(1/8) = 0. In this first experiment, we opt for

𝜑 (𝑥) = 𝜑
0
(𝑥 −

1

8

)

3

(1 − 𝑥)
3
,

1

8

≤ 𝑥 ≤ 1, (25)

with the corresponding extension out of the interval [1/8, 1].
Coefficient 𝜑

0
is chosen in order to ensure that the maximum

value of 𝜑(𝑥) is 1.
We do not know the analytical solution to the problem,

so, in order to compare, we take as an exact solution the
computed approximationwith a sufficiently small value of the
size step 𝑘. In the experiment, we compute the solution at the
final time 𝑇 = 1 with 𝑘

∗
= 4.8828125𝑒 − 4. If we analyze the

(approximated) second derivative of the computed solution,

Table 1: Test Problem 1. Error and numerical convergence order.
𝑇 = 1.

𝑘 Error Order
2.5𝑒 − 1 2.181199𝑒 − 2

1.25𝑒 − 1 5.968912𝑒 − 3 1.9
6.25𝑒 − 2 1.484527𝑒 − 3 2.0
3.125𝑒 − 2 3.700337𝑒 − 4 2.0
1.5625𝑒 − 2 9.218746𝑒 − 5 2.0
7.8125𝑒 − 3 2.293369𝑒 − 5 2.0
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Figure 1: Test Problem 1. Approximated second derivative of 𝑢.

we observe the required regularity in the hypotheses of the
convergence result (see Figure 1).

In Table 1, we present the results obtained with the
method for different values of the step size. For each 𝑘, we
compare at the final time 𝑇 the numerical solution being
computed,U𝑁

𝑘
, with the representation of the numerical solu-

tion corresponding to 𝑘
∗ at the coarsest grid obtained with 𝑘,

U𝑁
𝑘
∗ .The second column in Table 1 shows themaximum error

at the different discrete sizes; that is,

𝑒
𝑘
=

󵄩
󵄩
󵄩
󵄩
󵄩
U𝑁
𝑘
− U𝑁
𝑘
∗

󵄩
󵄩
󵄩
󵄩
󵄩∞

. (26)

The third column shows the numerical order of convergence,
which we compute with the formula

𝑠 =

log (𝑒
2𝑘
/𝑒
𝑘
)

log (2)
. (27)

Results in Table 1 clearly confirm the expected second-
order of convergence.

Test Problem 2. In the second experiment, we take a size-
specific division rate function not satisfying the smoothness
required in the assumptions of the convergence result. For
example,

𝑏 (𝑥) = 𝑏
1
(𝑥 −

1

4

)

3

,

1

4

≤ 𝑥 ≤ 1. (28)
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Figure 2: Test Problem 2. Approximated second derivative of 𝑏𝑢.

Again, we consider that 𝑏(𝑥) vanishes out of the interval
[1/4, 1]. Coefficient 𝑏

1
is chosen in order to ensure that the

maximum value of 𝑏(𝑥) is 1. Note that, now, this extended
function is discontinuous.

Assuming the same initial data (25) as in the previous
experiment, we obtain the results presented in Table 2. Again,
we observe a second-order convergence.

Perhaps these numerical results can be explained by tak-
ing into account that the (approximated) second derivative of
the product 𝑏𝑢 is continuous as can be observed in Figure 2.
A detailed revision of the convergence result (which we do
not include for the sake of simplicity) allows us to ensure
the same estimative by relaxing the hypothesis, assuming that
the extension of the product 𝑏𝑢 is two times continuously
differentiable instead of the extension of 𝑏.

Test Problem 3.We take the size-specific division rate function
(28) of the previous experiment not satisfying the smoothness
assumptions of the convergence result. But now, we consider
the following initial data (producing a nonsufficiently smooth
solution, as we will show),

𝜑 (𝑥) = 𝜑
1
(𝑥 −

1

8

)

3

(1 − 𝑥) ,

1

8

≤ 𝑥 ≤ 1, (29)

and the corresponding extended function. Coefficient 𝜑
1
is

chosen in order to ensure that the maximum value of 𝜑(𝑥) is
1. Note that, now, the extended function is not differentiable.

In this case, at 𝑇 = 1, we observe that the (approximated)
second derivative of 𝑢 is discontinuous (Figure 3(a)). And
we see the same behavior for the (approximated) second
derivative of the product 𝑏𝑢 (Figure 3(b)). Now, the previous
convergence analysis is not valid.

Table 3 shows the results obtained with the method. We
conclude that there is still convergence in the numerical
approximation. However, we do not observe a well-defined
order.

Table 2: Test Problem 2. Error and numerical convergence order.
𝑇 = 1.

𝑘 Error Order
2.5𝑒 − 1 3.975049𝑒 − 3

1.25𝑒 − 1 1.001526𝑒 − 3 2.0
6.25𝑒 − 2 2.507402𝑒 − 4 2.0
3.125𝑒 − 2 6.256562𝑒 − 5 2.0
1.5625𝑒 − 2 1.565355𝑒 − 5 2.0
7.8125𝑒 − 3 3.892902𝑒 − 6 2.0

Table 3: Test Problem 3. Error and numerical convergence order.
𝑇 = 1.

𝑘 Error Order
2.5𝑒 − 1 3.015407𝑒 − 2

1.25𝑒 − 1 6.003792𝑒 − 3 2.3
6.25𝑒 − 2 2.142219𝑒 − 3 1.5
3.125𝑒 − 2 1.560384𝑒 − 4 3.8
1.5625𝑒 − 2 7.186373𝑒 − 5 1.1
7.8125𝑒 − 3 2.946163𝑒 − 5 1.3

5. Conclusions

The study of cell populations by means of the use of size-
structuredmodels is a current topic. Its numerical integration
exhibits a great development in obtaining qualitative or
quantitative information about the solution. However, there
is a lack of attention to certain important problems which
take part in such integration. First, it is necessary to respect
the individual maximum size, which is biological wisdom.
Second, it is appropriate to increase the efficiency of the
integration with the use of higher order methods. However, it
is difficult to blend these two components due to the lack of
smoothness which could appear in general situations.

We have proposed a new numerical method to attain
the solution to (1)–(3). We have proved its second-order
convergence, and we have corroborated it experimentally.
We also observe, numerically, its robustness in different
situations.

The numerical method proposed in this work can be
extended to different situations such as the uneven division
case [20], assuming density independent division functions.
In such circumstances, the birth term in the equation
involves an integral that must be approximated by means
of a suitable quadrature rule. The resulting method differs
from the scheme considered in this paper. For example, the
discretization of the nonlocal term in the equal fission case
requires an interpolation procedure, but it is not necessary
in the uneven case. The numerical scheme designed comes
from an implicit discretization but, again, a downward
implementation provides an explicit numerical procedure.
However, for this more general model, the convergence proof
of the numerical method could be harder than that for the
equal partitioning case.
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Figure 3: Test Problem 3. Approximated second derivative of 𝑢 (a) and approximated second derivative of 𝑏𝑢 (b).
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[14] O. Angulo and J. C. López-Marcos, “A numerical scheme
for a size-structured cell population model,” in Mathematical
Modelling and Computing in Biology andMedicine, V. Cappasso,
Ed., pp. 485–496, Esculapio, Bolonia, Spain, 2003.

[15] N.V.Mantzaris, P. Daoutidis, and F. Srienc, “Numerical solution
of multi-variable cell population balance models: I. Finite
difference methods,” Computers & Chemical Engineering, vol.
25, no. 11-12, pp. 1411–1440, 2001.

[16] N.V.Mantzaris, P. Daoutidis, and F. Srienc, “Numerical solution
of multi-variable cell population balance models. II. Spectral
methods,” Computers & Chemical Engineering, vol. 25, no. 11-12,
pp. 1441–1462, 2001.

[17] N.V.Mantzaris, P. Daoutidis, and F. Srienc, “Numerical solution
of multi-variable cell population balance models. III. Finite
element methods,” Computers & Chemical Engineering, vol. 25,
no. 11-12, pp. 1463–1481, 2001.

[18] L. M. Abia, O. Angulo, J. C. López-Marcos, and M. A. López-
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