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An iterative learning control scheme is applied to a class of linear discrete-time switched systems with arbitrary switching rules.The
application is based on the assumption that the switched system repetitively operates over a finite time interval. By taking advantage
of the super vector approach, convergence is discussed when noise is free and robustness is analyzed when the controlled system
is disturbed by bounded noise. The analytical results manifest that the iterative learning control algorithm is feasible and effective
for the linear switched system. To support the theoretical analysis, numerical simulations are made.

1. Introduction

A switched system consists of a family of subsystems
described by differential equations or difference equations,
whose switching rules are usually considered to be arbitrary.
The switched systems belong to the hybrid systems and
have attracted flourishing investigations in the latest decade
[1–8]. The current study of the switched system focuses
mainly on the analysis of the dynamic behaviors including
stability, controllability, reachability, and observability [1–6].
In particular, the concept of finite time stochastic stability for
switched stochastic systems under asynchronous switching
assumption has been raised as shown in recent references [7,
8]. The basic reason for studying such systems comes mainly
from the fact that the switched systems have been widely
emerged in the field of control and engineering practice,
such as chemical systems, process control, and automotive
industry [9, 10]. Although the investigation on the switched
systems is flourishing, the study on designing a controller for
trajectory tracking of the switched system is still rare. On the
other hand, in engineering practice, the dynamics of the plant
model is usually unknown and some uncertain disturbance
is unavoidable. These adverse effects together with random
switching rules increase challenge of designing an efficacious
controller for a tracking performance of a switched system.

Fortunately, there exists a kind of efficient control scheme,
named as iterative learning control (ILC), which has also
drawn increasing attention for its simple control structure
and perfect learning performance. One of the advantages of
ILC is that it requires less knowledge of the controlled system
in the procedure of learning. It utilizes the tracking error
information of the previous operations to compensate for the
current control input so as to generate an upgraded control
input for the next operation. By this successive learning
process, the tracking performance of the controlled system
is improved. In view of the above properties of ILC, it can
be used in the switched systems for tracking a given target.
However, to authors’ knowledge, there are few efforts on the
study of the ILC strategies for the switched systems. So far,
few literatures [9, 11, 12] have focused on the issue.

In literature [9], a P-type ILC scheme has been applied
to a class of linear discrete-time switched systems. The con-
vergence property for such an ILC system has been analyzed
by super vector approach. However, the robustness of the ILC
algorithm is not covered for the case when the controlled
system is interfered by model uncertainty or external noise.
As known, there exist two main criteria to measure the
learning performance of an ILC scheme. One is convergence
and the other is robustness. Since noise and uncertainty
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are inevitable in the engineering practice, it is necessary to
analyze the robustness of an ILC algorithm.

In the literatures [11, 12], D-type ILC algorithms have been
proposed for a class of discrete-time linear and nonlinear
switched systems. The convergence conditions are derived in
the sense of 𝜆-norm. Yet, it has been commented that, in the
literature [13], when using 𝜆-norm, the impact of the system
dynamics and the learning gains on the learning performance
is extremely suppressed by the sufficiently larger parameter 𝜆
to ensure the convergence.Thus it is possible that an improper
choice of the parameter 𝜆 may spoil a fair assessment of the
tracking behaviors in practice [13]. Also, the articles [11, 12] do
not involve the robustness which is a key criterion of learning
algorithm.Thus the study of ILC algorithms for the switched
systems needs to be further expanded.

Motivated by the drawbacks of the literatures [9, 11, 12],
the paper discusses the convergence and the robustness of a P-
type ILC algorithm for a kind of discrete linear discrete time-
invariant switched systems with a fixed arbitrary switching
rule. The convergence and robustness are analyzed in the
iteration domain using the super vector approach. Firstly,
the sufficient condition of convergence is given and then,
significantly, the robustness of the algorithm is analyzed
when the control switched system is interfered by bounded
measurement noise. In order to manifest the validity and
effectiveness of the ILC algorithm, numerical simulation for
a simple example is made.

The rest of the paper is organized as follows. Section 2
presents the fundamental problem. Section 3 exhibits the
learning process description in the form of super vector and
the learning performance analysis. In order to show the fea-
sibility and effectiveness of the theoretical results, numerical
simulations are given in Section 4 and the conclusion is drawn
in the last section.

2. Fundamental Problem Description

Consider a class of linear discrete time-invariant single-input,
single-output switched systems described as follows:

x𝑘+1 (𝑖 + 1) = A𝜏(𝑖)x𝑘+1 (𝑖) + B𝜏(𝑖)𝑢𝑘+1 (𝑖) ,

𝑦𝑘+1 (𝑖 + 1) = C𝜏(𝑖)x𝑘+1 (𝑖 + 1)

𝑖 ∈ 𝑆.

(1)

Here, x𝑘+1(𝑖) ∈ R𝑛, 𝑢𝑘+1(𝑖) ∈ R, and 𝑦𝑘+1(𝑖 + 1) ∈ R are
the state variable, the input variable, and the output variable,
respectively. The set 𝑆 = {0, 1, 2, . . . , 𝑁 − 1}, 𝑁 ∈ Z+, stands
for the operation time duration each trial, 𝑖; 𝑖 ∈ 𝑆 denotes the
time instant. The subscript 𝑘 + 1, 𝑘 ∈ N, denotes iteration
number. The symbol 𝜏(𝑖) represents random switching rule
defined by 𝜏(⋅) : N → 𝑄 = {1, 2, 3, . . . , 𝑞} with 𝑞 ∈ Z+, 𝑞 <
+∞. This implies that the matrices group (A𝜏(𝑖),B𝜏(𝑖),C𝜏(𝑖))
can be taken as an arbitrary element of following finite set:

{(A1,B1,C1) , (A2,B2,C2) , . . . , (A𝑞,B𝑞,C𝑞)} . (2)

For a given desired trajectory 𝑦𝑑(𝑖+1), 𝑖 ∈ 𝑆, the objective
of an ILC for the system (1) is to generate an input sequence

{𝑢𝑘(𝑖), 𝑖 ∈ 𝑆, 𝑘 ∈ Z+} in a recursive mode by learning from
the previous experience such that it can drive the system (1)
to track the desired trajectory 𝑦𝑑(𝑖 + 1), 𝑖 ∈ 𝑆, as precisely as
possible, mathematically:

lim
𝑘→∞

𝑒𝑘+1 (𝑖 + 1)
 = 0, ∀𝑖 ∈ 𝑆, (3)

where 𝑒𝑘+1(𝑖 + 1) = 𝑦𝑑(𝑖 + 1)−𝑦𝑘+1(𝑖 + 1) is the tracking error.
Analysis of this paper is basis of the following primary

assumptions [9, 11].
(A1) All operations start at identical initial state; that is,

x𝑘+1(0) = x0, for any 𝑘 ∈ Z+. Without loss of gener-
ality, it is assumed that x0 = 0.

(A2) The desired trajectory 𝑦𝑑(𝑖 + 1), 𝑖 ∈ 𝑆, is iteration-
invariant.

(A3) For the given desired trajectory 𝑦𝑑(𝑖 + 1), 𝑖 ∈ 𝑆, there
exists a desired control input signal 𝑢𝑑(𝑖), 𝑖 ∈ 𝑆, and a
desired state vector x𝑑(𝑖), 𝑖 ∈ 𝑆, such that

x𝑑 (𝑖 + 1) = A𝜏(𝑖)x𝑑 (𝑖) + B𝜏(𝑖)𝑢𝑑 (𝑖) ,

𝑦𝑑 (𝑖 + 1) = C𝜏(𝑖)x𝑑 (𝑖 + 1)

𝑖 ∈ 𝑆.

(4)

In this paper, a P-type ILC scheme is considered as
𝑢𝑘+1 (𝑖) = 𝑢𝑘 (𝑖) + 𝛾𝜏(𝑖)𝑒𝑘 (𝑖 + 1) , (5)

where 𝛾𝜏(𝑖) (𝜏(𝑖) ∈ 𝑄) denotes the proportional learning gain.

3. Learning Performances Analysis

In this section, the super vector approach is employed to
analyze the learning performance of the algorithm (5) for the
switched systems (1).

3.1. Super Vector Representation of ILC. Given an arbitrary 𝑖 ∈
𝑆, the outputs at time instants from 1 to 𝑖 + 1 of the (𝑘 + 1)th
trial can be, respectively, calculated as

𝑦𝑘+1 (1) = C𝜏(0)x𝑘+1 (1)

= C𝜏(0)A𝜏(0)x𝑘+1 (0) + C𝜏(0)B𝜏(0)𝑢𝑘+1 (0) ,

𝑦𝑘+1 (2) = C𝜏(1)x𝑘+1 (2)

= C𝜏(1)A𝜏(1)A𝜏(0)x𝑘+1 (0)

+ C𝜏(1)A𝜏(1)B𝜏(0)𝑢𝑘+1 (0) + C𝜏(1)B𝜏(1)𝑢𝑘+1 (1) ,

𝑦𝑘+1 (3) = C𝜏(2)x𝑘+1 (3)

= C𝜏(2)A𝜏(2)A𝜏(1)A𝜏(0)x𝑘+1 (0)

+ C𝜏(2)A𝜏(2)A𝜏(1)B𝜏(0)𝑢𝑘+1 (0)

+ C𝜏(2)A𝜏(2)B𝜏(1)𝑢𝑘+1 (1) + C𝜏(2)B𝜏(2)𝑢𝑘+1 (2) ,

.

.

.
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𝑦𝑘+1 (𝑖 + 1) = C𝜏(𝑖)x𝑘+1 (𝑖 + 1)

= C𝜏(𝑖)
𝑖

∏

𝑗=0

A𝜏(𝑗)x𝑘+1 (0)

+ C𝜏(𝑖)
𝑖

∏

𝑗=1

A𝜏(𝑗)B𝜏(0)𝑢𝑘+1 (0)

+ C𝜏(𝑖)
𝑖

∏

𝑗=2

A𝜏(𝑗)B𝜏(1)𝑢𝑘+1 (1)

+ ⋅ ⋅ ⋅ + C𝜏(𝑖)A𝜏(𝑖)B𝜏(𝑖−1)𝑢𝑘+1 (𝑖 − 1)

+ C𝜏(𝑖)B𝜏(𝑖)𝑢𝑘+1 (𝑖) .
(6)

For the sake of expression simplicity, the following “super
vectors” are denoted as

u𝑘+1 = [𝑢𝑘+1 (0) , 𝑢𝑘+1 (1) , . . . , 𝑢𝑘+1(𝑖)]
T
,

y𝑘+1 = [𝑦𝑘+1 (1) , 𝑦𝑘+1 (2) , . . . , 𝑦𝑘+1(𝑖 + 1)]
T
.

(7)

Then the system (6) can be equivalently represented as the
following input-output response linear system:

y𝑘+1 = H (𝑖) u𝑘+1 +D (𝑖) , (8)

where

H (𝑖) =

[
[
[
[
[
[
[
[
[
[
[

[

C𝜏(0)B𝜏(0) 0 0 ⋅ ⋅ ⋅ 0 0

C𝜏(1)A𝜏(1)B𝜏(0) C𝜏(1)B𝜏(1) 0 ⋅ ⋅ ⋅ 0 0

C𝜏(2)A𝜏(2)A𝜏(1)B𝜏(0) C𝜏(2)A𝜏(2)B𝜏(1) C𝜏(2)B𝜏(2) ⋅ ⋅ ⋅ 0 0

.

.

.
.
.
.

.

.

.
.
.
. d

.

.

.

C𝜏(𝑖)
𝑖

∏

𝑗=1

A𝜏(𝑗)B𝜏(0) C𝜏(𝑖)
𝑖

∏

𝑗=2

A𝜏(𝑗)B𝜏(1) C𝜏(𝑖)
𝑖

∏

𝑗=3

A𝜏(𝑗)B𝜏(2) ⋅ ⋅ ⋅ C𝜏(𝑖)A𝜏(𝑖)B𝜏(𝑖−1) C𝜏(𝑖)B𝜏(𝑖)

]
]
]
]
]
]
]
]
]
]
]

]

,

D (𝑖) = [
[

C𝜏(0)A𝜏(0)𝑥𝑘+1 (0) ,C𝜏(1)
1

∏

𝑗=0

A𝜏(𝑗)𝑥𝑘+1 (0) ,C𝜏(2)
2

∏

𝑗=0

A𝜏(𝑗)𝑥𝑘+1 (0) , . . . ,C𝜏(𝑖)
𝑖

∏

𝑗=0

A𝜏(𝑗)𝑥𝑘+1 (0)]
]

T

.

(9)

Taking assumption (A1) into account reduces D(𝑖) = 0.
Considering 𝑖 = 𝑁 − 1 and denotingH(𝑁 − 1) = H, the sys-
tem (8) becomes

y𝑘+1 = Hu𝑘+1, (10)

where u𝑘+1 = [𝑢𝑘+1(0), 𝑢𝑘+1(1), . . . , 𝑢𝑘+1(𝑁 − 1)]
T and y𝑘+1 =

[𝑦𝑘+1(1), 𝑦𝑘+1(2), . . . , 𝑦𝑘+1(𝑁)]
T.

Remark 1. It is noted that the presentation in the form of
super vector reflects the dynamical properties of the system
(1) in the iteration domain. For the linear time-varying
switched systems and some kinds of nonlinear switched
systems, similar description can also be derived. Thus the
results in this paper can be generalized to some linear time-
varying switched systems and some classes of nonlinear
switched systems.

Consequently, the control objective of ILC in the form of
super vector can be equivalently described as searching such
an input super vector sequence {u𝑘}, 𝑘 ∈ Z+ that it can drive
the system (10) to track the desired trajectory y𝑑 as precisely
as possible as the iteration number tends to infinite; that is,

lim
𝑘→∞

e𝑘+1
] = 0. (11)

Here, “‖ ⋅ ‖]” denotes some vector norm and e𝑘+1 represents
tracking error super vector which is defined as

e𝑘+1 = y𝑑 − y𝑘+1 = [𝑒𝑘+1 (1) , 𝑒𝑘+1 (2) , . . . , 𝑒𝑘+1(𝑁)]
T
,

y𝑑 = [𝑦𝑑 (1) , 𝑦𝑑 (2) , . . . , 𝑦𝑑(𝑁)]
T
.

(12)

In the form of the super vector, the updating law (5) is
reformulated as

u𝑘+1 = u𝑘 + Γe𝑘, (13)

where

Γ =

[
[
[
[
[
[

[

𝛾𝜏(0) 0 0 ⋅ ⋅ ⋅ 0

0 𝛾𝜏(1) 0 ⋅ ⋅ ⋅ 0

0 0 𝛾𝜏(2) ⋅ ⋅ ⋅ 0

.

.

.
.
.
.

.

.

. d
.
.
.

0 0 0 ⋅ ⋅ ⋅ 𝛾𝜏(𝑁−1)

]
]
]
]
]
]

]

(14)

is the learning gain matrix which consists of the learning
gains of updating law (5). Now original two-dimensional ILC
problem is converted into a one-dimensional linear input-
output response problem [14].
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3.2. Convergence and Robustness Analysis

Theorem 2. Assume that the ILC algorithm (13) is imposed
on the linear switched system (10) with an arbitrary switching
sequence {𝜏(𝑖)}, 𝑖 ∈ 𝑆. Then the tracking error converges mon-
otonically in the sense of some vector norm if the inequality

‖I −HΓ‖𝜇 < 1 (15)

holds, where “‖ ⋅ ‖𝜇” denotes the induced matrix norm.

Proof. By the definition of the tracking error, it is easy to
derive

e𝑘+1 = y𝑑 − y𝑘+1

= y𝑑 −H (u𝑘 + Γe𝑘)

= (I −HΓ) e𝑘.

(16)

Taking norm of both sides of (16) and using norm inequality
yield

e𝑘+1
] ≤ ‖I −HΓ‖𝜇

e𝑘
] , (17)

where ] = 1, 2 or∞. Considering assumption ‖I −HΓ‖𝜇 < 1
gets

e𝑘+1
] <

e𝑘
] . (18)

This completes the proof.

It is noted that the elements of the matrix H are not
determined in advance, as the switching rule of the controlled
system is arbitrary. In the process of analysis, it is assumed
that the condition (15) holds for all possibilities ofH.

Remark 3. The assumption (15) is a sufficient condition for
monotone convergence. In particular, in the case when 𝜇 = 2,
] = 2, it derives

e𝑘+1
2 ≤ ‖I −HΓ‖2

e𝑘
2 =

√𝜌max (I −HΓ)T (I −HΓ) e𝑘
2

= 𝜎max (I −HΓ) e𝑘
2 .

(19)

Here 𝜌(M) denotes the spectral radius of M and 𝜎(M)
represents the singular value ofM, which is defined as𝜎(M) =
√𝜌(MTM). In the following discussion, we consider that 𝜇 =
2, ] = 2 in (15).

When considering measurement disturbance 𝜉𝑘+1(𝑖 + 1),
𝑖 ∈ 𝑆, the system (1) can be reformulated as

x𝑘+1 (𝑖 + 1) = A𝜏(𝑖)x𝑘+1 (𝑖) + B𝜏(𝑖)𝑢𝑘+1 (𝑖) ,

𝑦𝑘+1 (𝑖 + 1) = C𝜏(𝑖)x𝑘+1 (𝑖 + 1) + 𝜉𝑘+1 (𝑖 + 1)

𝑖 ∈ 𝑆.

(20)

Thus the system (10) can be reformulated as

y𝑘+1 = Hu𝑘+1 + 𝜉𝑘+1, (21)

where 𝜉𝑘+1 = [𝜉𝑘+1(1), 𝜉𝑘+1(2), . . . , 𝜉𝑘+1(𝑁)]
T denotes the

measurement noise vector satisfying ||𝜉𝑘+1||2 < +∞ for any
𝑘 ∈ Z+.

There are two types of errors, namely, the contaminated
tracking error e𝑘+1 and the uncontaminated tracking error
e𝑘+1 to measure the learning behavior at the (𝑘 + 1)th trial.
They are, respectively, defined as

e𝑘+1 = y𝑑 − Gu𝑘+1 − 𝜉𝑘+1,

e𝑘+1 = y𝑑 − Gu𝑘+1.
(22)

Clearly, the relationship of e𝑘+1 and e𝑘+1 is e𝑘+1 = e𝑘+1 + 𝜉𝑘+1.
The signal e𝑘+1 is the observed error at the (𝑘 + 1)th

iteration regardless of the noise at this trial (it is only
influenced by previous noise signals 𝜉𝑙, 0 ≤ 𝑙 ≤ 𝑘). It
is an option to assess the tracking behavior of the learning
algorithm, whereas, since the noise is transferred by the
learning process, the current input vector u𝑘 ought to be
compensated by the contaminated error e𝑘 at the 𝑘th trial;
that is to say, the updating law (13) is reformulated as

u𝑘+1 = u𝑘 + Γe𝑘. (23)

By the definition of the tracking error vector, the evolution
of the uncontaminated tracking error vector at two adjacent
trials can be inferred as

e𝑘+1 = (I −HΓ) e𝑘 +HΓ𝜉𝑘. (24)

Theorem 4. Consider (24) which is derived by using the
updating law (23) on the switched system (21). Then
lim𝑘→∞ sup ‖e𝑘+1‖2 is bounded if the noise vectors satisfy
‖𝜉𝑘‖2 = 𝛽 < +∞ for any 𝑘 ∈ Z+ and 𝜎max(I − HΓ) = 𝜎 < 1,
where “sup” stands for the supremum of a sequence.

Proof. Taking the Euclidean norm of both sides of (24) yields

e𝑘+1
2 ≤ ‖(I −HΓ)‖2

e𝑘
2 + ‖HΓ‖2

𝜉𝑘
2

≤ ‖(I −HΓ)‖2
e𝑘
2 + ‖HΓ‖2 𝛽.

(25)

Using the relation (25) successively derives

e𝑘+1
2 ≤ ‖(I −HΓ)‖2

e𝑘
2 + ‖HΓ‖2 𝛽

≤ ‖(I −HΓ)‖2 [‖(I −HΓ)‖2
e𝑘−1

2 + ‖HΓ‖2 𝛽]

+ ‖HΓ‖2 𝛽

= ‖(I −HΓ)‖2
2

e𝑘−1
2 + (‖(I −HΓ)‖2 + 1) ‖HΓ‖2 𝛽

.

.

.

≤ ‖(I −HΓ)‖𝑘
2

e1
2 + (

𝑘−1

∑

𝑗=0

‖(I −HΓ)‖𝑗
2
)‖HΓ‖2 𝛽.

(26)
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Taking the assumption ‖𝜉𝑘‖2 = 𝛽 < +∞ for any 𝑘 ∈ Z+ into
account and denoting 𝜎 = 𝜎max(I − HΓ), inequality (26)
becomes

e𝑘+1
2 ≤ 𝜎

𝑘 e1
2 + (

𝑘−1

∑

𝑗=0

𝜎
𝑗
)‖HΓ‖2 𝛽

= 𝜎
𝑘 e1

2 +
1 − 𝜎
𝑘

1 − 𝜎
‖HΓ‖2 𝛽.

(27)

Since 𝜎 < 1, it is easy to conclude that (1 − 𝜎𝑘)/(1 − 𝜎) <
(1 − 𝜎

𝑘−1
)/(1 − 𝜎). This implies that

lim
𝑘→∞

sup e𝑘+1
2

≤ lim
𝑘→∞

𝜎
𝑘 e1

2 + lim
𝑘→∞

sup(1 − 𝜎
𝑘

1 − 𝜎
) ‖HΓ‖2 𝛽

=
‖HΓ‖2 𝛽
1 − 𝜎

.

(28)

This completes the proof.

Remark 5. It is seen from estimation (28) that the value of
lim𝑘→∞ sup ‖e𝑘+1‖2 is mainly related to the boundary 𝛽 of
the noise. The smaller magnitude of 𝛽 will lead to better
tracking performance. In particular, when the noise is free,
the monotone convergence of the uncontaminated tracking
error in the sense of Euclidean norm is achieved, which is
consistent with Theorem 2. In the case when the value of 𝛽
is determined, the influence of the noise can be reduced by
decreasing the value of 𝜎(I −HΓ).

Remark 6. The super vector approach employed in the paper
is a tool to theoretically analyze the learning performance of
the addressed ILC algorithm. Since it converts the original
two-dimensional problem into a one-dimension linear input-
output response problem, it can deal with the ILC problem
only in the iterative domain regardless of time domain. This
brings a great convenience for designing a controller and for
theoretical analysis.

Remark 7. Compared with the existing ILC algorithms for
the linear switched systems in the literatures [9, 11], this
paper analyzes robustness to external measurement noise by
employing super vector method, which is one of significant
issues in the procedure of designing an applicable controller.
Additionally, it is observed that, for the switched systems,
the convergence and robustness are guaranteed on the basis
that the systemdynamics is required to be iteration-invariant,
though the system arbitrarily switches among the subdynam-
ics. The case that can be regarded as the system dynamics
is time-varying. The analysis implies that the ILC scheme
may work well for time-varying systems. This turns to be the
significance of the ILC strategy that it requires less a prior of
system knowledge.

Remark 8. It is necessary to point out that the study on
the ILC algorithms for switched systems is more arduous

than that for nonswitched systems, since the dynamical
behaviors of switched systems are more complex. As seen
that a switched system obeys diverse subdynamics, compared
with an ILC algorithm for a nonswitched system, the ILC
scheme for a switched system requires much more memory
to store the switching rules as well as the subdynamics. It
would be a dimensional disaster in the case when the system
dimension is higher and the sampling number is much larger.
However, the memory requirement will be solved sooner or
later with the advancing of information technology. Next,
hinted by the manner of the existing references [9, 11, 12, 15],
the study of the paper for the switched system is based on
the premise that the switching rule is time-dependent but
iteration-invariant; that is, the switching rule varies along
the time axis but it must be fixed for the whole learning
process once the switching rule is selected for the starting
learning.This requirement is crucial. For a general case when
the switching rule is fired randomly both in time axis and in
iteration direction, how to analyze the learning performance
is a key difficulty.The issuewill be investigated in futurework.

4. Numerical Simulations

Tomanifest the validity and the effectiveness of the algorithm,
a simple example is considered, which has served as an
example in the literature [9]. The switched system with three
subsystems is formulated as follows:

x𝑘+1 (𝑖 + 1) = A𝜏(𝑖)x𝑘+1 (𝑖) + B𝜏(𝑖)𝑢𝑘+1 (𝑖) ,

𝑦𝑘+1 (𝑖 + 1) = C𝜏(𝑖)x𝑘+1 (𝑖 + 1)

𝑖 ∈ 𝑆.

(29)

Here, the operation discrete time duration is set as 𝑆 =

{0, 1, 2, . . . , 59} (i.e., 𝑁 = 60). Given arbitrary positive
integers V𝑖 (𝑖 ∈ 𝑆) belonging to [1, 60], the arbitrarily
switching sequence is defined as

𝜏 (𝑖) =

{{

{{

{

1, if V𝑖 mod 3 = 1
2, if V𝑖 mod 3 = 2
3, if V𝑖 mod 3 = 0.

(30)

Two possible switching sequences of 𝜏(𝑖) are shown in
Figure 1.

The system dynamics are given as

A1 = [
0 1

0.125 −0.2
] , 𝐵1 = [

0

1
] , 𝐶1 = [0.1 1] ,

A2 = [
−0.25 1

0 −0.3
] , 𝐵2 = [

0

1
] , 𝐶2 = [−0.2 1] ,

A3 = [
1 0

0.2 −0.1
] , 𝐵3 = [

0

1
] , 𝐶3 = [0.25 1] .

(31)

The desired trajectory is selected as 𝑦𝑑(𝑖 + 1) = sin(8𝑖/25),
𝑖 ∈ 𝑆. The initial state is set as x𝑘+1(0) = 0 for all 𝑘 ∈ N and
the starting input vector is chosen as u1(0) = 0. Throughout
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Figure 1: Arbitrary switching sequence 𝜏(𝑖).
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Figure 2: Tracking error in iteration domain.

the implementation, the learning gains are chosen to be time-
invariant and set as 𝛾𝜏(𝑖) = 0.25. In this case, the condition
‖I −HΓ‖2 = 𝜎 = 0.8475 < 1 holds.

4.1. Convergence. Assume that the system (29) is not inter-
fered by any external noise and the updating law (13) is
applied. Figure 2 exhibits the curve of ‖e𝑘‖2 from the 1st
iteration to the 50th iteration. Obviously, ‖e𝑘‖2 is convergent
in the iteration domain. Figure 3 depicts the system outputs
at the 5th iteration, the 10th iteration, and the 15th iteration.
It is seen that the output of the switched system (29) can track
the desired trajectory asymptotically as the iteration number
enlarges. These indicate that ILC algorithm (13) is valid for
the case when uncertain noise is neglected.
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Figure 3: The system outputs at the 5th trial, the 10th trial, and the
15th trial.

4.2. Robustness. Suppose that the system (29) is randomly
disturbed by a set of boundedmeasurement disturbance. One
of disturbance set in an arbitrary trial is shown in Figure 4.
The boundary of sup(‖e𝑘+1‖2) implies that ‖e𝑘+1‖2 is bounded
too. The value of ‖e𝑘‖2 is calculated and its profile is shown
in Figure 5. Then the magnitude of max(‖e𝑘+1‖2) (instead
of sup(‖e𝑘+1‖2) in Theorem 4) is calculated and the curve
of max(‖e𝑘+1‖2) is illustrated in Figure 6. It is obvious that
the values of both ‖e𝑘+1‖2 and max(‖e𝑘+1‖2) are bounded as
iteration number enlarges.
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Figure 4: A sequence of random disturbance of arbitrary trial in
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Figure 5: Tracking error in the iteration domain.

The system outputs at the 10th trial and the 15th trial
are exhibited in Figure 7. It is observed that the tracking
performance of the ILC algorithm is satisfactory when the
switching rule is arbitrarily fixed and the system is disturbed
by measurement noise with an acceptable boundary.

5. Conclusion

In this paper, a P-type ILC algorithm is applied to a kind of
discrete switched systems with an arbitrary switching rule.
By the super vector approach, the convergence performance
is firstly discussed and then the robustness is analyzed when
the system is randomly interfered by bounded measurement
noise for the case that the switching rule is fixed once it is
randomly selected for the first operation. Results manifest
that the convergence and robustness can be guaranteed
under appropriate conditions. However, for the case when
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Figure 6: max{‖e𝑘‖2} profile.
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Figure 7: The system outputs of the 10th trial and the 15th trial.

the switching rule is fired randomly both in time axis
and iteration direction, the analysis of the convergence and
the robustness remain a hanging issue. In addition, the
learning performance of the ILC scheme for linear time-
varying switched system or nonlinear switched system is a
challenging topic.
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