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We present an analysis of corrected quadrature rules based on the method of undetermined coefficients and its associated degree of
accuracy.The correcting terms use weighted values of the first derivative of the function at the endpoint of the subinterval in such a
way that the composite rules contain only two new values. Using Taylor’s expansions and Peano’s kernels we obtain best truncation
error bounds which depend on the regularity of the function and the weight parameter. We can minimize the bounds with respect
to the parameter, and we can find the best parameter value to increase the order of the error bounds or, equivalently, the degree of
accuracy of the rule.

1. Introduction

The problem of correcting known quadrature formulas by
using derivative values is an old one (see [1] and the references
therein) and continues regularly to be analyzed [2, 3]. Here
we propose an analysis of corrected quadrature rules using
the method of undetermined coefficients and its associated
degree of accuracy (or precision). Using Taylor’s expansions
for absolutely continuous functions, we obtain Peano’s ker-
nels and, as a consequence, best error bounds. The bounds,
expressed in terms of 𝐿𝑝-norms, depend on the regularity of
the function and also on a parameter 𝛽. For a given regularity
of the function and a 𝑝-norm, we can minimize the bound
with respect to 𝛽. Moreover, under certain conditions, it is
possible to find a value 𝛽∗ of the parameter 𝛽 to increase the
degree of accuracy (and the order of error bounds) of the
method.

Let us start by considering the integral we want to
approximate:

𝑄 (𝑓; ℎ) :=
1
ℎ
∫

ℎ

−ℎ

𝑓 (𝑥) 𝑑𝑥. (1)

This form of the integral is motivated by the composite
quadrature formula considered in Section 7 which consists in
adding terms of the form ℎ𝑄(𝑓; ℎ). The expression ℎ𝑄(𝑓; ℎ)

also represents any definite integral subject to a linear
transformation of the argument.

The method of undetermined coefficients consists in
finding a (𝑛 + 1)-dimensional weight vector ⃗𝑎 = (𝑎0, . . . , 𝑎𝑛)
associated with a given (𝑛 + 1)-dimensional vector of distinct
coordinates (or nodes) 𝑥⃗ = (𝑥0, . . . , 𝑥𝑛) such that 𝑄(𝑓; ℎ) is
approximated by the finite sum

𝑄 (𝑓; ℎ) ≈ 𝑄𝑛 (𝑓; ℎ) :=

𝑛

∑

𝑖=0
𝑎𝑖𝑓 (ℎ𝑥𝑖) . (2)

In this expression we use ℎ𝑥𝑖 to fix the position of the nodes
relatively to the interval [−ℎ, ℎ] for any ℎ.

For weighted endpoint corrected quadrature rules, the
approximation of (1) is given by

𝑄𝑛 (𝑓; ℎ, 𝛽) :=

𝑛

∑

𝑖=0
𝑎𝑖 (𝛽) 𝑓 (ℎ𝑥𝑖)

+ 𝛽ℎ [𝑓
(1)

(ℎ) −𝑓
(1)

(−ℎ)] .

(3)

The endpoint correction term is

𝑄
𝑐
(𝑓; ℎ) := ℎ [𝑓

(1)
(ℎ) −𝑓

(1)
(−ℎ)] , (4)

and 𝛽 is the weight or the parameter. In (3), the weights 𝑎𝑖’s
depend on 𝛽. The truncation error of the process is

𝑅𝑛 (𝑓; ℎ, 𝛽) := 𝑄 (𝑓; ℎ) −𝑄𝑛 (𝑓; ℎ, 𝛽) , (5)
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and the method is based on the requirement that

𝑅𝑛 (𝑓; ℎ, 𝛽) = 𝑜 (ℎ
𝑛
) , (6)

for a regular enough function.
The plan of the paper is the following. In the next

section we present preliminaries about polynomials and Tay-
lor’s expansions. The method of undetermined coefficients
adapted to include correction terms is the object of Section 3.
In Section 4 we obtain optimal error bounds using Taylor’s
expansions and Peano’s kernels. In Section 5 we present
the way we can choose the parameter 𝛽 to increase the
degree of accuracy and the order of the error bound of the
method. Examples are given in Section 6. Composite rules are
presented in Section 7 with numerical examples.

Throughout this paper we will use 𝑓
(𝑙)
(𝑥) for the 𝑙th

derivative of 𝑓(𝑥) for 𝑙 = 1, 2, . . .. Let 1 ≤ 𝑝 ≤ ∞; if 𝑓(𝑥)
is defined on a set 𝐸, ‖𝑓‖𝑝,𝐸 will be its 𝐿

𝑝-norm on 𝐸, and if V⃗
is a vector in R𝑛, its 𝑙𝑝-norm will be ‖V⃗‖𝑝.

2. Preliminaries

2.1. Small 𝑜 and Big𝑂 Notations. Let 𝑓(𝑥) be a function such
that lim𝑥→𝛼𝑓(𝑥) = 0. We say that 𝑔(𝑥) is small 𝑜 of 𝑓(𝑥)
around 𝛼 and write 𝑔(𝑥) = 𝑜(𝑓(𝑥)), if for any 𝜖 > 0 there
exists a 𝛿𝜖 > 0 such that

󵄨󵄨󵄨󵄨𝑔 (𝑥)
󵄨󵄨󵄨󵄨 ≤ 𝜖

󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨 , (7)

which holds for 0 < |𝑥 − 𝛼| < 𝛿𝜖. We say that 𝑔(𝑥) is big 𝑂
of 𝑓(𝑥) around 𝛼 and write 𝑔(𝑥) = 𝑂(𝑓(𝑥)), if there exist a
constant 𝐶 and a 𝛿 > 0 such that

󵄨󵄨󵄨󵄨𝑔 (𝑥)
󵄨󵄨󵄨󵄨 ≤ 𝐶

󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨 , (8)

which holds for 0 < |𝑥 − 𝛼| < 𝛿.

2.2. Polynomials and Small 𝑜 Notation. The next lemma is a
direct consequence of the small 𝑜 notation for polynomials
andwill be useful to obtain necessary conditions in Section 4.

Lemma 1. Let 𝑟 be a positive real number and 𝑛 = ⌊𝑟⌋. Let
𝜋𝑚(𝑥) be a polynomial of degree𝑚 such that

𝜋𝑚 (𝑥) = 𝑜 (|𝑥 − 𝛼|
𝑟
) . (9)

Then,

𝜋𝑚 (𝑥) =

{

{

{

(𝑥 − 𝛼)
𝑛+1

𝜋𝑚−(𝑛+1) (𝑥) if 𝑚 > 𝑟,

0 if 𝑚 ≤ 𝑟,

(10)

where 𝜋𝑚−(𝑛+1)(𝑥) is a polynomial of degree𝑚 − (𝑛 + 1).

2.3. Taylor’s Expansion. Let 𝐼ℎ = [−ℎ, ℎ]; for ℎ = 1 we will
simply use 𝐼 = [−1, 1], 𝐼+

ℎ
= [0, ℎ], and 𝐼−

ℎ
= [−ℎ, 0]; for ℎ = 1

we will simply use 𝐼+ = [0, 1] and 𝐼
−
= [−1, 0]. Let 𝑝 and

𝑞 be two extended real numbers such that 1 ≤ 𝑝, 𝑞 ≤ ∞,
and 1/𝑝 + 1/𝑞 = 1. Let 𝐶𝑙

(𝐼ℎ) be the set of continuously
differentiable functions up to order 𝑙 on 𝐼ℎ. Let 𝐴𝐶

𝑙+1,𝑝
(𝐼ℎ)

be the set of absolutely continuous functions on 𝐼ℎ be defined
by 𝑓 ∈ 𝐴𝐶

𝑙+1,𝑝
(𝐼ℎ) if and only if

𝑓 ∈ 𝐶
𝑙
(𝐼ℎ) (11)

and

(a) 𝑓(𝑙+1)
∈ 𝐿

𝑝
(𝐼ℎ),

(b) 𝑓(𝑙)
(𝑠) = 𝑓

(𝑙)
(𝑟) + ∫

𝑠

𝑟
𝑓
(𝑙+1)

(𝜉)𝑑𝜉, for all 𝑟, 𝑠 ∈ 𝐼ℎ.

Taylor’s expansion of 𝑓(𝑥) ∈ 𝐴𝐶
𝑙+1,𝑝

(𝐼ℎ) around 𝑥 = 0 of
order 𝑙 + 1 is

𝑓 (𝑥) =

𝑙

∑

𝑗=0

𝑓
(𝑗)
(0)

𝑗!
𝑥
𝑗
+∫

ℎ

−ℎ

𝑓
(𝑙+1)

(𝑦)𝐾𝑇,𝑙 (𝑥, 𝑦; ℎ) 𝑑𝑦, (12)

where𝐾𝑇,𝑙(𝑥, 𝑦; ℎ) is the kernel

𝐾𝑇,𝑙 (𝑥, 𝑦; ℎ) =
1
𝑙!
[(𝑥 − 𝑦)

𝑙

+
1[0,ℎ] (𝑦)

+ (−1)𝑙+1 (𝑦 − 𝑥)𝑙
+
1[−ℎ,0] (𝑦)] ,

(13)

for any 𝑥, 𝑦 in 𝐼ℎ (see [4, 5]). This kernel is a piecewise
polynomial function of degree 𝑙. In this expression, if 𝐸 is a
set, then

1𝐸 (𝑦) =
{

{

{

1 if 𝑦 ∈ 𝐸,

0 if 𝑦 ∉ 𝐸,

(14)

and, for any nonnegative integer 𝑙,

(𝑧)
𝑙

+
=

{

{

{

𝑧
𝑙 if 𝑧 > 0,

0 if 𝑧 ≤ 0.
(15)

If we set 𝑥 = ℎ𝜉 and 𝑦 = ℎ𝜂, then the kernel becomes

𝐾𝑇,𝑙 (𝑥, 𝑦; ℎ) = 𝐾𝑇,𝑙 (ℎ𝜉, ℎ𝜂; ℎ) = ℎ
𝑙
𝐾𝑇,𝑙 (𝜉, 𝜂; 1) , (16)

for any 𝜉, 𝜂 in 𝐼.

3. The Method of Undetermined Coefficients

3.1. Direct Approach. We observe that 𝑅𝑛(𝑓; ℎ, 𝛽) given by (5)
is linear with respect to 𝑓(𝑥), and if 𝑓(𝑥) is a polynomial of
degree ≤ 𝑚with respect to 𝑥, then 𝑅𝑛(𝑓; ℎ, 𝛽) is a polynomial
of degree ≤ 𝑚 with respect to ℎ. From Lemma 1, condition
(6) implies that 𝑅𝑛(𝑓; ℎ, 𝛽) = 0 for any polynomial 𝑓(𝑥) of
degree ≤ 𝑛. Then using the standard basis {𝑥𝑙

}
𝑛

𝑙=0, we have to
solve the linear system

𝑉 (𝑥⃗) ⃗𝑎 (𝛽) = 𝑏⃗ (𝛽) , (17)

where 𝑉(𝑥⃗) is the Vandermonde matrix associated with 𝑥⃗,
and the entries of 𝑏⃗(𝛽) are

𝑏𝑙 (𝛽) = [
1

𝑙 + 1
− 𝑙𝛽] (1+ (−1)𝑙) for 𝑙 = 0, . . . , 𝑛. (18)
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The solution of this system is

⃗𝑎 (𝛽) =

𝑛

∑

𝑙=0
[

1
𝑙 + 1

− 𝑙𝛽] (1+ (−1)𝑙)𝑉−1
(𝑥⃗) ⃗𝑒𝑙

=

⌊𝑛/2⌋
∑

𝑘=0
2 [ 1

2𝑘 + 1
− 2𝑘𝛽]𝑉−1

(𝑥⃗) ⃗𝑒2𝑘

=

⌊𝑛/2⌋
∑

𝑘=0

2
2𝑘 + 1

𝑉
−1
(𝑥⃗) ⃗𝑒2𝑘 −𝛽

⌊𝑛/2⌋
∑

𝑘=0
4𝑘𝑉−1

(𝑥⃗) ⃗𝑒2𝑘,

(19)

where ⃗𝑒𝑙 is the (𝑛 + 1)-column vector, the transpose of
(𝛿𝑙,0, . . . , 𝛿𝑙,𝑗 . . . , 𝛿𝑙,𝑛), and 𝛿𝑙,𝑗 = 1 if 𝑗 = 𝑙, 𝛿𝑙,𝑗 = 0 if 𝑗 ̸= 𝑙,
for 0 ≤ 𝑙, 𝑗 ≤ 𝑛. Let us remark that ⃗𝑎(𝛽) does not depend on
𝛽 for 𝑛 = 0 and 𝑛 = 1 (cases which include the midpoint and
trapezoidal rules).

Itmight happen that𝑅𝑛(𝑓; ℎ, 𝛽) = 0 for somepolynomials
𝑓(𝑥) of degree > 𝑛. Let us define the degree of accuracy (or
precision) 𝑛𝛽 of the approximation process (3) as the largest
integer 𝑛𝛽 ≥ 𝑛 such that 𝑅𝑛(𝑓; ℎ, 𝛽) = 0 holds for any
polynomial 𝑓(𝑥) of degree 𝑙 ≤ 𝑛𝛽.

3.2. A Decomposition. Using (19), let us set

⃗𝑎 =

⌊𝑛/2⌋
∑

𝑘=0

2
2𝑘 + 1

𝑉
−1
(𝑥⃗) ⃗𝑒2𝑘,

⃗𝑎
𝑐
=

⌊𝑛/2⌋
∑

𝑘=0
4𝑘𝑉−1

(𝑥⃗) ⃗𝑒2𝑘.

(20)

Then ⃗𝑎 is the solution of

𝑉 (𝑥⃗) ⃗𝑎 = 𝑏⃗, (21)

where the entries of 𝑏⃗ are

𝑏𝑙 =

(1 + (−1)𝑙)
𝑙 + 1

for 𝑙 = 0, . . . , 𝑛, (22)

and ⃗𝑎
𝑐 is the solution of

𝑉 (𝑥⃗) ⃗𝑎
𝑐
= 𝑏⃗

𝑐
, (23)

where the entries of 𝑏⃗𝑐 are

𝑏
𝑐

𝑙
= 𝑙 (1+ (−1)𝑙) for 𝑙 = 0, . . . , 𝑛. (24)

Let us write

𝑅𝑛 (𝑓; ℎ) = 𝑄 (𝑓; ℎ) −

𝑛

∑

𝑖=0
𝑎𝑖𝑓 (ℎ𝑥𝑖) ,

𝑅
𝑐

𝑛
(𝑓; ℎ) = 𝑄

𝑐
(𝑓; ℎ) −

𝑛

∑

𝑖=0
𝑎
𝑐

𝑖
𝑓 (ℎ𝑥𝑖) .

(25)

Then the following result follows directly.

Theorem 2. The following two conditions are equivalent:

(A) for any 𝛽, there exists a unique ⃗𝑎(𝛽) such that 𝑅𝑛(𝑓;

ℎ, 𝛽) = 0 for any polynomial of degree ≤ 𝑛,

(B) there exists a unique ⃗𝑎 such that 𝑅𝑛(𝑓; ℎ) = 0 for any
polynomial of degree ≤ 𝑛, and there exists a unique ⃗𝑎

𝑐

such that𝑅𝑐

𝑛
(𝑓; ℎ) = 0 for any polynomial of degree≤ 𝑛.

Moreover, one has ⃗𝑎(𝛽) = ⃗𝑎 − 𝛽 ⃗𝑎
𝑐 and

𝑅𝑛 (𝑓; ℎ, 𝛽) = 𝑅𝑛 (𝑓; ℎ) − 𝛽𝑅
𝑐

𝑛
(𝑓; ℎ) . (26)

4. Truncation Error

Since the method requires the values of 𝑓(1)
(−ℎ) and 𝑓

(1)
(ℎ)

for 𝛽 ̸= 0, we assume that 𝑓(𝑥) is at least in 𝐴𝐶
2,𝑝
(𝐼ℎ). Let

𝑙 such that 1 ≤ 𝑙 ≤ 𝑛𝛽 and 𝑓(𝑥) ∈ 𝐴𝐶
𝑙+1,𝑝

(𝐼ℎ). Since the
process is exact for polynomials of degree ≤ 𝑙, using a Taylor
expansion (12) of order 𝑙 + 1, we obtain

𝑅𝑛 (𝑓; ℎ, 𝛽) = ∫

ℎ

−ℎ

𝑓
(𝑙+1)

(𝑦)𝐾𝑄,𝑙 (𝑦; ℎ, 𝛽) 𝑑𝑦,
(27)

where𝐾𝑄,𝑙(𝑦; ℎ, 𝛽) is the Peano kernel given by

𝐾𝑄,𝑙 (𝑦; ℎ, 𝛽) = 𝑅𝑛 (𝐾𝑇,𝑙 (⋅, 𝑦; ℎ) ; ℎ, 𝛽) . (28)

Following (26), we have

𝐾𝑄,𝑙 (𝑦; ℎ, 𝛽) = 𝐾𝑄,𝑙 (𝑦; ℎ) − 𝛽𝐾𝑄𝑐 ,𝑙 (𝑦; ℎ) , (29)

where

𝐾𝑄,𝑙 (𝑦; ℎ) = 𝑅𝑛 (𝐾𝑇,𝑙 (⋅, 𝑦; ℎ) ; ℎ)

=
1
ℎ
∫

ℎ

−ℎ

𝐾𝑇,𝑙 (𝑥, 𝑦; ℎ) 𝑑𝑥

−

𝑛

∑

𝑖=0
𝑎𝑖𝐾𝑇,𝑙 (ℎ𝑥𝑖, 𝑦; ℎ) ,

𝐾𝑄𝑐,𝑙 (𝑦; ℎ) = 𝑅
𝑐

𝑛
(𝐾𝑇,𝑙 (⋅, 𝑦; ℎ) ; ℎ)

= ℎ [𝐾𝑇,𝑙−1 (ℎ, 𝑦; ℎ) −𝐾𝑇,𝑙−1 (−ℎ, 𝑦; ℎ)]

−

𝑛

∑

𝑖=0
𝑎
𝑐

𝑖
𝐾𝑇,𝑙 (ℎ𝑥𝑖, 𝑦; ℎ) ,

(30)

since𝐾(1)
𝑇,𝑙
(𝑥, 𝑦; ℎ) = 𝐾𝑇,𝑙−1(𝑥, 𝑦; ℎ). We observe that

𝐾𝑄,𝑙 (𝑦; ℎ, 𝛽) = 𝐾𝑄,𝑙 (ℎ𝜂; ℎ, 𝛽) = ℎ
𝑙
𝐾𝑄,𝑙 (𝜂; 1, 𝛽)

= ℎ
𝑙
[𝐾𝑄,𝑙 (𝜂; 1) − 𝛽𝐾𝑄𝑐 ,𝑙 (𝜂; 1)] ,

(31)
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where

𝐾𝑄,𝑙 (𝜂; 1) =
1

(𝑙 + 1)!
[(1− 𝜂)𝑙+1 1𝐼+ (𝜂) + (−1)

𝑙+1
(𝜂

+ 1)𝑙+1 1𝐼− (𝜂)] −
1
𝑙!

𝑛

∑

𝑖=0
𝑎𝑖 [(𝑥𝑖 − 𝜂)

𝑙

+
1𝐼+ (𝜂)

+ (−1)𝑙+1 (𝜂 − 𝑥𝑖)
𝑙

+
1𝐼− (𝜂)] ,

𝐾𝑄𝑐,𝑙 (𝜂; 1) =
1

(𝑙 − 1)!
[(1− 𝜂)𝑙−1 1𝐼+ (𝜂) + (−1)

𝑙+1
(𝜂

+ 1)𝑙−1 1𝐼− (𝜂)] −
1
𝑙!

𝑛

∑

𝑖=0
𝑎
𝑐

𝑖
[(𝑥𝑖 − 𝜂)

𝑙

+
1𝐼+ (𝜂)

+ (−1)𝑙+1 (𝜂 − 𝑥𝑖)
𝑙

+
1𝐼− (𝜂)] .

(32)

So
󵄩󵄩󵄩󵄩𝐾𝑄,𝑙 (⋅; ℎ, 𝛽)

󵄩󵄩󵄩󵄩𝑞,𝐼
ℎ

= ℎ
𝑙+1−(1/𝑝) 󵄩󵄩󵄩󵄩𝐾𝑄,𝑙 (⋅; 1, 𝛽)

󵄩󵄩󵄩󵄩𝑞,𝐼
, (33)

󵄨󵄨󵄨󵄨𝑅𝑛 (𝑓; ℎ, 𝛽)
󵄨󵄨󵄨󵄨 ≤ ℎ

𝑙+1−(1/𝑝)
𝐶𝑙,𝑝 (𝛽)

󵄩󵄩󵄩󵄩󵄩
𝑓
(𝑙+1)󵄩󵄩󵄩󵄩󵄩𝑝,𝐼

ℎ

, (34)

where

𝐶𝑙,𝑝 (𝛽) =
󵄩󵄩󵄩󵄩𝐾𝑄,𝑙 (⋅; 1, 𝛽)

󵄩󵄩󵄩󵄩𝑞,𝐼

=
󵄩󵄩󵄩󵄩𝐾𝑄,𝑙 (⋅; 1) − 𝛽𝐾𝑄𝑐 ,𝑙 (⋅; 1)

󵄩󵄩󵄩󵄩𝑞,𝐼

(35)

does not depend on ℎ. Since we have

lim
ℎ→ 0

󵄩󵄩󵄩󵄩󵄩
𝑓
(𝑙+1)󵄩󵄩󵄩󵄩󵄩𝑝,𝐼

ℎ

=

{

{

{

0 for 1 ≤ 𝑝 < ∞,

𝐶 for 𝑝 = ∞,

(36)

this result says that

𝑅𝑛 (𝑓; ℎ, 𝛽) =

{

{

{

𝑜 (ℎ
𝑙+1−(1/𝑝)

) for 1 ≤ 𝑝 < ∞,

𝑂 (ℎ
𝑙+1
) for 𝑝 = ∞.

(37)

Since an 𝑜(ℎ
𝑙+1−(1/𝑝)

) or an 𝑂(ℎ
𝑙+1
) is an 𝑜(ℎ

𝑙
), (37)

means that 𝑅𝑛(𝑓; ℎ, 𝛽) = 𝑜(ℎ
𝑙
). In summary we have proved

the following theorem which presents not only a sufficient
condition but also a necessary condition to obtain the desired
error order.

Theorem 3. A necessary and sufficient condition to have𝑅𝑛(𝑓;

ℎ, 𝛽) = 𝑜(ℎ
𝑛
) for any 𝑓 ∈ 𝐴𝐶

𝑛+1,𝑝
(𝐼ℎ) is that 𝑅𝑛(𝑓; ℎ, 𝛽) = 0

for any polynomial 𝑓(𝑥) of degree ≤ 𝑛.

As an extension of this result, the next one shows the
dependance of the error in terms of the regularity 𝑙 of the
function and the 𝑝-norm of 𝑓(𝑙+1)

(𝑥).

Theorem 4. If 𝑅𝑛(𝑓; ℎ, 𝛽) = 0 for any polynomial 𝑓(𝑥) of
degree ≤ 𝑛𝛽, then (34), (35), and (37) hold for any 𝑓 ∈

𝐴𝐶
𝑙+1,𝑝

(𝐼ℎ) and 1 ≤ 𝑙 ≤ 𝑛𝛽.

From (35), for fixed 𝑙 and 𝑝, 𝐶𝑙,𝑝(𝛽) is a continuous
function with respect to 𝛽. Moreover

lim
|𝛽|→+∞

𝐶𝑙,𝑝 (𝛽) = lim
|𝛽|→+∞

󵄩󵄩󵄩󵄩𝐾𝑄,𝑙 (⋅; 1, 𝛽)
󵄩󵄩󵄩󵄩𝑞,𝐼

= +∞; (38)

then we have the following result.

Theorem 5. For any given 𝑙 and 𝑝 (then 𝑞 is also given), the
constant 𝐶𝑙,𝑝(𝛽) reaches its minimum value with respect to 𝛽.

Let us set

𝛽
∗

𝑞
= argmin

𝛽∈R
𝐶𝑙,𝑝 (𝛽) = argmin

𝛽∈R

󵄩󵄩󵄩󵄩𝐾𝑄,𝑙 (⋅; 1, 𝛽)
󵄩󵄩󵄩󵄩𝑞,𝐼

; (39)

then

𝐶𝑙,𝑝 (𝛽
∗

𝑞
) ≤ 𝐶𝑙,𝑝 (𝛽) (40)

for all 𝛽.

Remark 6. It can be shown that bounds given by (34) and (35)
are best bounds. Indeed, using a standard construction [6],
we can find a function 𝑓, which depends on 𝑙 and 𝑝 (then 𝑞

is given), such that

𝑅𝑛 (𝑓; ℎ, 𝛽) =
󵄩󵄩󵄩󵄩𝐾𝑄,𝑙 (⋅; ℎ, 𝛽)

󵄩󵄩󵄩󵄩𝑞,𝐼
ℎ

󵄩󵄩󵄩󵄩󵄩
𝑓
(𝑙+1)󵄩󵄩󵄩󵄩󵄩𝑝,𝐼

ℎ

= ℎ
𝑙+1−(1/𝑝)

𝐶𝑙,𝑝 (𝛽)
󵄩󵄩󵄩󵄩󵄩
𝑓
(𝑙+1)󵄩󵄩󵄩󵄩󵄩𝑝,𝐼

ℎ

.

(41)

5. Increasing the Degree of Accuracy
and the Order of Error Bounds

To increase the degree of accuracy of the process and
consequently increase the order of error bounds, we consider
the decomposition (26). Then we have the following result.

Theorem 7. Let

(i) 𝑛𝛽 ≥ 𝑛 be the degree of accuracy of 𝑅𝑛(𝑓; ℎ, 𝛽);
(ii) 𝑛0 ≥ 𝑛 be the degree of accuracy of 𝑅𝑛(𝑓; ℎ);
(iii) 𝑛𝑐 ≥ 𝑛 be the degree of accuracy of 𝑅𝑐

𝑛
(𝑓; ℎ).

One can increase the degree of accuracy of 𝑅𝑛(𝑓; ℎ, 𝛽) if and
only if 𝑛0 = 𝑛𝑐, for

𝛽 = 𝛽∗ =

𝑅𝑛 (𝑥
𝑛
𝑐
+1
; ℎ)

𝑅𝑐
𝑛
(𝑥𝑛
𝑐
+1; ℎ)

=

𝑅𝑛 (𝑥
𝑛
𝑐
+1
; 1)

𝑅𝑐
𝑛
(𝑥𝑛
𝑐
+1; 1)

. (42)

Proof. Using (26), we observe that 𝑛𝛽 ≥ min{𝑛0, 𝑛𝑐}. So the
parameter 𝛽 can be used to increase the degree of accuracy of
the formula as follows:

(i) if 𝑛0 ≥ 𝑛𝑐: let

𝛽∗ =

𝑅𝑛 (𝑥
𝑛
𝑐
+1
; ℎ)

𝑅𝑐
𝑛
(𝑥𝑛
𝑐
+1; ℎ)

=

𝑅𝑛 (𝑥
𝑛
𝑐
+1
; 1)

𝑅𝑐
𝑛
(𝑥𝑛
𝑐
+1; 1)

; (43)

(a) if 𝑛0 > 𝑛𝑐, since 𝑅𝑛(𝑥
𝑛
𝑐
+1
; 1) = 0, then 𝛽∗ = 0,

𝑛𝛽
∗

= 𝑛0, and 𝑛𝛽 = 𝑛𝑐 < 𝑛0 for any 𝛽 ̸= 𝛽∗ = 0,
so we cannot increase the degree of accuracy;
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(b) if 𝑛0 = 𝑛𝑐, then 𝛽∗ ̸= 0, 𝑛𝛽
∗

> 𝑛0 = 𝑛𝑐, so we can
increase of the degree of accuracy;

(ii) if 𝑛0 < 𝑛𝑐, then 𝑛𝛽 = 𝑛0 < 𝑛𝑐 for any 𝛽, so we cannot
increase the degree of accuracy.

So the result follows.

6. Examples

In this sectionwe analyze four corrected quadrature rules: the
midpoint and trapezoidal rules and two Simpson’s rules: 𝑥⃗ =

(−1, 0, 1) with ⃗𝑎 = (1/3, 4/3, 1/3) and 𝑥⃗ = (−1, −1/3, 1/3, 1)
with ⃗𝑎 = (1/4, 3/4, 3/4, 1/4). We identify 𝛽∗ such that 𝑛𝛽

∗

>

𝑛𝛽 for all 𝛽 ∈ R \ {𝛽∗} when it exists. Moreover for the
midpoint and trapezoidal rules we compute the best 𝛽∗

𝑞
for

𝑞 = 1, 2, +∞ given by (39).

6.1. Midpoint Rule. Let 𝑛 = 0 and 𝑥⃗ = (0); then the
quadrature formula is

∫

1

−1
𝑓 (𝑥) 𝑑𝑥 ≈ 2𝑓 (0) + 𝛽 [𝑓(1)

(1) − 𝑓(1)
(−1)] , (44)

where ⃗𝑎 = (2) with 𝑛0 = 1 and ⃗𝑎
𝑐
= (0) with 𝑛𝑐 = 1. For

1 ≤ 𝑙 ≤ 𝑛𝛽, the kernel is given by

𝐾𝑄,𝑙 (𝜂; 1, 𝛽) =
(1 − 𝜂)

𝑙−1

(𝑙 + 1)!
[(1− 𝜂)2 − 𝑙 (𝑙 + 1) 𝛽]

⋅ 1𝐼+ (𝜂) + (−1)
𝑙+1

⋅
(𝜂 + 1)𝑙−1

(𝑙 + 1)!
[(𝜂 + 1)2 − 𝑙 (𝑙 + 1) 𝛽] 1𝐼− (𝜂) .

(45)

Then 𝐶𝑙,𝑝(𝛽) = ‖𝐾𝑄,𝑙(⋅; 1, 𝛽)‖𝑞,𝐼, where

󵄩󵄩󵄩󵄩𝐾𝑄,𝑙 (⋅; 1, 𝛽)
󵄩󵄩󵄩󵄩𝑞,𝐼

=

{{{{

{{{{

{

1
(𝑙 + 1)!

[2∫
1

0
[(1 − 𝜂)

𝑙−1 󵄨󵄨󵄨󵄨󵄨(1 − 𝜂)
2
− 𝑙 (𝑙 + 1) 𝛽󵄨󵄨󵄨󵄨󵄨]

𝑞

𝑑𝜂]

1/𝑞

for 1 ≤ 𝑞 < ∞,

1
(𝑙 + 1)!

max
𝜂∈[0,1]

(1 − 𝜂)
𝑙−1 󵄨󵄨󵄨󵄨󵄨(1 − 𝜂)

2
− 𝑙 (𝑙 + 1) 𝛽󵄨󵄨󵄨󵄨󵄨 for 𝑞 = ∞.

(46)

For this method, 𝑅0(𝑥
2
; 1) = 2/3 and 𝑅

𝑐

0(𝑥
2
; 1) = 4, so

𝛽∗ = 1/6. We obtain 𝑛𝛽
∗

= 3, and for any 𝛽 ̸= 𝛽∗ we have
𝑛𝛽 = 1. We have computed some constants 𝐶𝑙,𝑝(𝛽) with 𝑝 =

1, 2, +∞ (or 𝑞 = +∞, 2, 1), for 𝑙 = 1 (= 𝑛𝛽) using 𝛽 = 0 ̸= 𝛽∗

and 𝛽∗

𝑞
̸= 𝛽∗, and for 𝑙 = 1, 2, 3 (= 𝑛𝛽

∗

) using 𝛽 = 𝛽∗ = 1/6 as
reported in Table 1. In summary

(i) for 𝑙 = 1, we have 𝐶1,𝑝(𝛽
∗

𝑞
) ≤ 𝐶1,𝑝(𝛽∗) ≤ 𝐶1,𝑝(0);

(ii) for𝛽∗ = 1/6, we have𝐶3,𝑝(𝛽∗) ≤ 𝐶2,𝑝(𝛽∗) ≤ 𝐶1,𝑝(𝛽∗).

6.2. Trapezoidal Rule. Let 𝑛 = 1 and 𝑥⃗ = (−1, 1); then the
quadrature formula is

∫

1

−1
𝑓 (𝑥) 𝑑𝑥 ≈ [𝑓 (−1) + 𝑓 (1)]

+ 𝛽 [𝑓
(1)

(1) − 𝑓(1)
(−1)] ,

(47)

where ⃗𝑎 = (1, 1) with 𝑛0 = 1 and ⃗𝑎
𝑐
= (0, 0) with 𝑛𝑐 = 1. For

1 ≤ 𝑙 ≤ 𝑛𝛽 the kernel is given by

𝐾𝑄,𝑙 (𝜂; 1, 𝛽) =
(1 − 𝜂)

𝑙−1

(𝑙 + 1)!
[(1− 𝜂)2 − (𝑙 + 1) (1− 𝜂)

− 𝑙 (𝑙 + 1) 𝛽] 1𝐼+ (𝜂) + (−1)
𝑙+1 (𝜂 + 1)𝑙−1

(𝑙 + 1)!
[(𝜂 + 1)2

− (𝑙 + 1) (𝜂 + 1) − 𝑙 (𝑙 + 1) 𝛽] 1𝐼− (𝜂) .

(48)

Then 𝐶𝑙,𝑝(𝛽) = ‖𝐾𝑄,𝑙(⋅; 1, 𝛽)‖𝑞,𝐼, where

󵄩󵄩󵄩󵄩𝐾𝑄,𝑙 (⋅; 1, 𝛽)
󵄩󵄩󵄩󵄩𝑞,𝐼

=

{{{{

{{{{

{

1
(𝑙 + 1)!

[2∫
1

0
[(1 − 𝜂)

𝑙−1 󵄨󵄨󵄨󵄨󵄨(1 − 𝜂)
2
− (𝑙 + 1) (1 − 𝜂) − 𝑙 (𝑙 + 1) 𝛽󵄨󵄨󵄨󵄨󵄨]

𝑞

𝑑𝜂]

1/𝑞

for 1 ≤ 𝑞 < ∞,

1
(𝑙 + 1)!

max
𝜂∈[0,1]

(1 − 𝜂)
𝑙−1 󵄨󵄨󵄨󵄨󵄨(1 − 𝜂)

2
− (𝑙 + 1) (1 − 𝜂) − 𝑙 (𝑙 + 1) 𝛽󵄨󵄨󵄨󵄨󵄨 for 𝑞 = ∞.

(49)

For this method 𝑅1(𝑥
2
; 1) = −4/3 and 𝑅

𝑐

1(𝑥
2
; 1) = 4,

so 𝛽∗ = −1/3. We obtain 𝑛𝛽
∗

= 3, and for any 𝛽 ̸= 𝛽∗

we have 𝑛𝛽 = 1. We have computed some constants 𝐶𝑙,𝑝(𝛽)

with 𝑝 = 1, 2, +∞ (or 𝑞 = +∞, 2, 1), for 𝑙 = 1 (= 𝑛𝛽)
using 𝛽 = 0 ̸= 𝛽∗ and 𝛽

∗

𝑞
̸= 𝛽∗, and for 𝑙 = 1, 2, 3

(= 𝑛𝛽
∗

) using 𝛽 = 𝛽∗ = −1/3 as reported in Table 2. In
summary

(i) for 𝑙 = 1, we have 𝐶1,𝑝(𝛽
∗

𝑞
) ≤ 𝐶1,𝑝(𝛽∗) ≤ 𝐶1,𝑝(0);

(ii) for 𝛽∗ = −1/3, we have 𝐶3,𝑝(𝛽∗) ≤ 𝐶2,𝑝(𝛽∗) ≤

𝐶1,𝑝(𝛽∗).
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Table 1: Best constants for the midpoint rule.

𝑝 𝑞

Midpoint rule
𝛽 ∈ R \ {1/6}, 𝑛𝛽 = 1 𝛽∗ = 1/6, 𝑛𝛽

∗

= 3
𝑙 = 1 𝑙 = 1 𝑙 = 2 𝑙 = 3

𝐶1,𝑝(0) 𝛽
∗

𝑞
𝐶1,𝑝(𝛽

∗

𝑞
) 𝐶1,𝑝(𝛽∗) 𝐶2,𝑝(𝛽∗) 𝐶3,𝑝(𝛽∗)

1 ∞
1
2

1
4

1
4

1
3

1
9√3

1
24

2 2 1
√10

1
6

1
3
√
2
5

1
3
√
2
5

2
3√105

1
36

√
107
70

∞ 1 1
3

1
8

1
4

4
9√3

1
12

7
180

Table 2: Best constants for the trapezoidal rule.

𝑝 𝑞

Trapezoidal rule
𝛽 ∈ R \ {−1/3}, 𝑛𝛽 = 1 𝛽∗ = −1/3, 𝑛𝛽

∗

= 3
𝑙 = 1 𝑙 = 1 𝑙 = 2 𝑙 = 3

𝐶1,𝑝(0) 𝛽
∗

𝑞
𝐶1,𝑝(𝛽

∗

𝑞
) 𝐶1,𝑝(𝛽∗) 𝐶2,𝑝(𝛽∗) 𝐶3,𝑝(𝛽∗)

1 ∞
1
2

−
1
4

1
4

1
3

2
3√3

1
24

2 2 2
√15

−
1
3

1
3
√
2
5

1
3
√
2
5

2
3√105

2
9√35

∞ 1 2
3

−
3
8

1
4

4
9√3

1
12

2
45

Remark 8. The 𝜙(𝑥) function considered in [3] corresponds
to the Peano kernel𝐾𝑄,1(𝜂; 1, 𝛽). Also the constants obtained
in [3] correspond to the constants we obtained here.

6.3. First Simpson’s Rule. Let 𝑛 = 2 and 𝑥⃗ = (−1, 0, 1); then
the quadrature formula is

∫

1

−1
𝑓 (𝑥) 𝑑𝑥 ≈ [

1
3
𝑓 (−1) + 4

3
𝑓 (0) + 1

3
𝑓 (1)]

− 𝛽 [2𝑓 (−1) − 4𝑓 (0) + 2𝑓 (1)]

+ 𝛽 [𝑓
(1)

(1) − 𝑓(1)
(−1)] ,

(50)

where ⃗𝑎 = (1/3, 4/3, 1/3) with 𝑛0 = 3 and ⃗𝑎
𝑐
= (2, −4, 2) with

𝑛𝑐 = 3. For 1 ≤ 𝑙 ≤ 𝑛𝛽, the kernel is given by

𝐾𝑄,𝑙 (𝜂; 1, 𝛽) =
(1 − 𝜂)

𝑙−1

(𝑙 + 1)!
[(1− 𝜂)2

− (𝑙 + 1) (1
3
− 2𝛽) (1− 𝜂) − 𝑙 (𝑙 + 1) 𝛽] 1𝐼+ (𝜂)

+ (−1)𝑙+1
(𝜂 + 1)𝑙−1

(𝑙 + 1)!
[(𝜂 + 1)2

− (𝑙 + 1) (1
3
− 2𝛽) (𝜂 + 1) − 𝑙 (𝑙 + 1) 𝛽] 1𝐼− (𝜂) .

(51)

For this method 𝑅2(𝑥
4
; 1) = −4/15 and 𝑅

𝑐

2(𝑥
4
; 1) = 4, so

𝛽∗ = −1/15. We obtain 𝑛𝛽
∗

= 5, and for any 𝛽 ̸= 𝛽∗ we have

Table 3: Values of 𝐶3,𝑝(0) for the Simpson’s rules.

Simpson’s rules, 𝛽 = 0, 𝑛0 = 3
𝑝 𝑞 (1/3, 4/3, 1/3) (1/4, 3/4, 3/4, 1/4)

𝐶3,𝑝(0) 𝐶3,𝑝(0)

1 ∞
1
72

1
216

2 2 1
36√7

1
81

√
13
105

∞ 1 1
90

2
405

𝑛𝛽 = 3. We have only computed 𝐶3,𝑝(0) = ‖𝐾𝑄,3(⋅; 1, 0)‖𝑞,𝐼,
for 𝑝 = 1, 2, +∞ (or 𝑞 = +∞, 2, 1), to compare with the
midpoint and trapezoidal rules (see Table 3). Identifying 𝛽∗

𝑞

is more complicated.

6.4. Second Simpson’s Rule. Let 𝑛 = 3 and 𝑥⃗ = (−1,
−1/3, 1/3, 1); then the quadrature formula is

∫

1

−1
𝑓 (𝑥) 𝑑𝑥

≈ [
1
4
𝑓 (−1) + 3

4
𝑓(−

1
3
)+

3
4
𝑓(

1
3
)+

1
4
𝑓 (1)]

− 𝛽 [
9
4
𝑓 (−1) − 9

4
𝑓(−

1
3
)−

9
4
𝑓(

1
3
)+

9
4
𝑓 (1)]

+ 𝛽 [𝑓
(1)

(1) − 𝑓(1)
(−1)] ,

(52)

where ⃗𝑎 = (1/4, 3/4, 3/4, 1/4) with 𝑛0 = 3 and ⃗𝑎
𝑐

=

(9/4, −9/4, −9/4, 9/4) with 𝑛𝑐 = 3. For 1 ≤ 𝑙 ≤ 𝑛𝛽 the kernel
is given by

𝐾𝑄,𝑙 (𝜂; 1, 𝛽) = [
(1 − 𝜂)

𝑙−1

(𝑙 + 1)!
[(1− 𝜂)2

− (𝑙 + 1)
(1 − 9𝛽)

4
(1− 𝜂) − 𝑙 (𝑙 + 1) 𝛽]

−
3 (𝑙 + 1) (1 + 3𝛽)

4 (𝑙 + 1)!
(
1
3
− 𝜂)

𝑙

+

] 1𝐼+ (𝜂)

+[
(𝜂 + 1)𝑙−1

(𝑙 + 1)!
[(𝜂 + 1)2 − (𝑙 + 1)

(1 − 9𝛽)
4

(𝜂 + 1)

− 𝑙 (𝑙 + 1) 𝛽] −
3 (𝑙 + 1) (1 + 3𝛽)

4 (𝑙 + 1)!
(𝜂 +

1
3
)

𝑙

+

]

⋅ 1𝐼− (𝜂) .

(53)

For this method 𝑅3(𝑥
4
; 1) = −16/135 and 𝑅

𝑐

4(𝑥
4
; 1) =

32/9, so 𝛽∗ = −1/30. We obtain 𝑛𝛽
∗

= 5, and for any
𝛽 ̸= 𝛽∗ we have 𝑛𝛽 = 3. We have only computed 𝐶3,𝑝(0) =
‖𝐾𝑄,3(⋅; 1, 0)‖𝑞,𝐼, for 𝑝 = 1, 2, +∞ (or 𝑞 = +∞, 2, 1),
to compare with the midpoint and trapezoidal rules (see
Table 3). Identifying 𝛽∗

𝑞
is more complicated.
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Table 4: Results for the midpoint rule.

Midpoint rule

𝑀

Standard rule (𝛽 = 0; 𝑛0 = 1)
Computed Absolute error Relative error Estimated order
integral ABS(𝑀) REL(𝑀) EO(𝑀) ≈ 𝑛0 + 1

5 1.4527054409211020 0.0062641086729669 4.33𝑒 − 03

10 1.4479877945462096 0.0015464622980745 1.07𝑒 − 03 2.0
15 1.4471270587692653 0.0006857265211302 4.74𝑒 − 04 2.0
20 1.4468267417338132 0.0003854094856781 2.66𝑒 − 04 2.0
25 1.4466879021519083 0.0002465699037733 1.70𝑒 − 04 2.0

𝑀

Corrected rule (𝛽 = 𝛽∗ = 1/6; 𝑛𝛽
∗

= 3)
Computed Absolute error Relative error Estimated order
integral ABS(𝑀) REL(𝑀) EO(𝑀) ≈ 𝑛𝛽

∗

+ 1
5 1.4465452831301751 0.0001039508820400 7.19𝑒 − 05

10 1.4464477550984778 0.0000064228503427 4.44𝑒 − 06 4.0
15 1.4464425967924956 0.0000012645443606 8.74𝑒 − 07 4.0
20 1.4464417318718803 0.0000003996237452 2.76𝑒 − 07 4.0
25 1.4464414958402714 0.0000001635921363 1.13𝑒 − 07 4.0

Table 5: Results for the trapezoidal rule.

Trapezoidal rule

𝑀

Standard rule (𝛽 = 0; 𝑛0 = 1)
Computed Absolute error Relative error Estimated order
integral ABS(𝑀) REL(𝑀) EO(𝑀) ≈ 𝑛0 + 1

5 1.4340023935151260 0.0124389387330091 8.60𝑒 − 03

10 1.4433539172181140 0.0030874150300211 2.13𝑒 − 03 2.0
15 1.4450709634929373 0.0013703687551978 9.47𝑒 − 04 2.0
20 1.4456708558821618 0.0007704763659733 5.33𝑒 − 04 2.0
25 1.4459483326810811 0.0004929995670540 3.41𝑒 − 04 2.0

𝑀

Corrected rule (𝛽 = 𝛽∗ = −1/3; 𝑛𝛽
∗

= 3)
Computed Absolute error Relative error Estimated order
integral ABS(𝑀) REL(𝑀) EO(𝑀) ≈ 𝑛𝛽

∗

+ 1
5 1.4463227090969801 0.0001186231511550 8.20𝑒 − 05

10 1.4464339961135775 0.0000073361345576 5.07𝑒 − 06 4.0
15 1.4464398874464766 0.0000014448016585 9.99𝑒 − 07 4.0
20 1.4464408756060276 0.0000004566421075 3.16𝑒 − 07 4.0
25 1.4464411453043553 0.0000001869437798 1.29𝑒 − 07 4.0

6.5. Discussion. Let us observe that the constants of Table 1
(for the midpoint rule) are all equal or less than the constants
of Table 2 (for the trapezoidal rule). Moreover,𝐶3,𝑝(0) for the
second (noncorrected, 𝛽 = 0) Simpson rule are all less than
the 𝐶3,𝑝(0) of the first (noncorrected, 𝛽 = 0) Simpson rule
which are themselves less than the 𝐶3,𝑝(𝛽∗) of the corrected
midpoint rule.

7. Corrected Composite Quadrature Rules

7.1. The Method. For an integral ∫𝑏

𝑎
𝑓(𝜉)𝑑𝜉, where 𝑓 ∈

𝐴𝐶
𝑙+1,𝑝

([𝑎, 𝑏]), a composite rule uses a partition of [𝑎, 𝑏] in
𝑀 subintervals and applies a formula on each subinterval.

To simplify here we consider subintervals of equal length
ℎ = (𝑏 − 𝑎)/2𝑀. Let us set 𝜉𝑚 = 𝑎 + 2𝑚ℎ for 𝑚 = 0, . . . ,𝑀
and 𝑐𝑚 = (𝜉𝑚−1 + 𝜉𝑚)/2 for𝑚 = 1, . . . ,𝑀. Then

∫

𝑏

𝑎

𝑓 (𝜉) 𝑑𝜉 =

𝑀

∑

𝑚=1
∫

𝜉
𝑚

𝜉
𝑚−1

𝑓 (𝜉) 𝑑𝜉

=

𝑀

∑

𝑚=1
∫

ℎ

−ℎ

𝑓 (𝑐𝑚 +𝑥) 𝑑𝑥

= ℎ

𝑀

∑

𝑚=1
𝑄 (𝑓 (𝑐𝑚 + ⋅) ; ℎ) .

(54)
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Table 6: Results for the first Simpson rule.

First Simpson rule

𝑀

Standard rule (𝛽 = 0; 𝑛0 = 3)
Computed Absolute error Relative error Estimated order
integral ABS(𝑀) REL(𝑀) EO(𝑀) ≈ 𝑛0 + 1

5 1.4464710917857768 0.0000297595376417 2.06𝑒 − 05

10 1.4464431687701778 0.0000018365220427 1.27𝑒 − 06 4.0
15 1.4464416936771560 0.0000003614290209 2.50𝑒 − 07 4.0
20 1.4464414464499289 0.0000001142017938 7.90𝑒 − 08 4.0
25 1.4464413789949659 0.0000000467468309 3.23𝑒 − 08 4.0

𝑀

Corrected rule (𝛽 = 𝛽∗ = −1/15; 𝑛𝛽
∗

= 5)
Computed Absolute error Relative error Estimated order
integral ABS(𝑀) REL(𝑀) EO(𝑀) ≈ 𝑛𝛽

∗

+ 1
5 1.4464414152480176 0.0000000829998825 5.74𝑒 − 08

10 1.4464413342388578 0.0000000019907227 1.38𝑒 − 09 5.4
15 1.4464413324310201 0.0000000001828850 1.26𝑒 − 10 5.9
20 1.4464413322811487 0.0000000000330136 2.28𝑒 − 11 6.0
25 1.4464413322568439 0.0000000000087088 6.02𝑒 − 12 6.0

Table 7: Results for the second Simpson rule.

Second Simpson rule

𝑀

Standard rule (𝛽 = 0; 𝑛0 = 3)
Computed Absolute error Relative error Estimated order
integral ABS(𝑀) REL(𝑀) EO(𝑀) ≈ 𝑛0 + 1

5 1.4464545347401641 0.0000132024920290 9.13𝑒 − 06

10 1.4464421478702252 0.0000008156220901 5.64𝑒 − 07 4.0
15 1.4464414928269707 0.0000001605788356 1.11𝑒 − 07 4.0
20 1.4464413829943144 0.0000000507461793 3.51𝑒 − 08 4.0
25 1.4464413530218192 0.0000000207736841 1.44𝑒 − 08 4.0

𝑀

Corrected rule (𝛽 = 𝛽∗ = −1/30; 𝑛𝛽
∗

= 5)
Computed Absolute error Relative error Estimated order
integral ABS(𝑀) REL(𝑀) EO(𝑀) ≈ 𝑛𝛽

∗

+ 1
5 1.4464413521758457 0.0000000199277106 1.38𝑒 − 08

10 1.4464413326945604 0.0000000004464253 3.09𝑒 − 10 5.5
15 1.4464413322889214 0.0000000000407863 2.82𝑒 − 11 5.9
20 1.4464413322554857 0.0000000000073506 5.08𝑒 − 12 6.0
25 1.4464413322500729 0.0000000000019378 1.34𝑒 − 12 6.0

The corrected composite rule is then defined by

𝐶𝑄𝑛 (𝑓; 𝛽)

= ℎ

𝑀

∑

𝑚=1
𝑄𝑛 (𝑓 (𝑐𝑚 + ⋅) ; ℎ, 𝛽)

= ℎ

𝑀

∑

𝑚=1
[𝑄𝑛 (𝑓 (𝑐𝑚 + ⋅) ; ℎ) +𝑄𝛽 (𝑓 (𝑐𝑚 + ⋅) ; ℎ)]

= ℎ

𝑀

∑

𝑚=1
𝑄𝑛 (𝑓 (𝑐𝑚 + ⋅) ; ℎ)

+ 𝛽ℎ
2
[𝑓

(1)
(𝑏) −𝑓

(1)
(𝑎)] ,

(55)

since there are cancellations of the first derivatives at the
endpoints of the subintervals. The truncation error is

∫

𝑏

𝑎

𝑓 (𝜉) 𝑑𝜉 −𝐶𝑄𝑛 (𝑓; 𝛽) = ℎ

𝑀

∑

𝑚=1
𝑅𝑛 (𝑓 (𝑐𝑚 + ⋅) ; ℎ, 𝛽) . (56)

But
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑀

∑

𝑚=1
𝑅𝑛 (𝑓 (𝑐𝑚 + ⋅) ; ℎ, 𝛽)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

𝑀

∑

𝑚=1

󵄨󵄨󵄨󵄨𝑅𝑛 (𝑓 (𝑐𝑚 + ⋅) ; ℎ, 𝛽)
󵄨󵄨󵄨󵄨

≤ ℎ
𝑙+1−(1/𝑝)

𝐶𝑙,𝑝 (𝛽)

𝑀

∑

𝑚=1

󵄩󵄩󵄩󵄩󵄩
𝑓
(𝑙+1)󵄩󵄩󵄩󵄩󵄩𝑝,𝑐

𝑚
+𝐼
ℎ
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≤ ℎ
𝑙+1−(1/𝑝)

𝑀
1−(1/𝑝)

𝐶𝑙,𝑝 (𝛽)
󵄩󵄩󵄩󵄩󵄩
𝑓
(𝑙+1)󵄩󵄩󵄩󵄩󵄩𝑝,[𝑎,𝑏]

≤ ℎ
𝑙
(
𝑏 − 𝑎

2
)

1−(1/𝑝)
𝐶𝑙,𝑝 (𝛽)

󵄩󵄩󵄩󵄩󵄩
𝑓
(𝑙+1)󵄩󵄩󵄩󵄩󵄩𝑝,[𝑎,𝑏]

.

(57)

It follows that
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑏

𝑎

𝑓 (𝜉) 𝑑𝜉 −𝐶𝑄𝑛 (𝑓; 𝛽)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ (
𝑏 − 𝑎

2𝑀
)

𝑙+1
(
𝑏 − 𝑎

2
)

1−(1/𝑝)
𝐶𝑙,𝑝 (𝛽)

󵄩󵄩󵄩󵄩󵄩
𝑓
(𝑙+1)󵄩󵄩󵄩󵄩󵄩𝑝,[𝑎,𝑏]

(58)

for 𝑙 = 1, . . . , 𝑛𝛽 and 𝑓 ∈ 𝐴𝐶
𝑙+1,𝑝

([𝑎, 𝑏]).

7.2. Numerical Examples. To illustrate the results, we approx-
imate the following integral:

∫

1.5

−0.5

𝑑𝑥

1 + 𝑥2
= arctan (1.5) − arctan (−0.5)

= 1.4464413322481351 . . .
(59)

using (55) for 𝛽 = 0 and for 𝛽 = 𝛽∗. Since for the absolute
error, noted as ABS(𝑀), we have from (58)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑏

𝑎

𝑓 (𝜉) 𝑑𝜉 −𝐶𝑄𝑛 (𝑓; 𝛽)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= ABS (𝑀) ≈ 𝑂(
1

𝑀𝑙+1 ) , (60)

the order 𝑙 + 1 is estimated by the formula

EO (𝑀) = ln(ABS (𝑀 − 5)
ABS (𝑀)

)÷ ln( 𝑀

𝑀 − 5
) (61)

for 𝑀 = 10, 15, 20, 25, in Tables 4, 5, 6, and 7. Because the
function we integrate is regular, we can identify the maximal
orders 𝑛0 + 1 and 𝑛𝛽

∗

+ 1 which correspond to the theoretical
results.
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