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Optimal control problemwithmultipoint boundary conditions is considered. Sufficient conditions for the existence and uniqueness
of the solution of boundary value problem for every fixed admissible control are obtained. First order increment formula for the
functional is derived. Pontryagin’s maximum principle is proved by using the variations of admissible control.

1. Introduction

Boundary value problems appear in a large field of sciences
to describe physical, biological, and chemical phenomena
and several practically important problems lead tomultipoint
boundary value problems. Some examples are given in the
area of elasticity and on the effects of soil settlement [1–
5]. For boundary value problems with multipoint boundary
conditions and comments on their importance, we refer the
reader to the papers [6–11] and the references therein.

Pontryagin’s maximum principle is the first order nec-
essary optimality condition and occupies a special place
in theory of optimal processes. Originally the maximum
principle was proved for the Cauchy system of ordinary
differential equations [12]. Later on this result was carried
over the most complex objects described by the equations
with a delay, integral equations, partial equations, stochastic
equations, and so forth (see, e.g., [13, 14] and the references
therein).

At present, there exists a great amount of work devoted
to derivation of necessary optimality conditions of first and
second orders for the systems with local conditions (see [12,
14–19] and the references therein).

Recently, the optimal control problems with nonlocal con-
ditions are intensively investigated. In the papers [13, 20–24]

the necessary optimality conditions for optimal control
problems described by the systems of ordinary differential
equations with nonlocal conditions were obtained. In these
papers the nonlocal conditions contain two-point and inte-
gral boundary conditions.

It is known that the solution of problems of mechan-
ics and control processes is reduced to multipoint boundary
value problems. The constructive sufficient existence and
uniqueness conditions and also the methods of numerical
solution of such boundary value problemswere studied in [6–
9].

In the present paper, Pontryagin’s maximum principle
for optimal control problems for the ordinary differential
equations with multipoint boundary conditions is proved.
Since in optimal control problems with multipoint bound-
ary conditions the solution of the associated system has
discontinuities of the first kind of inner points, the direct
applications of the solution methods of two-point boundary
value problems to optimal control problems with multipoint
boundary conditions are impossible.

The paper is organized as follows. First, we give the
statement of the problem. Second, theorems on existence and
uniqueness of the solution of problem (1)–(3) are established
under some sufficient conditions on the nonlinear terms.
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Third, the first order increment formula for the functional is
presented and Pontryagin’s maximum principle is provided.

2. Problem Statement

Let the controlled process on a fixed time interval [0, 𝑇] be
described by a system of differential equations

𝑑𝑥

𝑑𝑡
= 𝑓 (𝑡, 𝑥, 𝑢) (1)

with multipoint boundary conditions
𝑁

∑
𝑗=0

𝐵
𝑗
𝑥 (𝑡
𝑗
) = 𝐶, (2)

where 𝑥(𝑡) ∈ 𝑅
𝑛; 𝑓(𝑡, 𝑥, 𝑢) is the given 𝑢 dimensional vector-

function; 𝐶 ∈ 𝑅
𝑛 is the given constant vector; 0 = 𝑡

0
< 𝑡
1
<

⋅ ⋅ ⋅ < 𝑡
𝑁

= 𝑇 are fixed points; 𝑢(𝑡) is the 𝑟 dimensional and
bounded vector of control actions with the values from the
nonempty, bounded set 𝑈; that is,

𝑢 (𝑡) ∈ 𝑈 ⊂ 𝑅
𝑟
, 𝑡 ∈ [0, 𝑇] . (3)

It is required to minimize the functional

𝐽 (𝑢) = 𝜑 (𝑥 (0) , 𝑥 (𝑇)) + ∫
𝑇

0

𝐹 (𝑡, 𝑥, 𝑢) 𝑑𝑡 (4)

subject to (1)–(3).
Here we assumed that the functions 𝑓(𝑡, 𝑥, 𝑢), 𝐹(𝑡, 𝑥, 𝑢),

and𝜑(𝑥, 𝑦) are continuous over the set of arguments and have
bounded partial derivatives with respect to the arguments 𝑥

and𝑦. Under the solution of problem (1)–(3) that corresponds
to the fixed admissible control 𝑢(𝑡)we take the function 𝑥(𝑡) :

[0, 𝑇] → 𝑅
𝑛 absolutely continuous on the interval [0, 𝑇].

Denote by 𝐶([0, 𝑇], 𝑅
𝑛
) a space of continuous functions

on the interval [0, 𝑇]with the values from𝑅
𝑛. Obviously, such

a space is Banach with the norm

‖𝑥‖𝐶[0,𝑇] = max
[0,𝑇]

|𝑥 (𝑡)| , (5)

where | ⋅ | is the norm 𝑅
𝑛.

The admissible process {𝑢(𝑡), 𝑥(𝑡, 𝑢)}, being the solution
of problem (1)–(4), that is, delivering minimum to the
functional (4) under restrictions (1)–(3), will be called an
optimal process and 𝑢(𝑡) an optimal control.

3. Existence of Solutions of Boundary
Value Problem (1)–(3)

Introduce the following conditions.

(À1) Let det𝐵 ̸= 0, where 𝐵 = ∑
𝑁

𝑖=0
𝐵
𝑖
.

(À2) The function 𝑓 : [0, 𝑇] ×𝑅
𝑛
×𝑅
𝑛

→ 𝑅
𝑛 is continuous

and there exists a constant 𝐾 ≥ 0 such that
𝑓 (𝑡, 𝑥, 𝑢) − 𝑓 (𝑡, 𝑦, 𝑢)

 ≤ 𝐾
𝑥 − 𝑦

 ,

𝑡 ∈ [0, 𝑇] , 𝑥, 𝑦 ∈ 𝑅
𝑛
, 𝑢 ∈ 𝑈.

(6)

(À3) 𝐿 = 𝐾𝑇𝑀 < 1, where 𝑀 = max
0≤𝑡,𝑠≤𝑇

‖𝑀(𝑡, 𝑠)‖.

𝑀(𝑡, 𝑠) is a piecewise matrix such that 𝑡
𝑘−1

≤ 𝑠 < 𝑡
𝑘
, (𝑘 =

1, 2, . . . , 𝑁):

𝑀(𝑡, 𝑠) =

{{{{{

{{{{{

{

𝐵
−1

𝑘−1

∑
𝑖=0

𝐵
𝑖
, if 𝑠 < 𝑡,

−𝐵
−1

𝑁

∑
𝑖=𝑘

𝐵
𝑖
, if 𝑡 ≤ 𝑠.

(7)

Theorem 1. Let condition (À1) be fulfilled. The function 𝑥(⋅) ∈

𝐶([0, 𝑇], 𝑅
𝑛
) is an absolute continuous solution of problem (1)–

(3) if and only if

𝑥 (𝑡) = 𝐵
−1

𝐶 + ∫
𝑇

0

𝑀(𝑡, 𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , 𝑢 (𝑠)) 𝑑𝑠, (8)

where thematrix function𝑀(𝑡, 𝑠) is determined by equality (7).

Proof. Let the function 𝑥 = 𝑥(𝑡) be a solution of (1). Then for
𝑡 ∈ (0, 𝑇) the formula is valid:

𝑥 (𝑡) = 𝑥 (0) + ∫
𝑡

0

𝑓 (𝑠, 𝑥 (𝑠) , 𝑢 (𝑠)) 𝑑𝑠, (9)

where 𝑥(0) is an arbitrary constant vector. In order to deter-
mine 𝑥(0) the required function defined by equality (9)
satisfies condition (2):

𝑁

∑
𝑖=0

𝐵
𝑖
𝑥 (0) = 𝐶 −

𝑁

∑
𝑖=0

𝐵
𝑖
∫
𝑡𝑖

0

𝑓 (𝑡, 𝑥 (𝑡) , 𝑢 (𝑡)) 𝑑𝑠. (10)

Since, according to condition (À1), det𝐵 ̸= 0, then it fol-
lows from equality (10) that

𝑥 (0) = 𝐵
−1

𝐶 − 𝐵
−1

𝑁

∑
𝑖=0

𝐵
𝑖
∫
𝑡𝑖

0

𝑓 (𝑠, 𝑥 (𝑠) , 𝑢 (𝑠)) 𝑑𝑠, (11)

which may be rewritten in the form

𝑥 (0) = 𝐵
−1

𝐶 − 𝐵
−1

𝑁

∑
𝑘=1

[

𝑁

∑
𝑖=𝑘

𝐵
𝑖
∫
𝑡𝑘

𝑡𝑘−1

𝑓 (𝑠, 𝑥 (𝑠) , 𝑢 (𝑠)) 𝑑𝑠] .

(12)

Now taking into account the value of 𝑥(0) determined by
equality (12) in (9) we get

𝑥 (𝑡) = 𝐵
−1

𝐶 − 𝐵
−1

𝑁

∑
𝑘=1

[

𝑁

∑
𝑖=𝑘

𝐵
𝑖
∫
𝑡𝑘

𝑡𝑘−1

𝑓 (𝑠, 𝑥 (𝑠) , 𝑢 (𝑠)) 𝑑𝑠]

+ ∫
𝑡

0

𝑓 (𝑠, 𝑥 (𝑠) , 𝑢 (𝑠)) 𝑑𝑠.

(13)

Obviously, for 𝑡
𝑘−1

≤ 𝑡 < 𝑡
𝑘
, we can write equality (13) in

equivalent form:

𝑥 (𝑡) = 𝐵
−1

𝐶 + ∫
𝑡

0

[𝐸 − 𝐵
−1

𝑁

∑
𝑖=𝑘

𝐵
𝑖
]𝑓 (𝑠, 𝑥 (𝑠) , 𝑢 (𝑠)) 𝑑𝑠

= ∫
𝑡𝑘

𝑡

(𝐵
−1

𝑁

∑
𝑖=𝑘

𝐵
𝑖
)𝑓 (𝑠, 𝑥 (𝑠) , 𝑢 (𝑠)) 𝑑𝑠.

(14)
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So

𝐸 − 𝐵
−1

𝑁

∑
𝑖=𝑘

𝐵
𝑖
= 𝐵
−1

(

𝑁

∑
𝑖=0

𝐵
𝑖
−

𝑁

∑
𝑖=𝑘

𝐵
𝑖
) = 𝐵

−1

𝑘−1

∑
𝑖=0

𝐵
𝑖

(15)

holds; then by using (7) we can rewrite equality (14) in the
following equivalent form:

𝑥 (𝑡) = 𝐵
−1

𝐶 + ∫
𝑇

0

𝑀(𝑡, 𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , 𝑢 (𝑠)) 𝑑𝑠. (16)

Thus, it is shown that boundary value problem (1)–(3)
may be rewritten in equivalent integral form (8). By direct
calculation we can show that the solution of integral equation
(8) is a solution of boundary value problem (1)–(3).

Theorem2. Let conditions (À1)–(À3) be fulfilled.Then for any
𝐶 ∈ 𝑅

𝑛 and any fixed admissible control, boundary value
problem (1)–(3) has the unique solution satisfying the integral
equation (8).

Proof. Let 𝐶 ∈ 𝑅
𝑛 and 𝑢(⋅) ∈ 𝑈 be fixed. Let us consider

the mapping 𝑃 : 𝐶([0, 𝑇], 𝑅
𝑛
) → 𝐶([0, 𝑇], 𝑅

𝑛
) determined

according to the rule:

(𝑃𝑥) (𝑡) = 𝐵
−1

𝐶 + ∫
𝑇

0

𝑀(𝑡, 𝑠) 𝑓 (𝑠, 𝑥 (𝑠) , 𝑢 (𝑠)) 𝑑𝑠. (17)

Obviously, the fixed points of the operator 𝑃 are a
solution of boundary value problem (1)-(2). Using the Banach
method of contractive operators we show that the operator 𝑃
determined by equality (17) has a fixed point. For any V, 𝜔 ∈

𝐶([0, 𝑇], 𝑅
𝑛
) we have

|(𝑃V) (𝑡) − (𝑃𝜔) (𝑡)|

≤ ∫
𝑇

0

|𝑀 (𝑡, 𝑠)| ⋅
𝑓 (𝑠, V (𝑠) , 𝑢 (𝑠)) − 𝑓 (𝑠, 𝜔 (𝑠) , 𝑢 (𝑠))

 𝑑𝑠

≤ 𝐾𝑇𝑀‖V(⋅) − 𝜔(⋅)‖𝐶[0,𝑇]
(18)

or

‖(𝑃V)(𝑡) − (𝑃𝜔)(𝑡)‖𝐶[0,𝑇] ≤ 𝐾𝑇𝑀‖V(⋅) − 𝜔(⋅)‖𝐶[0,𝑇] .

(19)

Here taking into account condition (À3) we get that the
operator 𝑃 has the unique fixed point in (17). This shows that
integral equation (8) has the unique solution and therefore
the equivalent boundary value problem (1)–(3) also has a
unique solution. Theorem 2 is proved.

4. Increment Formula for the Functional

The increment method is one of the simplest ones among
the methods for proving the maximum principle. In order to
obtain the necessary conditions for optimality, we will use the
standard procedure (see, e.g., [16]).

Let 𝑢 = 𝑢(𝑡) and �̃�(𝑡) = 𝑢(𝑡) + Δ𝑢(𝑡), 𝑡 ∈ [0, 𝑇], be
two admissible controls and let 𝑥(𝑡), 𝑥(𝑡) = 𝑥(𝑡) + Δ𝑥(𝑡),

𝑡 ∈ [0, 𝑇], be appropriate trajectories. Then, obviously, Δ𝑥(𝑡)

is the solution of the following boundary value problem:

Δ�̇� (𝑡) = Δ𝑓 (𝑡, 𝑥, 𝑢) , 𝑡 ∈ [0, 𝑇] ,

𝑁

∑
𝑖=0

𝐵
𝑖
Δ𝑥 (𝑡
𝑖
) = 0.

(20)

Here Δ𝑓(𝑡, 𝑥, 𝑢) = 𝑓(𝑡, 𝑥, �̃�) − 𝑓(𝑡, 𝑥, 𝑢) are the denotations
of total increment of the function 𝑓(𝑡, 𝑥, 𝑢). We can write the
increment of functional (4) in the form

Δ𝐽 (𝑢) = 𝐽 (𝑢) − 𝐽 (𝑢) = Δ𝜑 (𝑥 (0) , 𝑥 (𝑇))

+ ∫
𝑇

0

Δ𝐹 (𝑡, 𝑥, 𝑢) 𝑑𝑡.

(21)

Let 𝜓(𝑡) ∈ 𝑅
𝑛 be an arbitrary nontrivial vector-function

and let 𝑥 ∈ 𝑅
𝑛 be a scalar vector. Then we can rewrite the

increment of functional (4) in the form

Δ𝐽 (𝑢) = 𝐽 (�̃�) − 𝐽 (𝑢) = Δ𝜑 (𝑥 (0) , 𝑥 (𝑇))

+ ∫
𝑇

0

𝐹 (𝑡, 𝑥, 𝑢) 𝑑𝑡

+ ∫
𝑇

0

⟨𝜓 (𝑡) , Δ�̇� (𝑡) − Δ𝑓 (𝑡, 𝑥, 𝑢)⟩ 𝑑𝑡

+ ⟨𝜆,

𝑁

∑
𝑖=0

𝐵
𝑖
Δ𝑥 (𝑡
𝑖
)⟩ .

(22)

After some standard operators usually used in deriving
necessary optimality conditions of the first order, for the
increments formula we get the following equality:

Δ𝐽 (𝑢)

= −∫
𝑇

0

Δ
�̃�
𝐻(𝑡, 𝜓, 𝑥, 𝑢) 𝑑𝑡

− ∫
𝑇

0

⟨Δ
�̃�

𝜕𝐻 (𝑡, 𝜓, 𝑥, 𝑢)

𝜕𝑥
, Δ𝑥 (𝑡)⟩𝑑𝑡

+ ∫
𝑇

0

⟨�̇� (𝑡) +
𝜕𝐻 (𝑡, 𝜓, 𝑥, 𝑢)

𝜕𝑥
, Δ𝑥 (𝑡)⟩𝑑𝑡

+ ⟨−𝜓 (0) + 𝐵


0
𝜆 +

𝜕𝜑

𝜕𝑥 (0)
, Δ𝑥 (0)⟩

+ ⟨𝜓 (𝑇) + 𝐵


𝑁
𝜆 +

𝜕𝜑

𝜕𝑥 (𝑇)
, Δ𝑥 (𝑇)⟩

+ ⟨

𝑁−1

∑
𝑖=1

[−𝜓 (𝑡
𝑖
+ 0) + 𝜓 (𝑡

𝑖
− 0) + 𝐵



𝑖
𝜆] , Δ𝑥 (𝑡

𝑖
)⟩ + 𝜂

𝑢
,

𝜂
𝑢
= 𝑜
𝜑 (‖Δ𝑥 (0)‖ , ‖Δ𝑥 (𝑇)‖) − ∫

𝑇

0

𝑜
𝐻 (Δ ‖𝑥 (𝑡)‖) 𝑑𝑡,

(23)

where 𝐻(𝑡, 𝜓, 𝑥, 𝑢) = ⟨𝜓(𝑡), 𝑓(𝑡, 𝑥, 𝑢)⟩ − 𝐹(𝑡, 𝑥, 𝑢).
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Now assume that the unknown vector-function𝜓(𝑡) ∈ 𝑅
𝑛

and the 𝜆 scalar vector is a solution of the following boundary
value problem:

�̇� (𝑡) = −
𝜕𝐻 (𝑡, 𝜓, 𝑥, 𝑢)

𝜕𝑥
,

𝑡 ∈ [0, 𝑇] , 𝑡 ̸= 𝑡
𝑖
, 𝑖 = 1, 2, . . . , 𝑁 − 1,

(24)

𝜓 (0) = 𝐵


0
𝜆 +

𝜕𝜑

𝜕𝑥 (0)
, 𝜓 (𝑇) = −𝐵



𝑁
𝜆 −

𝜕𝜑

𝜕𝑥 (𝑇)
,

(25)

𝜓 (𝑡
𝑖
+ 0) − 𝜓 (𝑡

𝑖
− 0) = 𝐵



𝑖
𝜆, 𝑖 = 1, 2, . . . , 𝑁 − 1.

(26)

The difference-differential (24)–(26) boundary value
problem is called an adjoint problem in parametric form since
it conditions the unknown parameter 𝜆. From the adjoint
system (24)-(25) it is seen that the solution of this system at
the points 𝑡 = 𝑡

𝑖
, (𝑖 = 1, 2, . . . , 𝑁 − 1), has the first order

discontinuities. This is the essential peculiarity of multipoint
boundary conditions.

From condition (À1) and from the system (24)-(25) we
can exclude the unknown vector 𝜆. Indeed, from equality (25)
we have

𝑁

∑
𝑖=0

𝐵


𝑖
𝜆 = 𝜓 (0) −

𝜕𝜑

𝜕𝑥 (0)
− 𝜓 (𝑇) −

𝜕𝜑

𝜕𝑥 (𝑇)

+

𝑁−1

∑
𝑖=1

(𝜓 (𝑡
𝑖
+ 0) − 𝜓 (𝑡

𝑖
− 0)) .

(27)

Hence

𝜆 = (𝐵

)
−1

[𝜓 (0) −
𝜕𝜑

𝜕𝑥 (0)
− 𝜓 (𝑇) −

𝜕𝜑

𝜕𝑥 (𝑇)

+

𝑁−1

∑
𝑖=1

(𝜓 (𝑡
𝑖
+ 0) − 𝜓 (𝑡

𝑖
− 0)) ] .

(28)

Now take into account the found value of 𝜆 expressed in
(26) in equalities (25) and (26). Then equalities (25) and (26)
take the form

𝜓 (0)

= 𝐵


0
(𝐵

)
−1

[𝜓 (0) −
𝜕𝜑

𝜕𝑥 (0)
− 𝜓 (𝑇) −

𝜕𝜑

𝜕𝑥 (𝑇)

+

𝑁−1

∑
𝑖=1

(𝜓 (𝑡
𝑖
+ 0) − 𝜓 (𝑡

𝑖
− 0)) ] +

𝜕𝜑

𝜕𝑥 (0)
,

𝜓 (𝑇)

= 𝐵


𝑁
(𝐵

)
−1

[𝜓 (0) −
𝜕𝜑

𝜕𝑥 (0)
− 𝜓 (𝑇) −

𝜕𝜑

𝜕𝑥 (𝑇)

+

𝑁−1

∑
𝑖=1

(𝜓 (𝑡
𝑖
+ 0) − 𝜓 (𝑡

𝑖
− 0)) ] −

𝜕𝜑

𝜕𝑥 (𝑇)
,

𝜓 (𝑡
𝑖
+ 0) − 𝜓 (𝑡

𝑖
− 0)

= 𝐵


𝑖
(𝐵

)
−1

× [𝜓 (0) −
𝜕𝜑

𝜕𝑥 (0)
− 𝜓 (𝑇) −

𝜕𝜑

𝜕𝑥 (𝑇)

+

𝑁−1

∑
𝑖=1

(𝜓 (𝑡
𝑖
+ 0) − 𝜓 (𝑡

𝑖
− 0)) ] .

(29)

Taking into account equalities (24) and (25) in (23), we
get the final form for the increment of the functional

Δ𝐽 (𝑢) = −∫
𝑇

0

Δ
�̃�
𝐻(𝑡, 𝜓, 𝑥, 𝑢) 𝑑𝑡

− ∫
𝑇

0

⟨Δ
�̃�

𝜕𝐻 (𝑡, 𝜓, 𝑥, 𝑢)

𝜕𝑥
, Δ𝑥 (𝑡)⟩𝑑𝑡 + 𝜂

�̃�
.

(30)

5. Pontryagin’s Maximum Principle

At different proofs of the maximum principle, the needle-
shaped variation plays one of the main parts. We choose the
“perturbed” control �̃�(𝑡) in the special way:

�̃� (𝑡) =
{

{

{

𝑢 (𝑡) , 𝑡 ∉ [𝜃, 𝜃 + 𝜀) ,

𝜐, 𝑡 ∈ [𝜃, 𝜃 + 𝜀) ,
(31)

where the parameters of the needle-shaped variation satisfy
the following conditions. 𝜃 ∈ [0, 𝑇] is a regular point of the
control 𝑢(𝑡), 𝜀 > 0, 𝜃 + 𝜀 < 𝑇, 𝜐 ∈ 𝑈. For any 𝜃, 𝜀, 𝜐 satisfying
the enumerated conditions, the control 𝑢(𝑡) is admissible.

The traditional form of necessary optimality conditions
will follow from increments formula (30) if we show that
on the needle-shaped variation �̃�(𝑡) = 𝑢

𝜀
(𝑡) the increment

of phase states Δ
𝜀
𝑥(𝑡) is of order 𝜀. This will follow from

conditions (À1)–(À3) and boundary value problem (20):

Δ𝑥 (𝑡) = ∫
𝑇

0

𝑀(𝑡, 𝑠) [𝑓 (𝑠, 𝑥 + Δ𝑥, �̃�) − 𝑓 (𝑠, 𝑥, �̃�)] 𝑑𝑠

+ ∫
𝑇

0

𝑀(𝑡, 𝑠) Δ �̃�𝑓 (𝑠, 𝑥, 𝑢) 𝑑𝑠.

(32)

From (32) we get

‖Δ𝑥 (𝑡)‖ ≤ (1 − 𝐿)
−1

𝑀∫
𝑇

0

Δ �̃�𝑓 (𝑡, 𝑥, 𝑢)
 𝑑𝑡. (33)
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If in inequality we take �̃�(𝑡) = 𝑢
𝜀
(𝑡), we have

Δ 𝜀𝑥 (𝑡)
 ≤ �̃�𝜀, 𝑡 ∈ [0, 𝑇] , �̃� = const > 0. (34)

Estimation (33) shows that, for �̃�(𝑡) = 𝑢
𝜀
(𝑡),

∫
𝜃+𝜀

𝜃

⟨Δ
𝜐

𝜕𝐻 (𝑡, 𝜓, 𝑥, 𝑢)

𝜕𝑥
, Δ
𝜀
𝑥 (𝑡)⟩𝑑𝑡

+ 𝜂
𝑢𝜀

(
Δ 𝜀𝑥 (𝑡)

) = 𝑜 (𝜀) ,

(35)

where Δ
𝜀
𝑥(𝑡) = 𝑥(𝑡, 𝑢

𝜀
) − 𝑥(𝑡, 𝑢) ∼ 𝜀.

Use the increment formula (30) and the property of the
needle-shaped variation. Then

Δ𝐽 (𝑢) = −∫
𝜃+𝜀

𝜃

Δ
𝜐
𝐻(𝑡, 𝜓, 𝑥, 𝑢) 𝑑𝑡 + 𝑜 (𝜀) . (36)

Since the point 𝑡 = 𝜃 is a regular point of the control 𝑢 =

𝑢(𝑡), from the Taylor formula it follows that

Δ𝐽 (𝑢) = −Δ
𝜐
𝐻(𝜃, 𝜓 (𝜃) , 𝑥 (𝜃) , 𝑢 (𝜃)) 𝜀 + 𝑜 (𝜀) ,

𝜐 ∈ 𝑈, 𝜃 ∈ [0, 𝑇) .
(37)

Pontryagin’s maximum principle follows from formula
(37).

Theorem 3 (maximum principle). Let the admissible process
𝑢
0
(𝑡), 𝑥0(𝑡, 𝑢0) be optimal in problem (1)–(4) and let𝜓0(𝑡) be a

solution of conjugated problem (24)-(25) calculated on optimal
process. Then for all 𝑡 ∈ [0, 𝑇] the following equality is fulfilled:

max
𝜐∈𝑈

𝐻(𝑡, 𝜓
0
(𝑡) , 𝑥
0
(𝑡) , 𝜐) = 𝐻 (𝑡, 𝜓

0
(𝑡) , 𝑥
0
(𝑡) , 𝑢
0
(𝑡)) .

(38)

Corollary 4. If in the optimal control problem the function
𝑓 is linear with respect to (𝑥, 𝑢) and the functions 𝜑, 𝐹 are
convexwith respect to𝑥(0),𝑥(𝑇) and𝑥(𝑡), respectively, then the
maximum principle is necessary and sufficient for optimality.
This fact follows from increment formula (30). Indeed, in this
case,

Δ𝐽 (𝑢) = −∫
𝑇

0

Δ
𝑢
𝐻(𝑡, 𝜓, 𝑥, 𝑢) 𝑑𝑡 + 𝑜

𝜑 (‖Δ𝑥 (0)‖ , ‖Δ𝑥 (𝑇)‖)

+ ∫
𝑇

0

𝑜
𝐹 (‖Δ𝑥 (𝑡)‖) 𝑑𝑡.

(39)

Since the functions 𝜑 and 𝐹 are convex, then 𝑜
𝜑
≥ 0, 𝑜

𝐹
≥

0.

Other Optimality Conditions. In this item we suppose that the
function 𝑓(𝑡, 𝑥, 𝑢) is differentiable and the set 𝑈 is convex.
Then fromTheorem 3 we get the following theorem.

Theorem 5 (differential principle of maximum). Let the pro-
cess (𝑢

0
(𝑡), 𝑥
0
(𝑡, 𝑢
0
)), 𝑡 ∈ [0, 𝑇], be optimal in problem (1)–

(4) and let 𝜓0(𝑡) be an appropriate solution of adjoint problem
(24)–(26). Then,

⟨
𝜕𝐻(𝑡, 𝜓

0
(𝑡) , 𝑥
0
(𝑡) , 𝑢
0
(𝑡))

𝜕𝑢
, 𝑢
0
(𝑡)⟩

= max
𝜐∈𝑈

⟨
𝜕𝐻(𝑡, 𝜓

0
(𝑡) , 𝑥
0
(𝑡) , 𝑢
0
(𝑡))

𝜕𝑢
, 𝜐⟩ .

(40)

Proof. Suppose the contrary. Let there exist 𝜃 ∈ [0, 𝑇], 𝜐 ∈ 𝑈,
𝛼 > 0, such that

⟨
𝜕𝐻(𝜃, 𝜓

0
(𝜃) , 𝑥

0
(𝜃) , 𝑢

0
(𝜃))

𝜕𝑢
, 𝑢
0
(𝜃)⟩

= ⟨
𝜕𝐻(𝜃, 𝜓

0
(𝜃) , 𝑥

0
(𝜃) , 𝑢

0
(𝜃))

𝜕𝑢
, 𝜐⟩ − 𝛼.

(41)

Let 0 ≤ 𝜀 ≤ 1. Construct the vector

𝜐 (𝜀) = 𝑢
0
(𝜃) + 𝜀 (𝜐 − 𝑢

0
(𝜃)) . (42)

Since the set𝑈 is convex, then 𝜐(𝜀) ∈ 𝑈. Frommaximum
principle (38) and equality (41) it follows that the inequality

0 ≥ Δ
𝜐(𝑢)

𝐻(𝜃, 𝜓
0
(𝜃) , 𝑥

0
(𝜃) , 𝑢

0
(𝜃))

= ⟨
𝜕𝐻(𝜃, 𝜓

0
(𝜃) , 𝑥

0
(𝜃) , 𝑢

0
(𝜃))

𝜕𝑢
, 𝜐 (𝜀) − 𝑢

0
(𝜃)⟩

+ 𝑜 (

𝜐 (𝜀) − 𝑢

0
(𝜃)


) = 𝛼𝜀 + 𝑜 (𝜀)

(43)

is valid for all rather small 𝜀, which is impossible, since by
supposition 𝛼 > 0. Indeed, the right part of (43) for rather
small 𝜀 > 0 is positive. The theorem is proved.

Note that condition (40) for verification is simpler than
condition (38) by virtue of linearity of the right hand side of
(43). However, assumptions on convexity of 𝑈 and differen-
tiability of the function 𝑓(𝑡, 𝑥, 𝑢) with respect to 𝑢 contract
the application of condition (41).

Note that there exist optimal control problems for which
condition (40) is valid, and the maximum principle gives
no information. This determines the value of the differential
principle of maximum.

The following theorem follows from the maximum prin-
ciple.

Theorem 6 (stationary state principle). Let 𝑈 ⊂ 𝑅
𝑛 be an

open set. Then at each 𝑡 ∈ [0, 𝑇] the optimal control delivers
the stationary value to the function 𝐻(𝑡, 𝜓, 𝑥, 𝑢); that is,

𝜕𝐻 (𝑡, 𝜓
0
(𝑡) , 𝑥
0
(𝑡) , 𝑢
0
(𝑡))

𝜕𝑢
= 0. (44)
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6. Discussion of the Obtained Results

In this paper different necessary optimality conditions of
first order were obtained for optimal control problems with
multipoint boundary conditions. This problem is rather
general and contains different special cases.

(i) The first case is the Cauchy problem (in this case𝑁 =

0 and 𝐵
0
is a unit matrix).

(ii) The second case is the problem with two-point
boundary conditions (in this case 𝑁 = 1).

(iii) Each equation of (1) has its initial condition; that is,
dimension of the vector 𝑥 equals𝑁+1 and 𝐵

𝑖
= (𝐵
𝑖

𝑗𝑘
)

(𝑖 = 0, 1, . . . , 𝑁; 𝑗, 𝑘 = 1, 2, . . . , 𝑁 + 1) and

𝐵
𝑖

𝑗𝑘
=

{

{

{

1, 𝑗 = 𝑖 + 1, 𝑘 = 𝑘 (𝑖) ,

0.
(45)

Here (𝑘(0), 𝑘(1), . . . , 𝑘(𝑁)) is some permutation
(1, 2, . . . , 𝑁 + 1).

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] J. Prescott, Applied Elasticity, Dover Publications, New York,
NY, USA, 1961.

[2] S. P. Timoshenko,Theory of Elastic Stability, McGraw-Hill, New
York, NY, USA, 1961.

[3] E. H. Mansfield, The Bending and Stretching of Plates, vol.
6 of International Series of Monographs on Aeronautics and
Astronautics, Pergamon Press, New York, NY, USA, 1964.

[4] E. Dulacska, Soil Settlement Effects Buildings, Development
Getechn. Engrg., vol. 69, Elsevier, Amsterdam,TheNetherlands,
1992.

[5] A.Dhamacharen andK.Chompuvised, “An efficientmethod for
solving multipoint equation boundary value problems,” World
Academy of Science, Engineering and Technology, vol. 75, pp. 61–
65, 2013.

[6] M. Urabe, “An existence theorem for multi-point boundary
value problems,” Funkcialaj Ekvacioj. Serio Internacia, vol. 9, pp.
43–60, 1966.

[7] A.Ashyralyev andO.Yildirim, “Onmultipoint nonlocal bound-
ary value problems for hyperbolic differential and difference
equations,” Taiwanese Journal of Mathematics, vol. 14, no. 1, pp.
165–194, 2010.

[8] P. W. Eloe and J. Henderson, “Multipoint boundary value prob-
lems for ordinary differential systems,” Journal of Differential
Equations, vol. 114, no. 1, pp. 232–242, 1994.

[9] J. R. Graef and L. Kong, “Solutions of second order multi-point
boundary value problems,” Mathematical Proceedings of the
Cambridge Philosophical Society, vol. 145, no. 2, pp. 489–510,
2008.

[10] V. A. Il’in and E. I. Moiseev, “Nonlocal boundary value problem
of the first kind for a strum-Lowville operator in its differential
and difference aspects,” Differential Equations, vol. 23, pp. 803–
810, 1987.

[11] V. A. Il’in and E. I. Moiseev, “Nonlocal boundary value problem
of the first kind for a Strum-Lowville operator,” Differential
Equations, vol. 23, pp. 979–987, 1987.

[12] L. Pontryagin, V. Boltyanski, R. Gamkrelidze, and E. Mish-
chenko, Mathematical Theory of Optimal Processes, Wiley,
Chichester, UK, 1962.

[13] Y. A. Sharifov, “Optimality conditions in problems of control
over systems of impulsive differential equations with nonlocal
boundary conditions,”UkrainianMathematical Journal, vol. 64,
no. 6, pp. 958–970, 2012.

[14] R. Gabasov and F. M. Kirillova, Singular Optimal Controls,
Nauka, Moscow, Russia, 1973, (Russian).

[15] F. P. Vasil’ev, Optimization Methods, Factorial Press, Moscow,
Russia, 2002.

[16] O. V. Vasiliev,OptimizationMethods (Advanced Series inMathe-
matical Science and Engineering), vol. 5, World Federation Pub-
lishers Company, Atlanta, Ga, USA, 1996.

[17] A. J. Krener, “The high order maximal principle and its applica-
tion to singular extremals,” SIAM Journal on Control and Opti-
mization, vol. 15, no. 2, pp. 256–293, 1977.

[18] H. J. Kelley, R. E. Kopp, and H. G. Moyer, “Singular extremals,”
in Topics in Optimization, G. Leitmann, Ed., pp. 63–101, Aca-
demic Press, New York, NY, USA, 1967.

[19] M. J. Mardanov, K. B. Mansimov, and T. K. Melikov, Investiga-
tion of Singular Controls and Second Order Necessary Optimality
Conditions in Systems with Delay, Elm, Baku, Azerbaijan, 2013.

[20] Y. A. Sharifov and N. B. Mamedova, “On second-order neces-
sary optimality conditions in the classical sense for systemswith
nonlocal conditions,” Differential Equations, vol. 48, no. 4, pp.
605–608, 2012.

[21] M. F. Mekhtiyev, S. I. Djabrailov, and Y. A. Sharifov, “Necessary
optimality conditions of second order in classical sense in opti-
mal control problems of three-point conditions,” Journal of
Automation and Information Sciences, vol. 42, no. 3, pp. 47–57,
2010.

[22] O. Vasilieva and K. Mizukami, “Optimality criterion for singu-
lar controllers: linear boundary conditions,” Journal of Mathe-
matical Analysis and Applications, vol. 213, no. 2, pp. 620–641,
1997.

[23] A. Ashyralyev and Y. A. Sharifov, “Optimal control problems
for impulsive systems with integral boundary conditions,”
Electronic Journal of Differential Equations, vol. 2013, no. 80, pp.
1–11, 2013.

[24] A. R. Safari, M. F. Mekhtiyev, and Y. A. Sharifov, “Maximum
principle in the optimal control problems for systems with
integral boundary conditions and its extension,” Abstract and
Applied Analysis, vol. 2013, Article ID 946910, 9 pages, 2013.


