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We complete the Solomon-Wilson-Alexiades’s mushy zone model (Solomon, 1982) for the one-phase Lamé-Clapeyron-Stefan
problem by obtaining explicit solutions when a convective or heat flux boundary condition is imposed on the fixed face for a semi-
infinite material. We also obtain the necessary and sufficient condition on data in order to get the explicit solutions for both cases
which is new with respect to the original model. Moreover, when these conditions are satisfied, the two phase-change problems
are equivalent to the same problem with a temperature boundary condition on the fixed face and therefore an inequality for the
coefficient which characterized one of the two free interfaces of the model is also obtained.

1. Introduction

Heat transfer problems with a phase-change such as melting
and freezing have been studied in the last century due to
their wide scientific and technological applications [1–9]. A
review of a long bibliography on moving and free boundary
problems for phase-change materials (PCM) for the heat
equation is shown in [10]. The importance of obtaining
explicit solutions to some free boundary problems was given
in the works [11–26].

We consider a semi-infinite material, with constant ther-
mal coefficients, that is initially assumed to be liquid at its
melting temperature which is assumed to be equal to 0∘C. At
time 𝑡 = 0, a heat flux or a convective boundary condition is
imposed at the fixed face 𝑥 = 0, and a solidification process
begins where three regions can be distinguished [27, 28]:

(H1) liquid region at the temperature 0∘C, in 𝑥 > 𝑟(𝑡), 𝑡 >
0;

(H2) solid region at the temperature 𝑇(𝑥, 𝑡) < 0, in 0 < 𝑥 <

𝑠(𝑡), 𝑡 > 0 (with 𝑠(𝑡) < 𝑟(𝑡));

(H3) mushy region at the temperature 𝑇(𝑥, 𝑡) = 0, in 𝑠(𝑡) ≤
𝑥 ≤ 𝑟(𝑡), 𝑡 > 0. The mushy region is considered

isothermal and we make the following assumptions
on its structure:

(H3i) the material contains a fixed portion 𝜀ℓ (with
0 < 𝜀 < 1) of the total latent heat ℓ (see
condition (3) in below);

(H3ii) the width of the mushy region is inversely
proportional to the gradient of temperature (see
condition (4) below).

Following the methodology given in [27–29] and the
recent one in [30], we consider a convective boundary
condition in Sections 2 to 4 and a heat flux condition in
Sections 5 and 6 at the fixed face 𝑥 = 0, respectively. In
both cases, we obtain explicit solutions for the temperature
and the two free boundaries which define the mushy region.
We also obtain, for both cases, the necessary and sufficient
condition on data in order to get these explicit solutions
given in Sections 2 and 5, respectively, which is new with
respect to the original model when a temperature boundary
condition at the face 𝑥 = 0 was imposed. Moreover,
these two problems are equivalent to the same phase-change
process with a temperature boundary condition on the fixed
face 𝑥 = 0 studied in [27] and therefore an inequality
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for the coefficient which characterized one of the two free
interfaces is also obtained in Sections 4 and 6. Moreover, in
Section 3, we obtain the convergence of the solution of the
phase-change process with a convective boundary condition
to the solution given in [27] for a temperature boundary
condition at the fixed face 𝑥 = 0 when the heat transfer
coefficient goes to infinity, and we also give the order of
the corresponding convergence when the coefficient that
characterized the transient heat transfer at 𝑥 = 0 goes to
infinity.

This paper completes themodel given in [27] by consider-
ing two new boundary conditions (convective and heat flux)
at the fixed face of the PCMs and obtaining explicit solutions
for both cases when a restriction on data is satisfied.

2. Explicit Solution with a Convective
Boundary Condition

The phase-change process consists in finding the free bound-
aries 𝑥 = 𝑠(𝑡) and 𝑥 = 𝑟(𝑡) and the temperature 𝑇 = 𝑇(𝑥, 𝑡)

such that the following conditions must be verified (problem
(P
1
)):

𝑇
𝑡
− 𝛼𝑇
𝑥𝑥

= 0,

0 < 𝑥 < 𝑠 (𝑡) , 𝑡 > 0 (𝛼 =
𝑘

𝜌𝑐
) ,

(1)

𝑇 (𝑠 (𝑡) , 𝑡) = 0, 𝑡 > 0, (2)

𝑘𝑇
𝑥
(𝑠 (𝑡) , 𝑡) = 𝜌ℓ [𝜀 ̇𝑠 (𝑡) + (1 − 𝜀) ̇𝑟 (𝑡)] ,

𝑡 > 0,

(3)

𝑇
𝑥
(𝑠 (𝑡) , 𝑡) (𝑟 (𝑡) − 𝑠 (𝑡)) = 𝛾 > 0, 𝑡 > 0 (with 𝛾 > 0) , (4)

𝑠 (0) = 𝑟 (0) = 0, (5)

𝑘𝑇
𝑥
(0, 𝑡) =

ℎ
0

√𝑡

(𝑇 (0, 𝑡) + 𝐷
∞
) ,

𝑡 > 0 (ℎ
0
> 0,𝐷

∞
> 0) .

(6)

Condition (6) represents a convective boundary condi-
tion (Robin condition) at the fixed face 𝑥 = 0 [31–33] with a
heat transfer coefficient which is inversely proportional to the
square root of the time [29, 30, 34, 35]. Now,wewill obtain the
solution of problem (1)–(6) when data satisfy the restriction
(7).

Theorem 1. If the coefficient ℎ
0
satisfies the inequality

ℎ
0
>

1

𝐷
∞

√
𝛾 (1 − 𝜀) 𝜌ℓ𝑘

2
= ℎ
∗

0

, (7)

then the solution of problem (1)–(6) is given by
𝑇 (𝑥, 𝑡)

= −
(ℎ
0
𝐷
∞

√𝜋𝛼/𝑘) erf (𝜉)
1 + (ℎ

0

√𝜋𝛼/𝑘) erf (𝜉)
[1 −

erf (𝑥/2√𝛼𝑡)
erf (𝜉)

] ,

0 < 𝑥 < 𝑠 (𝑡) , 𝑡 > 0,

(8)

𝑠 (𝑡) = 2𝜉√𝛼𝑡, 𝑡 > 0, (9)

𝑟 (𝑡) = 2𝜇√𝛼𝑡, 𝑡 > 0, (10)

with

𝜇 = 𝜉 +
𝛾𝑘

2𝐷
∞
ℎ
0

√𝛼
𝑒
𝜉

2

[1 +
ℎ
0

√𝜋𝛼

𝑘
erf (𝜉)] , (11)

and the coefficient 𝜉 is given as the unique solution of the
equation

𝐷
∞
𝑐

ℓ√𝜋
𝐹 (𝑥) = 𝐺 (𝑥) , 𝑥 > 0, (12)

where the real functions 𝐺 and 𝐹 are defined by

𝐹 (𝑥) =
𝑒
−𝑥

2

𝑘/ℎ
0

√𝜋𝛼 + erf (𝑥)
,

𝐺 (𝑥) = 𝑥 +
𝛾 (1 − 𝜀)√𝜋

2𝐷
∞

1

𝐹 (𝑥)
,

𝑥 > 0.

(13)

Proof. Taking into account that erf(𝑥/2√𝛼𝑡) is a solution of
the heat equation (3) [3], we propose as a solution of problem
(1)–(6) the following expression:

𝑇 (𝑥, 𝑡) = 𝐶
1
+ 𝐶
2
erf ( 𝑥

2√𝛼𝑡

) ,

0 < 𝑥 < 𝑠 (𝑡) , 𝑡 > 0,

(14)

where the two coefficients 𝐶
1
and 𝐶

2
must be determined.

From condition (4), we deduce the expression (9) for
the free boundary 𝑠(𝑡), where the coefficient 𝜉 must be
determined. From conditions (6) and (2), we deduce the
system of equations

𝐶
2
=
ℎ
0

√𝜋𝛼

𝑘
(𝐶
1
+ 𝐷
∞
) ,

𝐶
1
+ 𝐶
2
erf (𝜉) = 0,

(15)

whose solution is given by

𝐶
1
= −

(ℎ
0

√𝜋𝛼/𝑘)𝐷
∞
erf (𝜉)

1 + (ℎ
0

√𝜋𝛼/𝑘) erf (𝜉)
,

𝐶
2
=
ℎ
0
𝐷
∞

√𝜋𝛼

𝑘

1

1 + (ℎ
0

√𝜋𝛼/𝑘) erf (𝜉)
,

(16)

and then we get expression (8) for the temperature.
From condition (4), we deduce expression (10) for the

interface 𝑟(𝑡) and expression (11) for 𝜇. From condition (3),
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we deduce (12) for the coefficient 𝜉. Functions 𝐹
3
and 𝐺 have

the following properties:

𝐹 (0
+

) =
ℎ
0

√𝜋𝛼

𝑘
> 0,

𝐹 (+∞) = 0
+

,

𝐹
󸀠

(𝑥) < 0, ∀𝑥 > 0,

𝐺 (0
+

) =
(1 − 𝜀) 𝛾𝑘

2𝐷
∞
ℎ
0

√𝛼
> 0,

𝐺 (+∞) = +∞,

𝐺
󸀠

(𝑥) > 0, ∀𝑥 > 0.

(17)

Therefore, we deduce that (12) has a unique solutionwhen
the coefficient ℎ

0
satisfies the inequality

𝐷
∞
𝑐

ℓ√𝜋
𝐹 (0
+

) > 𝐺 (0
+

) ⇐⇒

ℎ
2

0

>
𝛾 (1 − 𝜀) 𝜌ℓ𝑘

2𝐷
2

∞

;

(18)

that is, inequality (7) holds.

Corollary 2. If the coefficient ℎ
0
satisfies inequality (7),

then the temperature, defined by (8), verifies the following
inequalities:

−𝐷
∞
< 𝑇 (0, 𝑡) ≤ 𝑇 (𝑥, 𝑡) < 0, 0 < 𝑥 < 𝑠 (𝑡) , 𝑡 > 0. (19)

Proof. From (8), we obtain

𝑇 (0, 𝑡) = −
(ℎ
0
𝐷
∞

√𝜋𝛼/𝑘) erf (𝜉)
1 + (ℎ

0

√𝜋𝛼/𝑘) erf (𝜉)

= −
𝐷
∞

1 + 𝑘/ℎ
0

√𝜋𝛼 erf (𝜉)
> −𝐷
∞
, ∀𝑡 > 0.

(20)

Moreover, from (8) and (20), we also get

𝑇 (𝑥, 𝑡) + 𝐷
∞

=
𝐷
∞

1 + (ℎ
0

√𝜋𝛼/𝑘) erf (𝜉)
[1 +

ℎ
0

√𝜋𝛼

𝑘
erf ( 𝑥

2√𝛼𝑡

)]

≥
𝐷
∞

1 + (ℎ
0

√𝜋𝛼/𝑘) erf (𝜉)
= 𝑇 (0, 𝑡) + 𝐷

∞
> 0,

0 < 𝑥 < 𝑠 (𝑡) , 𝑡 > 0;

(21)

that is, (19) holds.

3. Asymptotic Behavior When
the Coefficient ℎ

0

→ +∞

Now,wewill obtain the asymptotic behaviour of solution (8)–
(12) of problem (1)–(6) when the heat transfer coefficient is

large, that is, when ℎ
0
→ +∞. From a physical point of view,

it must be convergent to the solution of the same problem
with a temperature boundary condition at the fixed face𝑥 = 0

given by (23).
For any coefficient ℎ

0
satisfying inequality (7), we will

denote the temperature 𝑇 and the two free boundaries 𝑠 and
𝑟 (defined in (8), (9), and (10), resp.) by 𝑇 = 𝑇(𝑥, 𝑡, ℎ

0
),

𝑥 = 𝑠(𝑡, ℎ
0
), and 𝑥 = 𝑟(𝑡, ℎ

0
), respectively, with coefficients

𝜉 = 𝜉(ℎ
0
) and 𝜇 = 𝜇(ℎ

0
). We will also denote by 𝐹(𝑥, ℎ

0
) and

𝐺(𝑥, ℎ
0
) the functions defined in (13). We have the following

result.

Theorem 3. One obtains the following limits:

lim
ℎ
0
→∞

𝑇 (𝑥, 𝑡, ℎ
0
) = 𝑇
∞
(𝑥, 𝑡) ,

lim
ℎ
0
→∞

𝑠 (𝑡, ℎ
0
) = 𝑠
∞
(𝑡) ,

lim
ℎ
0
→∞

𝑟 (𝑡, ℎ
0
) = 𝑟
∞
(𝑡) ,

(22)

where 𝑇
∞
(𝑥, 𝑡), 𝑠

∞
(𝑡), and 𝑟

∞
(𝑡) are the solutions of the

following phase-change process with mushy region: (1)–(5) and

𝑇 (0, 𝑡) = −𝐷
∞
, 𝑡 > 0, (23)

instead of the boundary condition (6).

Proof. The solution of problem (1)–(5) and (23) is given by
[27]

𝑇
∞
(𝑥, 𝑡) = −𝐷

∞
[1 −

erf (𝑥/2√𝛼𝑡)
erf (𝜉
∞
)

] ,

0 < 𝑥 < 𝑠
∞
(𝑡) , 𝑡 > 0,

(24)

𝑠
∞
(𝑡) = 2𝜉

∞

√𝛼𝑡, 𝑡 > 0, (25)

𝑟
∞
(𝑡) = 2𝜇

∞

√𝛼𝑡, 𝑡 > 0, (26)

with

𝜇
∞
= 𝜉
∞
+
𝛾√𝜋

2𝐷
∞

𝑒
𝜉

2

∞ erf (𝜉
∞
) , (27)

and the coefficient 𝜉
∞

given as the unique solution of the
equation

𝐺
1
(𝑥) =

𝐷
∞
𝑐

ℓ√𝜋
, 𝑥 > 0, (28)

where the real function 𝐺
1
is defined by

𝐺
1
(𝑥) =

𝐺
∞
(𝑥)

𝐹
∞
(𝑥)

, 𝑥 > 0, (29)

with

𝐺
∞
(𝑥) = 𝑥 +

𝛾 (1 − 𝜀)√𝜋

2𝐷
∞

1

𝐹
∞
(𝑥)

= lim
ℎ
0
→∞

𝐺 (𝑥, ℎ
0
) ,

𝑥 > 0,

(30)

𝐹
∞
(𝑥) =

𝑒
−𝑥

2

erf (𝑥)
= lim
ℎ
0
→∞

𝐹 (𝑥, ℎ
0
) , 𝑥 > 0. (31)
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Then,

lim
ℎ
0
→∞

𝜉 (ℎ
0
) = 𝜉
∞
,

lim
ℎ
0
→∞

𝜇 (ℎ
0
) = 𝜇
∞
.

(32)

And, therefore, the limits (22) hold.
Now, by studying the real functions 𝐹(𝑥, ℎ

0
) and 𝐺(𝑥, ℎ

0
)

as functions of the variable ℎ
0
, we can obtain the order of

the convergence of solution (8)–(12) of problem (1)–(6) to
solution (24)–(28) of problem (1)–(5) and (23) when ℎ

0
→

∞.

Theorem 4. When the variable ℎ
0

→ ∞, one obtains the
following estimations:

0 < 𝜉
∞
− 𝜉 (ℎ

0
) = 𝑂(

1

ℎ
0

) 𝑤ℎ𝑒𝑛 ℎ
0
󳨀→ ∞, (33)

0 < 𝑠
∞
(𝑡) − 𝑠 (𝑡, ℎ

0
) = 𝑂(

1

ℎ
0

) ,

∀𝑡 ≥ 0 𝑤ℎ𝑒𝑛 ℎ
0
󳨀→ ∞,

(34)

󵄨󵄨󵄨󵄨
𝜇 (ℎ
0
) − 𝜇
∞

󵄨󵄨󵄨󵄨
= 𝑂(

1

ℎ
0

) 𝑤ℎ𝑒𝑛 ℎ
0
󳨀→ ∞, (35)

󵄨󵄨󵄨󵄨
𝑟 (𝑡, ℎ
0
) − 𝑟
∞
(𝑡)
󵄨󵄨󵄨󵄨
= 𝑂(

1

ℎ
0

) ,

∀𝑡 ≥ 0 𝑤ℎ𝑒𝑛 ℎ
0
󳨀→ ∞,

(36)

󵄨󵄨󵄨󵄨
𝑇 (𝑥, 𝑡, ℎ

0
) − 𝑇
∞
(𝑥, 𝑡)

󵄨󵄨󵄨󵄨
= 𝑂(

1

ℎ
0

) ,

∀𝑥 ≥ 0, ∀𝑡 > 0 𝑤ℎ𝑒𝑛 ℎ
0
󳨀→ ∞.

(37)

Proof. As the variable ℎ
0
→ ∞, we can consider that ℎ

0
> ℎ
∗

0

and then solution (8)–(12) of problem (1)–(6) is well defined.
Function 𝐹(𝑥, ℎ

0
) is an increasing function in variable

ℎ
0
; therefore, function 𝐺(𝑥, ℎ

0
) is a decreasing function in

variable ℎ
0
. Then, function 𝐺(𝑥, ℎ

0
)/𝐹(𝑥, ℎ

0
) is a decreasing

function in variable ℎ
0
, ∀𝑥 > 0, which is convergent to

𝐺
∞
(𝑥)/𝐹
∞
(𝑥) as ℎ

0
→ ∞ because (30) and (31) hold.

By using (13) and (31), we have

0 < 𝐹
∞
(𝑥) − 𝐹 (𝑥, ℎ

0
) = 𝐹
∞
(𝑥)

𝑘/ℎ
0

√𝜋𝛼

erf (𝑥) + 𝑘/ℎ
0

√𝜋𝛼

<
𝑒
−𝑥

2

erf2 (𝑥)
𝑘

ℎ
0

√𝜋𝛼
= 𝑂(

1

ℎ
0

) ,

∀𝑥 > 0 when ℎ
0
󳨀→ ∞.

(38)

By using (13) and (30), we have

0 < 𝐺 (𝑥, ℎ
0
) − 𝐺
∞
(𝑥)

=
𝛾 (1 − 𝜀)√𝜋

2𝐷
∞

𝐹
∞
(𝑥) − 𝐹 (𝑥, ℎ

0
)

𝐹
∞
(𝑥) 𝐹 (𝑥, ℎ

0
)

<
𝛾 (1 − 𝜀)√𝜋

2𝐷
∞

𝐹
∞
(𝑥) − 𝐹 (𝑥, ℎ

0
)

𝐹
∞
(𝑥) 𝐹 (𝑥, ℎ

∗

0

)
= 𝑂(

1

ℎ
0

) ,

∀𝑥 > 0 when ℎ
0
󳨀→ ∞.

(39)

Therefore, we have

0 <
𝐺 (𝑥, ℎ

0
)

𝐹 (𝑥, ℎ
0
)
−
𝐺
∞
(𝑥)

𝐹
∞
(𝑥)

< [𝐹
∞
(𝑥) − 𝐹 (𝑥, ℎ

0
)]

⋅
𝑥 + (𝛾 (1 − 𝜀)√𝜋/𝐷

∞
) (1/𝐹 (𝑥, ℎ

∗

0

))

𝐹
∞
(𝑥) 𝐹 (𝑥, ℎ

∗

0

)

= 𝑂(
1

ℎ
0

) , ∀𝑥 > 0 when ℎ
0
󳨀→ ∞.

(40)

Then, the estimation (33) holds and

0 < 𝑠
∞
(𝑡) − 𝑠 (𝑡, ℎ

0
) = 2√𝛼𝑡 (𝜉

∞
− 𝜉 (ℎ

0
))

= 𝑂(
1

ℎ
0

) , ∀𝑡 ≥ 0 when ℎ
0
󳨀→ ∞.

(41)

By using (11) and (27), we get

𝜇
∞
− 𝜇 (ℎ

0
)

= (𝜉
∞
− 𝜉 (ℎ

0
)) −

𝛾√𝜋

2𝐷
∞

√𝛼

𝑒
𝜉

2
(ℎ
0
)

ℎ
0

+
𝛾√𝜋

2𝐷
∞

[𝑒
𝜉

2

∞ erf (𝜉
∞
) − 𝑒
𝜉

2
(ℎ
0
) erf (𝜉 (ℎ

0
))]

= 𝑂(
1

ℎ
0

) when ℎ
0
󳨀→ ∞,

󵄨󵄨󵄨󵄨
𝑟 (𝑡, ℎ
0
) − 𝑟
∞
(𝑡)
󵄨󵄨󵄨󵄨
= 2√𝛼𝑡

󵄨󵄨󵄨󵄨
𝜇 (ℎ
0
) − 𝜇
∞

󵄨󵄨󵄨󵄨
= 𝑂(

1

ℎ
0

) ,

∀𝑡 ≥ 0 when ℎ
0
󳨀→ ∞.

(42)

Finally, by using (8) and (24), we get

𝑇 (𝑥, 𝑡, ℎ
0
) − 𝑇
∞
(𝑥, 𝑡)

=
𝐷
∞

1 + (ℎ
0

√𝜋𝛼/𝑘) erf (𝜉 (ℎ
0
))
{1

+

erf (𝑥/2√𝛼𝑡)
erf (𝜉
0
)

[
ℎ
0

√𝜋𝛼

𝑘
(erf (𝜉

∞
)

− erf (𝜉 (ℎ
0
)))]} = 𝑂(

1

ℎ
0

) ,

∀𝑥 > 0, ∀𝑡 > 0 when ℎ
0
󳨀→ ∞,

(43)
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and the thesis holds. In the particular case, when 𝑥 = 0, we
have

0 < 𝑇 (0, 𝑡, ℎ
0
) − 𝑇
∞
(0, 𝑡)

=
𝐷
∞

1 + (ℎ
0

√𝜋𝛼/𝑘) erf (𝜉 (ℎ
0
))

<
𝑘𝐷
∞

ℎ
0

√𝜋𝛼 erf (𝜉 (ℎ∗
0

))
= 𝑂(

1

ℎ
0

) ,

∀𝑡 > 0 when ℎ
0
󳨀→ ∞.

(44)

4. Equivalence between the Mushy Zone
Models with Convective and Temperature
Boundary Conditions

We consider problem (P
2
) defined by conditions (1)–(5) and

temperature boundary condition

𝑇 (0, 𝑡) = −𝐷
0
< 0, 𝑡 > 0, (45)

at the fixed face 𝑥 = 0, whose solution was given in [27]. We
have the following property.

Theorem 5. If the coefficient ℎ
0
satisfies inequality (7), then

problem (𝑃
1
), defined by conditions (1)–(6), is equivalent to

problem (𝑃
2
), defined by conditions (1)–(5) and (45), when the

parameter 𝐷
0
in problem (𝑃

2
) is related to parameters ℎ

0
and

𝐷
0
in problem (𝑃

1
) by the following expression:

𝐷
0
=

𝐷
∞
erf (𝜉)

𝑘/ℎ
0

√𝜋𝛼 + erf (𝜉)
> 0, (46)

where the coefficient 𝜉 is given as the unique solution of (12) for
problem (𝑃

1
) or as the unique solution of equation

𝐺
2
(𝑥) =

𝐷
0
𝑐

ℓ√𝜋
, 𝑥 > 0, (47)

for problem (𝑃
2
), where the real function 𝐺

2
is defined by

𝐺
2
(𝑥) =

𝐺
0
(𝑥)

𝐹
∞
(𝑥)

,

𝐺
0
(𝑥) = [𝑥 +

𝛾 (1 − 𝜀)√𝜋

2𝐷
0

1

𝐹
∞
(𝑥)

] ,

𝑥 > 0.

(48)

Proof. If the coefficient ℎ
0
satisfies inequality (7), then the

solution of problem (P
1
) is given by (8)–(12). Taking into

account that

𝑇 (0, 𝑡) = −
(ℎ
0

√𝜋𝛼/𝑘)𝐷
∞
erf (𝜉)

1 + (ℎ
0

√𝜋𝛼/𝑘) erf (𝜉)

= −
𝐷
∞
erf (𝜉)

𝑘/ℎ
0

√𝜋𝛼 + erf (𝜉)
< 0, 𝑡 > 0,

(49)

we can define problem (P
2
) by imposing the temperature

boundary condition (45) with data𝐷
0
given in (46). By using

this data 𝐷
0
in problem (P

2
) and the method developed

in [30], we can prove that the solutions of both problems
(P
1
) and (P

2
) are the same and then the two problems are

equivalent.

Corollary 6. If the coefficient ℎ
0
satisfies inequality (7), then

the coefficient 𝜉 of the solid-mushy zone interface of problem
(𝑃
2
) verifies the following inequality:

erf (𝜉) <
𝐷
∞
𝐷
0

𝐷
∞
− 𝐷
0

√
2𝑐

𝜋𝛾 (1 − 𝜀) ℓ
, ∀𝐷

∞
> 𝐷
0
. (50)

Then,

erf (𝜉) < 𝐷
0

√
2𝑐

𝜋𝛾 (1 − 𝜀) ℓ
. (51)

Remark 7. The real functions 𝐺
∞
, defined in (30), and 𝐺

0
,

defined in (48), are similar; the difference between them is
the parameters𝐷

∞
or𝐷
0
used in each definition.

5. Explicit Solution with a Heat Flux
Boundary Condition

Now, we will consider a phase-change process which consists
in finding the free boundaries 𝑥 = 𝑠(𝑡) and 𝑥 = 𝑟(𝑡) and the
temperature 𝑇 = 𝑇(𝑥, 𝑡) such that the following conditions
must be verified (problem (P

3
)): conditions (1)–(5) and

𝑘𝑇
𝑥
(0, 𝑡) =

𝑞
0

√𝑡

, 𝑡 > 0 (𝑞
0
> 0) . (52)

Condition (52) represents the heat flux at the fixed face
𝑥 = 0 characterized by a coefficient which is inversely
proportional to the square root of the time [34].

Theorem 8. If the coefficient 𝑞
0
satisfies the inequality

𝑞
0
> √

𝛾 (1 − 𝜀) 𝜌ℓ𝑘

2
= 𝑞
∗

0

, (53)

then the solution of problem (1)–(5) and (52) is given by

𝑇 (𝑥, 𝑡) = −
𝑞
0

√𝜋𝛼 erf (𝜔)
𝑘

[1 −

erf (𝑥/2√𝛼𝑡)
erf (𝜔)

] < 0,

0 < 𝑥 < 𝑠 (𝑡) , 𝑡 > 0,

(54)

𝑠 (𝑡) = 2𝜔√𝛼𝑡, 𝑡 > 0, (55)

𝑟 (𝑡) = 2]√𝛼𝑡, 𝑡 > 0, (56)

with

] = 𝜔 +
𝛾𝑘

2𝑞
0

√𝛼
𝑒
𝜔

2

, (57)
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and the coefficient 𝜔 > 0 given as the unique solution of the
equation

𝐺
3
(𝑥) =

𝑞
0

𝜌ℓ√𝛼
, 𝑥 > 0, (58)

where the real function 𝐺
3
is defined by

𝐺
3
(𝑥) = [𝑥 +

𝛾 (1 − 𝜀) 𝑘

2𝑞
0

√𝛼
𝑒
𝑥

2

] 𝑒
𝑥

2

, 𝑥 > 0. (59)

Proof. Following the proof of Theorem 1, we propose as a
solution of problem (1)–(5) and (52) the following expression:

𝑇 (𝑥, 𝑡) = 𝐴
1
+ 𝐴
2
erf ( 𝑥

2√𝛼𝑡

) ,

0 < 𝑥 < 𝑠 (𝑡) , 𝑡 > 0,

(60)

where the two coefficients 𝐴
1
and 𝐴

2
must be determined.

From condition (2), we deduce expression (55) for the free
boundary 𝑠(𝑡), with the coefficient 𝜔 to be determined. From
conditions (2) and (52), we deduce

𝐴
1
= −

𝑞
0

√𝜋𝛼

𝑘
erf (𝜔) ,

𝐴
2
=
𝑞
0

√𝜋𝛼

𝑘
,

(61)

and then we get expression (54) for the temperature.
From condition (4), we deduce expression (56) for the

interface 𝑟(𝑡) and expression (57) for ]. From condition (3),
we deduce (58) for the coefficient𝜔. Since function𝐺

3
has the

following properties:

𝐺
3
(0
+

) =
𝛾 (1 − 𝜀) 𝑘

2𝑞
0

√𝛼
> 0,

𝐺
3
(+∞) = +∞,

𝐺
󸀠

3

(𝑥) > 0, ∀𝑥 > 0,

(62)

we can deduce that (58) has a unique solution when the
coefficient 𝑞

0
satisfies the inequality

𝑞
0

𝜌ℓ√𝛼
> 𝐺
3
(0
+

) ⇐⇒

𝑞
2

0

>
𝛾 (1 − 𝜀) 𝜌ℓ𝑘

2
,

(63)

which is inequality (53).

Remark 9. Wehave a relationship between 𝑞∗
0

(the lower limit
for coefficient 𝑞

0
in order to have a phase-change process with

a mushy region with a heat flux boundary condition at 𝑥 = 0)
and ℎ∗
0

(the lower limit for the coefficient ℎ
0
in order to have a

phase-change process with a mushy region with a convective
boundary condition at 𝑥 = 0) given by

𝑞
∗

0

= 𝐷
∞
ℎ
∗

0

. (64)

6. Equivalence between the Mushy Zone
Models with Heat Flux and Temperature
Boundary Conditions

Following Section 4, we will now study the relationship
between problems (P

3
) and (P

2
). We have the following

property.

Theorem 10. If the coefficient 𝑞
0
satisfies inequality (53),

then problem (𝑃
3
), defined by conditions (1)–(5) and (52), is

equivalent to problem (𝑃
2
), defined by conditions (1)–(5) and

(45), when the parameter 𝐷
0
in problem (𝑃

2
) is related to the

parameter 𝑞
0
in problem (𝑃

3
) by the following expression:

𝐷
0
=
𝑞
0

√𝜋𝛼

𝑘
erf (𝜔) > 0, (65)

where the coefficient 𝜔 is given as the unique solution of (58)
for problem (𝑃

3
) or as the unique solution of (47) for problem

(𝑃
2
).

Proof. If the coefficient 𝑞
0
satisfies inequality (53), then the

solution of problem (P
3
) is given by (54)–(58). Taking into

account that

𝑇 (0, 𝑡) = −
𝑞
0

√𝜋𝛼

𝑘
erf (𝜔) < 0, 𝑡 > 0, (66)

we can define problem (P
2
) by imposing the temperature

boundary condition (45) with the data 𝐷
0
given in (65). By

using this data𝐷
0
in problem (P

2
) and themethod developed

in [30], we can prove that the solutions of both problems
(P
3
) and (P

2
) are the same and then the two problems are

equivalent.

Corollary 11. If the coefficient 𝑞
0
satisfies inequality (53), then

the coefficient 𝜉 of the solid-mushy zone interface of problem
(𝑃
2
) verifies inequality (51) which is the same as that we have

obtained through the equivalence between problems (𝑃
1
) and

(𝑃
2
).

Remark 12. At last, for a suggestion of an anonymous referee,
we will transform problem (P

1
), given by the equations and

conditions (1)–(6), and inequality (7) in a dimensionless
form. We define the following dimensionless change of
variables:

𝜂 =
𝑥

𝐿
,

𝜏 =
𝛼𝑡

𝐿
2

,

𝑆 (𝜏) =
𝑠 (𝑡)

𝐿
,

𝑅 (𝜏) =
𝑟 (𝑡)

𝐿
,

𝜃 (𝜂, 𝜏) =
𝑇 (𝑥, 𝑡)

𝐷
∞

,

(67)
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where 𝐿 is a characteristic length. Therefore, the equations
and conditions (1)–(6) are transformed as

𝜃
𝜏
− 𝜃
𝜂𝜂
= 0, 0 < 𝜂 < 𝑆 (𝜏) , 𝜏 > 0,

𝜃 (𝑆 (𝜏) , 𝜏) = 0, 𝜏 > 0,

𝜃
𝜂
(𝑟 (𝜏) , 𝜏) =

1

Ste
[𝜀𝑆
󸀠

(𝜏) + (1 − 𝜀) 𝑅
󸀠

(𝜏)] , 𝜏 > 0,

𝜃
𝜂
(𝑟 (𝜏) , 𝜏) (𝑅 (𝜏) − 𝑆 (𝜏)) =

𝛾

𝐷
∞

, 𝜏 > 0,

𝑆 (0) = 𝑅 (0) = 0,

𝜃
𝜂
(0, 𝜏) =

𝐵

√𝜏
(𝜃 (0, 𝜏) + 1) , 𝜏 > 0,

(68)

where Ste is the Stefan number and 𝐵/√𝜏 is the Biot number
defined by the following expressions:

Ste =
𝑐𝐷
∞

ℓ
> 0, (69)

𝐵 =
ℎ
0

√𝛼

𝑘
=

ℎ
0

√𝜌𝑘𝑐

> 0. (70)

Moreover, inequality (7) for the physical coefficient ℎ
0
,

which characterized the heat transfer coefficient in the
boundary condition (6), is transformed in the following way:

𝐵 >
1

𝐷
∞

√
𝛾 (1 − 𝜀) ℓ

2𝑐
= 𝐵
∗

. (71)

Therefore, limit ℎ
0
→ ∞ in problem (1)–(6) in physical

variables is equivalent to limit 𝐵 → ∞ in problem (68) in
dimensionless variables.

By using the results of this work, we can now obtain
new explicit expression for the determination of one or
two unknown thermal coefficients through a phase-change
process with a mushy zone by imposing an overspecified
convective boundary condition at the fixed face 𝑥 = 0. This
will complete and improve the results obtained previously in
[28].

7. Conclusions

The goal of this paper is to complete the solution of Solomon-
Wilson-Alexiades’s model for a mushy zone model for phase-
change materials when a convective or a heat flux boundary
condition at the fixed face 𝑥 = 0 is imposed. In both
cases, explicit solutions for the temperature and the two free
boundaries which define the mushy region were obtained
and, for both cases, the necessary and sufficient conditions on
data in order to get these explicit solutions are also obtained
which is new with respect to the original model when a
temperature boundary condition at the face 𝑥 = 0 was
imposed.Moreover, the equivalence of this two phase-change
process with the one with a temperature boundary condition
on the fixed face 𝑥 = 0 was obtained and an inequality for
the dimensionless coefficient that characterizes the first free

boundary is also given. On the other hand, the convergence
of the phase-change process with mushy zone when the heat
transfer coefficient goes to infinity was also obtained and the
order of the convergence is also shown.

Nomenclature

𝐵(𝐵
∗

): Dimensionless coefficient that
characterizes the transient heat
transfer at 𝑥 = 0 (Biot number),
defined in (70)

𝑐: Specific heat, J/(kg∘C)
−𝐷
0
(< 0): Temperature at the fixed face 𝑥 = 0,

∘C
−𝐷
∞
(< 0): Bulk temperature at the fixed face

𝑥 = 0, ∘C
ℎ
0
(ℎ
∗

0

): Coefficient that characterizes the
transient heat transfer at 𝑥 = 0,
kg/(C∘s5/2)

𝑘: Thermal conductivity, W/(m∘C)
ℓ: Latent heat of fusion by unit of mass,

J/kg
𝐿: Characteristic length, m
P
1
: Phase-change process defined by

conditions (1)–(6)
P
2
: Phase-change process defined by

conditions (1)–(5) and (45)
P
3
: Phase-change process defined by

conditions (1)–(5) and (52)
𝑞
0
(𝑞
∗

0

): Coefficient that characterizes the
transient heat flux at 𝑥 = 0, kg/s5/2

𝑟 = 𝑟(𝑡) (> 𝑠(𝑡)): Position of the liquid-mushy zone
interface at time 𝑡, m

𝑅 = 𝑅(𝜏) (> 𝑆(𝜏)): Dimensionless position of the
liquid-mushy zone interface at time 𝜏

𝑠 = 𝑠(𝑡): Position of the solid-mushy zone
interface at time 𝑡, m

𝑆 = 𝑆(𝜏): Dimensionless position of the
solid-mushy zone interface at time 𝜏

Ste: Stefan number, defined in (69)
𝑡: Time, s
𝑇: Temperature of the solid phase, ∘C
𝑥: Spatial coordinate, m.

Greek Symbols

𝛼 = 𝑘/𝜌𝑐: Diffusivity coefficient, m2/s
𝛾 > 0: One of the two coefficients that characterizes

the mushy zone, ∘C
𝜀 ∈ (0, 1): One of the two coefficients that characterizes

the mushy zone, being dimensionless
](> 𝜔): Coefficient that characterizes the free

boundary 𝑟(𝑡) in (45), being dimensionless
𝜌: Density of mass, kg/m3
𝜇(> 𝜉): Coefficient that characterizes the free

boundary 𝑟(𝑡) in (10), being dimensionless
𝜇
∞
(> 𝜉
∞
): Coefficient that characterizes the free
boundary 𝑟(𝑡) in (26), being dimensionless
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𝜔 > 0: Coefficient that characterizes the free
boundary 𝑠(𝑡) in (43), being dimensionless

𝜉 > 0: Coefficient that characterizes the free
boundary 𝑠(𝑡) in (9), being dimensionless

𝜉
∞
> 0: Coefficient that characterizes the free

boundary 𝑠(𝑡) in (25), being dimensionless
𝜏: Dimensionless time
𝜃: Dimensionless temperature of the solid

phase
𝜂: Dimensionless spatial coordinate.
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