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Departamento de Matemática e Computação, Faculdade de Ciências e Tecnologia, Universidade Estadual Paulista (UNESP),
19060-900 Presidente Prudente, SP, Brazil

Correspondence should be addressed to Marcelo Messias; marcelo@fct.unesp.br

Received 27 June 2014; Accepted 13 October 2014

Academic Editor: Yongli Song

Copyright © 2015 Marluci Cristina Galindo et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

We study a cancer model given by a three-dimensional system of ordinary differential equations, depending on eight parameters,
which describe the interaction among healthy cells, tumour cells, and effector cells of immune system. The model was previously
studied in the literature and was shown to have a chaotic attractor. In this paper we study how such a chaotic attractor is formed.
More precisely, by varying one of the parameters, we prove that a supercritical Hopf bifurcation occurs, leading to the creation of a
stable limit cycle.Then studying the continuation of this limit cycle we numerically found a cascade of period-doubling bifurcations
which leads to the formation of the mentioned chaotic attractor. Moreover, analyzing the model dynamics from a biological point
of view, we notice the possibility of both the tumour cells and the immune system cells to vanish and only the healthy cells survive,
suggesting the possibility of cure, since the interactions with the immune system can eliminate tumour cells.

1. Introduction

Mathematical models describing cancer tumour growth have
been extensively studied in the literature in order to under-
stand the mechanism of disease and to predict its future
behaviour; see [1] and references therein as a brief review on
the subject. One class of these cancer models, well known as
Lotka-Volterra systems, is based on nonlinear mathematical
systems of interacting species.

The competition for nutrients, the effects of growth
factors, and the actions of the immune system stand out
among possible interactions.

The immune system has the function of recognizing
internal and external threats to the organism, reacting to
eliminate, neutralize, or tolerate such threats.The recognition
of tumour cells by the immune system can happen in distinct
and complementary ways. According to Chammas et al. [2],
the lymphocytes of type B participate in the immune response
against tumours by producing specific antibodies against
tumour antigens. These antibodies bind with specific anti-
gens on tumour cells which facilitate their recognition and

destruction by NK cells and phagocytosis by macrophages.
The study of different antibodies found in patients with
cancer tumour has been useful for determining tumour-
associated antigens and pointed out some information for
the development of therapeutic antibodies with clinical
application. More specifically, several researches seeking the
elimination of tumour cells through the immune cells have
been developed [3–5]. Despite the increasing number of
researches in this area, in [1] the authors pointed out the
existence of a gap in the understanding of tumour growth
and invasion, requiring an intense and closer collaboration in
investigations by different scientists, such as mathematicians,
biologists, and experimentalists.

Aiming to contribute to the understanding of these types
of model we perform a bifurcation analysis of a cancer
tumour growth model of three competing cell populations
(tumour, healthy, and immune cells), which was proposed in
[6]. The populations of these cells in a given instant of time
𝑡 will be denoted here by 𝑥(𝑡), 𝑦(𝑡), and 𝑧(𝑡), respectively.
Analogous to what is done in competition models in pop-
ulation ecology, the mathematical model for the interaction
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of these cells is given by the following three-dimensional
adimensional system of ordinary differential equations (for
details on the derivation of the system, see the nice paper
[6]),

𝑑𝑥

𝑑𝑡
= 𝑥 (1 − 𝑥) − 𝑎𝑥𝑦 − 𝑏𝑥𝑧,

𝑑𝑦

𝑑𝑡
= 𝑐𝑦 (1 − 𝑦) − 𝑑𝑥𝑦,

𝑑𝑧

𝑑𝑡
=

𝑒𝑥𝑧

𝑥 + 𝑓
− 𝑔𝑥𝑧 − ℎ𝑧,

(1)

in which the parameters 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ are all positive.
The equations of system (1) describe the variation rate of

tumour cells, healthy cells, and effector cells with the time
𝑡. In the first equation, a logistic growth of tumour cells is
considered, the term 𝑎𝑥𝑦 represents the negative effects that
the healthy cells have on tumour cells, and 𝑏𝑥𝑧 represents the
negative effects that the effector cells of the immune system
exert on tumour cells. In the second equation, the healthy
cells also grow logistically, with growth rate 𝑐. The term 𝑑𝑥𝑦

represents the negative effects that tumour cells exert on
healthy cells. In the last equation, 𝑒𝑥𝑧/(𝑥 + 𝑓) describes the
stimulation of the immune system by tumour cells through
specific antigens. Therefore, the stimulus of the immune
system depends directly on the number of tumour cells.
The term 𝑔𝑥𝑧 represents the negative effects that tumour
cells exert on the effector cells of the immune system and,
finally, ℎ refers to the natural death rate of the effector cells.
It is important to notice that system (1) is a slight modi-
fication of a model of cancer without treatment, proposed
in [7], where a first phase space analysis of the model was
presented.

In [6], by using the Shilnikov’s theorem [8] and by the
calculation of Lyapunov exponents and Lyapunov dimension,
the authors have shown that system (1) presents a chaotic
attractor for the following fixed set of parameters: 𝑎 = 1.0,
𝑏 = 2.5, 𝑐 = 0.6, 𝑑 = 1.5, 𝑒 = 4.5, 𝑓 = 1.0, 𝑔 = 0.2,
and ℎ = 0.5. In a second paper concerning the dynamical
analysis of system (1) [9], the authors described in detail the
topological structure of this chaotic attractor. However, in
none of these papers the authors show how this attractor is
formed nor do they relate the chaotic behaviour of system (1)
with biological aspects of the cancer evolution.

In this paper we analyse the local stability of the equilibria
of system (1); then, varying two of the parameters involved,
namely, the parameters 𝑎 and 𝑏, and taking for the other
parameters the same values considered in [6], we perform
a bifurcation analysis of system (1). Through this analysis
we prove that, for 𝑏 > 0 fixed and varying the parameter
𝑎, the system presents a supercritical Hopf bifurcation at
an equilibrium point for the critical value 𝑎 ≅ 0.717455,
which leads to the creation of a small stable limit cycle.
Furthermore, numerically studying the continuation of this
stable limit cycle by increasing the parameter 𝑎 from theHopf

point, we numerically found the occurrence of a cascade of
period-doubling bifurcations which leads to the formation
of the chaotic attractor shown to exist in [6]. Trying to
analyse this dynamical behaviour from the biological point
of view, we observed that, after the occurrence of chaotic
dynamics, both the tumour cells and the immune system
cells (represented by the coordinates 𝑥(𝑡) and 𝑧(𝑡)) vanish
and only the healthy cells remain positive and their amount
tends to the carrying capacity 𝑦(𝑡) = 1.The chaotic dynamics
occurswhen the parameter 𝑎 varies from the critical value 𝑎 ≅

0.717455 to 𝑎 = 1.0 and the dynamics is not affected by the
variation of parameter 𝑏, which must only be taken different
from zero, as will be shown in the calculations ahead. In
this way, the bifurcation analysis presented here is performed
focusing on the variation of parameter 𝑎.

The parameter 𝑎 considered in thementioned bifurcation
analysis represents the interaction between the cancer cells
and the healthy cells. However, this parameter can also be
related to the action of the immune system cells against
cancer cells. In fact, we can rewrite the first equation of system
(1) as

𝑑𝑥

𝑑𝑡
= 𝑥 (1 − 𝑥) − 𝑎𝑥(𝑦 +

𝑏

𝑎
𝑧) . (2)

In this way, for 𝑎 smaller than 1.0 and 𝑏 ̸= 0 fixed, the
negative effect of the immune system cells onto the tumour
cells is more significant and it decreases as 𝑎 approaches the
critical value 𝑎 = 1.0, when the chaotic dynamics occurs.
Although being a very complex matter, this and another
tentative analysis relating the dynamical behaviour and the
biological meaning of the variables of system (1) will be
further considered later on, in Sections 2, 4, and 5.

We believe that the bifurcation analysis and the biological
considerations presented here complement the results and
the analysis of system (1) performed in [6, 7, 9].

The paper is organized as follows. In this introductory
section, we present the studied model, describing the vari-
ables and parameters involved, and state the main results
obtained. In Section 2, we make a linear analysis of system
(1): calculate the equilibrium points, check whether these
equilibria are biologically admissible (i.e., if all their coor-
dinates are nonnegative), analyse their local stability, and
give an outline of the Hopf bifurcation theorem. In Section 3
we prove the main result of the paper, the occurrence of
a supercritical Hopf bifurcation in one of the equilibrium
points of system (1), which gives rise to a small stable
limit cycle; we also present some numerical simulations
which corroborate with the occurrence of this bifurcation.
In Section 4 we numerically show that a cascade of period-
doubling bifurcations occurs with the limit cycle created at
the Hopf bifurcation, leading to the creation of a chaotic
attractor (exactly that one shown to exist in [6]). Finally,
Section 5 presents some concluding remarks, including a
possible interpretation of the dynamical properties of system
(1) from a biological point of view.
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2. Linear Analysis

Considering �̇� = ̇𝑦 = �̇� = 0 in system (1), we obtain the
following equilibrium points (for details on the calculation
and on the local analysis of the equilibrium points of system
(1), see [6]):

𝐴 = (0, 0, 0) , 𝐵 = (0, 1, 0) ,

𝐶 = (1, 0, 0) , 𝐸 = (𝑥, 0, 𝑧) ,

𝐸
1
= (𝑥
1
, 0, 𝑧
1
) , 𝐹 = (

𝑐 (𝑎 − 1)

𝑎𝑑 − 𝑐
,
𝑑 − 𝑐

𝑎𝑑 − 𝑐
, 0) ,

𝐺 = (𝑥
2
, 𝑦
2
, 𝑧
2
) , 𝐺

1
= (𝑥
3
, 𝑦
3
, 𝑧
3
) .

(3)

These equilibria are called biologically admissible if their
three coordinates are greater than or equal to zero. The
equilibrium points 𝐴, 𝐵, and 𝐶 satisfy such condition.

For the equilibrium point 𝐹 we have the following
possibilities:

(i) if 𝑎 = 1, the equilibrium 𝐹 coincides with the
equilibrium 𝐵;

(ii) if 𝑐 = 𝑑, 𝐹 coincides with the equilibrium 𝐶;

(iii) if𝑎 > 1,𝑎𝑑 > 𝑐, and𝑑 > 𝑐,𝐹 is biologically admissible;

(iv) if 𝑎 < 1, 𝑎𝑑 < 𝑐, and 𝑑 < 𝑐, 𝐹 is also admissible;

(v) if none of the previous inequalities are satisfied, 𝐹 is
not biologically admissible.

As the equilibria 𝐸, 𝐸
1
and 𝐺, 𝐺

1
may present negative

coordinates, aiming to simplify the analysis of system (1), we
will present a study of the feasibility of these equilibria using

the values of parameters extracted from [6], that is, 𝑐 = 0.6,
𝑑 = 1.5, 𝑒 = 4.5, 𝑓 = 1, 𝑔 = 0.2, and ℎ = 0.5, and letting
the parameters 𝑎 and 𝑏 vary. For these parameter values we
obtain

𝐸 = (0.132503, 0,
0.867497

𝑏
) ,

𝐸
1
= (18.8675, 0, −

17.867497

𝑏
) ,

𝐹 = (
2 (𝑎 − 1)

5𝑎 − 2
,

3

5𝑎 − 2
, 0) ,

𝐺 = (0.132503, 0.668742,
0.1 (8.675 − 6.687𝑎)

𝑏
) ,

𝐺
1
= (18.8675, −46.1687,

0.1 (−178.675 + 461.687𝑎)

𝑏
) .

(4)

Note that the equilibria 𝐴, 𝐵, 𝐶 remain the same and 𝐸
1

and 𝐺
1
are not biologically admissible; therefore it will not

be considered here. Let us analyse the conditions on the
equilibria 𝐸, 𝐹, and 𝐺.

(i) 𝐸 is biologically admissible, since we are considering
𝑏 > 0;

(ii) the equilibrium 𝐹 exists if 𝑎 ̸= 0.4 and coincides with
the equilibrium 𝐵 for 𝑎 = 1, as seen previously. If 𝑎 >

1, 𝐹 is biologically admissible, which does not occur
if 𝑎 < 1;

(iii) 𝐺 is biologically admissible if 𝑎 < 1.2972, since 𝑏 > 0.

2.1. Linear Stability of the Equilibrium Points. The Jacobian
matrix of system (1) at a point (𝑥, 𝑦, 𝑧) is given by

𝐽 = (

1 − 2𝑥 − 𝑎𝑦 − 𝑏𝑧 −𝑎𝑥 −𝑏𝑥

−1.5𝑦 0.6 − 1.2𝑦 − 1.5𝑥 0

0.1𝑧 (43 − 2𝑥
2
− 4𝑥)

(𝑥 + 1)
2

0

0.1 (38𝑥 − 2𝑥
2
− 5)

𝑥 + 1

). (5)

It will be used bellow to study the local stability of the
admissible equilibria.

(i) Equilibrium 𝐴 = (0, 0, 0): the Jacobian matrix 𝐽

applied at 𝐴 has the eigenvalues

𝜆
1
= 1, 𝜆

2
= 0.6, 𝜆

3
= −0.5. (6)

As 𝜆
1
> 0 and 𝜆

2
> 0, 𝐴 is (unstable) saddle point,

which is coherent from the biological point of view,
since this point represents the simultaneous extinc-
tion of normal cells, immune cells, and tumour cells.

(ii) Equilibrium 𝐵 = (0, 1, 0): the eigenvalues of the
matrix 𝐽 at this point are

𝜆
1
= 1 − 𝑎, 𝜆

2
= −0.6, 𝜆

3
= −0.5. (7)

Thus, the stability of 𝐵 depends on the value of 𝜆
1
,

whereas the other two eigenvalues are negative. If
𝜆
1

> 0, that is, if 𝑎 < 1, then the equilibrium 𝐵

is a saddle point, therefore unstable; if 𝑎 > 1, 𝐵 is
asymptotically stable (a stable node); and if 𝑎 = 1, 𝐵
is nonhyperbolic, since 𝜆

1
= 0.The equilibrium point

𝐵 itself represents the absence of cancer and immune
system cells and the permanence of the healthy cells,
which tend to its carrying capacity 𝑦(𝑡) = 1. In this
way, from the biological point of view the instability of
𝐵 (case 𝑎 < 1) represents the existence of cancer cells
and, consequently, the existence of immune system
cells that is the persistence of the disease; on the
other hand, the stability of 𝐵 represents the absence
of disease, which could be possible through a given
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treatment or by the action of the immune system. As
the model considered does not admit treatment and
includes the action of immune system cells, we expect
that these cells somehow combat the tumour cells,
thus enabling the cure, which justifies the possible
stability of the equilibrium point 𝐵 (case 𝑎 > 1).

(iii) Equilibrium 𝐶 = (1, 0, 0): the Jacobian matrix 𝐽 at 𝐶
has the eigenvalues

𝜆
1
= −1, 𝜆

2
= −0.9, 𝜆

3
= 1.55. (8)

As 𝜆
3
> 0, 𝐶 is a saddle point; therefore it is unstable,

which is expected from the biological standpoint,
since this equilibrium point represents the extinction
of healthy and immune cells, remaining only tumour
cells.

(iv) Equilibrium 𝐸 = (0.132503, 0, (0.867497/𝑏)): the
Jacobian matrix 𝐽 calculated at 𝐸 has the eigenvalues

𝜆
1
= 0.401245, 𝜆

2
= −0.6625 + 0.613𝑖,

𝜆
3
= −0.6625 − 0.613𝑖,

(9)

from which follows that 𝐸 is a saddle-focus. As 𝜆
1
>

0, the equilibrium 𝐸 is unstable, which could be
possible from the biological point of view, since this
equilibrium represents the extinction of healthy cells
and the persistence of tumour cells and immune
system cells.

(v) Equilibrium 𝐹 = (2(𝑎 − 1)/(5𝑎 − 2), 3/(5𝑎 − 2), 0): the
Jacobian matrix 𝐽 at this point has two eigenvalues of
the form

𝜆
1
=

𝛼 + √𝛽

(7𝑎 − 3) (5𝑎 − 2)
,

𝜆
2
=

𝛼 − √𝛽

(7𝑎 − 3) (5𝑎 − 2)

(10)

with

𝛼 = −7.5𝑎
2
+ 4.5𝑎 − 0.6,

𝛽 = 5525𝑎
4
− 11850𝑎

3
+ 9025𝑎

2
− 2880𝑎 + 324.

(11)

The third eigenvalue is given by

𝜆
3
=

0.1 (124 − 416𝑎 + 247𝑎
2
)

(8 − 34𝑎 + 35𝑎
2
)

. (12)

Recalling that 𝐹 is biologically admissible if 𝑎 > 1, we
have 𝜆

1
> 0. Hence 𝐹 is a saddle point.The instability

of 𝐹 represents the biological fact that, for the set of
parameters adopted, tumour cells and healthy cells
cannot coexist without the presence of immune cells;
that is, the tumour cells actually activate the immune
system cells.

(vi) Equilibrium 𝐺 = (0.132503, 0.668742, 0.1(8.675 −

6.687𝑎)/𝑏): the Jacobian matrix 𝐽 calculated at the
point 𝐺 has the following characteristic polynomial

𝜆
3
+ 𝑎
1
𝜆
2
+ 𝑎
2
𝜆 + 𝑎
3
= 0, (13)

where 𝑎
1
= 0.533748, 𝑎

2
= 0.433476−0.426092𝑎, and

𝑎
3
= 0.152597 − 0.117636𝑎. Hence the linear stability

of 𝐺 depends on the value of parameter 𝑎.

We observe that the equilibrium point 𝐺 plays an impor-
tant role in our analysis, since it represents the coexistence
of the three types of cells considered in the model. Thus a
detailed analysis of its stability will be presented here. The
following result will be used in such analysis (for a proof, see
[10]).

Lemma 1. Consider the cubic polynomial

𝑝 (𝑥) = 𝑥
3
+ 𝑎𝑥
2
+ 𝑏𝑥 + 𝑐, (14)

with real coefficients.

(a) Then (Routh-Hurwitz Criterion) 𝑝 is stable (i.e., all its
roots have negative real part) if and only if

𝑎, 𝑏, 𝑐 > 0, 𝑎𝑏 − 𝑐 > 0. (15)

(b) If 𝑐 > 0 and 𝑎𝑏 − 𝑐 < 0, then 𝑝 has two roots with
positive real part and one negative real root.

(c) If 𝑎, 𝑏, 𝑐 > 0 and 𝑎𝑏 − 𝑐 = 0, then 𝑝 has two complex
conjugate roots with zero real part and one negative real
root.

Applying the previous lemma to the polynomial (13),
we can obtain the equilibrium 𝐺 as a candidate for the
occurrence of a Hopf bifurcation in system (1). We will prove
that this bifurcation indeed occurs at the point 𝐺 in the next
section. Before doing this, let us remember some results about
the Hopf bifurcation theory.

2.2. Outline of the Hopf Bifurcation Theory and the Projection
Method. This section is a brief review of the projection
method described in [8] for the calculation of the first
Lyapunov coefficient associated with the well-known Hopf
bifurcation, denoted by 𝑙

1
.

Consider the differential equation

x = 𝑓 (x, 𝜁) , (16)

where x ∈ R3 and 𝜁 ∈ R3 are, respectively, vectors represent-
ing phase variables and control parameters. Assume that 𝑓 is
of class 𝐶∞ inR3 ×R3. Suppose that (16) has an equilibrium
point x = x

0
at 𝜁 = 𝜁

0
and, denoting the variable x − x

0
also

by x, write

𝐹 (x) = 𝑓 (x, 𝜁
0
) (17)
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as

𝐹 (x) = 𝐴x +
1

2
𝐵 (x, x) + 1

6
𝐶 (x, x, x)

+
1

24
𝐷 (x, x, x, x) + 1

120
𝐸 (x, x, x, x, x)

+
1

720
𝐾 (x, x, x, x, x, x)

+
1

5040
𝐿 (x, x, x, x, x, x, x) + 𝑂 (‖x‖8) ,

(18)

where 𝐴 = 𝑓x(0, 𝜁0) and, for 𝑖 = 1, 2, 3,

𝐵
𝑖
(x, y) =

3

∑

𝑗,𝑘=1

𝜕
2
𝐹
𝑖
(𝜉)

𝜕𝜉
𝑗
𝜕𝜉
𝑘

𝜉=0

𝑥
𝑗
𝑦
𝑘
,

𝐶
𝑖
(x, y, z) =

3

∑

𝑗,𝑘,𝑙=1

𝜕
3
𝐹
𝑖
(𝜉)

𝜕𝜉
𝑗
𝜕𝜉
𝑘
𝜕𝜉
𝑙

𝜉=0

𝑥
𝑗
𝑦
𝑘
𝑧
𝑙
,

(19)

and so on for𝐷
𝑖
, 𝐸
𝑖
,𝐾
𝑖
, and 𝐿

𝑖
.

Suppose that (x
0
, 𝜁
0
) is an equilibrium point of (16)

where the Jacobian matrix 𝐴 has a pair of purely imaginary
eigenvalues 𝜆

2,3
= ±𝑖𝜔

0
, 𝜔
0

> 0, and admits no other
eigenvalue with zero real part. Let 𝑇

𝑐 be the generalized
eigenspace of 𝐴 corresponding to 𝜆

2,3
. By this it is meant the

largest subspace invariant by 𝐴 on which the eigenvalues are
𝜆
2,3
.
Let 𝑝, 𝑞 ∈ C3 be vectors such that

𝐴𝑞 = 𝑖𝜔
0
𝑞, 𝐴

⊤
𝑝 = −𝑖𝜔

0
𝑝, ⟨𝑝, 𝑞⟩ =

3

∑

𝑖=1

𝑝
𝑖
𝑞
𝑖
= 1,

(20)

where𝐴⊤ is the transpose of the matrix𝐴. Any vector 𝑦 ∈ 𝑇
𝑐

can be represented as 𝑦 = 𝑤𝑞 + 𝑤𝑞, where 𝑤 = ⟨𝑝, 𝑦⟩ ∈

C. The two dimensional center manifold associated with the
eigenvalues 𝜆

2,3
= ±𝑖𝜔

0
can be parameterized by the variables

𝑤 and𝑤 by means of an immersion of the form x = 𝐻(𝑤,𝑤),
where𝐻 : C2 → R3 has a Taylor expansion of the form

𝐻(𝑤,𝑤) = 𝑤𝑞 + 𝑤𝑞 + ∑

2≤𝑗+𝑘≤7

1

𝑗!𝑘!
ℎ
𝑗𝑘
𝑤
𝑗
𝑤
𝑘
+ 𝑂 (|𝑤|

8
) ,

(21)

with ℎ
𝑗𝑘

∈ C3 and ℎ
𝑗𝑘

= ℎ
𝑘𝑗
. Substituting this expression into

(16) we obtain the following differential equation:

𝐻
𝑤
𝑤

+ 𝐻
𝑤
𝑤

= 𝐹 (𝐻 (𝑤,𝑤)) , (22)

where 𝐹 is given by (17). The complex vectors ℎ
𝑖𝑗

are
obtained solving the system of linear equations defined by the
coefficients of (22), taking into account the coefficients of 𝐹,
so that system (22), on the chart 𝑤 for a central manifold, is
written as follows:

𝑤

= 𝑖𝜔
0
𝑤 +

1

2
𝐺
21
𝑤 |𝑤|
2
+

1

12
𝐺
32
𝑤 |𝑤|
4

+
1

144
𝐺
43
𝑤 |𝑤|
6
+ 𝑂 (|𝑤|

8
) ,

(23)

with 𝐺
𝑗𝑘

∈ C.

The first Lyapunov coefficient 𝑙
1
is defined by

𝑙
1
=

1

2
Re𝐺
21
, (24)

where 𝐺
21

= ⟨𝑝,H
21
⟩ and H

21
= 𝐶(𝑞, 𝑞, 𝑞) + 𝐵(𝑞, ℎ

20
) +

2𝐵(𝑞, ℎ
11
).

AHopf point (x
0
, 𝜁
0
) of system (16) is an equilibriumpoint

where the Jacobian matrix 𝐴 has a pair of purely imaginary
eigenvalues 𝜆

2,3
= ±𝑖𝜔

0
, 𝜔
0

> 0 and the other eigenvalue
𝜆
1

̸= 0. From the Center Manifold Theorem, at a Hopf
point a two-dimensional center manifold is well-defined, and
it is invariant under the flow generated by (16) and can
be continued with arbitrary high class of differentiability to
nearby parameter values (see [8]).

A Hopf point is called transversal if the parameter
dependent complex eigenvalues cross the imaginary axis with
nonzero derivative. In a neighborhood of a transversal Hopf
point with 𝑙

1
̸= 0 the dynamic behaviour of the system (16),

reduced to the family of parameter-dependent continuations
of the center manifold, is orbitally topologically equivalent to
the following complex normal form:

𝑤

= (𝜂 + 𝑖𝜔)𝑤 + 𝑙

1
𝑤 |𝑤|
2
, (25)

where 𝑤 ∈ C and 𝜂, 𝜔, and 𝑙
1
are real functions having

derivatives of arbitrary higher order, which are continuations
of 0, 𝜔

0
, and the first Lyapunov coefficient at the Hopf point.

See [8] for details. When 𝑙
1

< 0 (𝑙
1

> 0) one family of
stable (unstable) periodic orbits can be found on this family
of manifolds, shrinking to an equilibrium point at the Hopf
point.

Based on these results, a numerical algorithm for calcu-
lating the first Lyapunov coefficient of a system �̇� = 𝑓(𝑥, 𝜇)

with 𝑥 ∈ R3 and 𝜇 ∈ R can be obtained. This algorithm has
been used to make the calculations of the next section.

3. Hopf Bifurcation at the Point 𝐺

By using the Hopf bifurcation theorem stated in [8] and
the projection method presented at the same reference and
synthesized in the previous section we prove the following
result.

Theorem 2. Consider system (1) with the following parameter
values: 𝑏 = 2, 𝑐 = 0.6, 𝑑 = 1.5, 𝑒 = 4.5,𝑓 = 1, 𝑔 = 0.2, and ℎ =

0.5. If 𝑎 < 0.717455, then the equilibrium point 𝐺 is a stable
focus of system (1). If 𝑎 ≅ 0.717455, 𝐺 is a weak stable focus
(or a vague attractor). On the other hand, for 𝑎 > 0.717455,
and close to this value, the equilibrium 𝐺 becomes an unstable
focus and a small stable limit cycle arises around 𝐺. In short,
a supercritical Hopf bifurcation occurs at the equilibrium point
𝐺 for the critical value 𝑎 = 0.717455.
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Proof. Considering the characteristic polynomial of the Jaco-
bianmatrix 𝐽 calculated at the point𝐺, given by (13), we have

(1) 𝑎
1
> 0;

(2) 𝑎
2
> 0 if 𝑎 < 1.017;

(3) 𝑎
3
> 0 if 𝑎 < 1.297;

(4) 𝑎
1
𝑎
2
− 𝑎
3
> 0 if 𝑎 < 0.717455.

The necessary condition for the point𝐺 being biologically
admissible is 𝑎 < 1.297; therefore 𝑎

3
is always positive. If 𝑎 <

0.717455, then 𝑎
2

> 0 and 𝑎
1
𝑎
2
− 𝑎
3

> 0; then, according
to the Routh-Hurwitz Criterion, 𝐺 is a stable focus. On the
other hand, if 𝑎 > 0.717455, then 𝑎

1
𝑎
2
− 𝑎
3
< 0 and 𝑎

3
> 0.

Hence, from item (b) of Lemma 1 it follows that (13) has two
roots with positive real part and a negative real root. Thus 𝐺
is an unstable focus, remaining unstable for 𝑎

2
> 0 or 𝑎

2
< 0.

If 𝑎 = 0.717455, then 𝑎
1
, 𝑎
2
, 𝑎
3

> 0 and 𝑎
1
𝑎
2
− 𝑎
3

=

0; hence from item (c) of Lemma 1, the polynomial (13)
has two complex conjugate roots with zero real part and a
negative real root, which is one of the conditions for the
occurrence of theHopf bifurcation. In order to guarantee that
the Hopf bifurcation actually occurs at the equilibrium𝐺 and
determine the stability of the limit cycle originated from it,
we have to calculate the first Lyapunov coefficient of system
(1) associated with this point. Using the projection method
presented in the previous section, we obtained the value for
the first Lyapunov coefficient of system (1) at the point 𝐺:

𝑙
1
= −1.854776782 ⋅ 10

8
. (26)

To finish the proof, the transversality condition remains
to be checked. Using software MAPLE, we calculate the
derivative of the Jacobian matrix 𝐴(𝑎) with respect to the
parameter 𝑎 applying the critical value 𝑎 = 0.717455 from
which we find

𝑑𝐴

𝑑𝑎
(0.717455) = (

−0.668742 −0.132503 0

0 0 0

0 0 0

) . (27)

Solving the equation
𝑑𝛾

𝑑𝑎
(0.717455) = Re⟨𝑝,

𝑑𝐴

𝑑𝑎
(0.717455) 𝑞⟩ , (28)

we obtain
𝑑𝛾

𝑑𝑎
(0.717455) = 9.18 ⋅ 10

7
̸= 0. (29)

This ends the proof of Theorem 2.

The numerical simulations presented in Figures 1 and 2
illustrate the results stated inTheorem 2.

The existence of a stable limit cycle implies the occurrence
of a periodic behaviour of system (1); that is, from the
biological point of view, healthy cells, tumour cells, and
immune system cells can coexist.

In the next section, by studying the continuation of this
limit cycle when the parameter 𝑎moves away from the critical
value 𝑎 = 0.717455, we numerically find a cascade of period-
doubling bifurcations initiated with the limit cycle created in
the Hopf bifurcation and leading to the creation of a chaotic
attractor, when 𝑎 tends to the limit value 𝑎 = 1.

4. Period-Doubling Bifurcations
and Chaotic Dynamics

For 𝑎 close to and greater than the critical value 𝑎 = 0.717455,
for which the Hopf bifurcation at the equilibrium 𝐺 occurs,
we have a stable limit cycle of period 𝑇 (see Figure 3);
increasing the value of 𝑎, we numerically found that this limit
cycle splits into a period 2𝑇 periodic orbit (see Figure 4).
When the value of 𝑎 increases a bit more, a 4𝑇 periodic orbit
is observed (see Figure 5); increasing further the value of 𝑎,
a series of 𝑛 duplications and a limit cycle of period 2

𝑛
𝑇

are observed, until a chaotic attractor is formed for 𝑎 ≅ 1

(see Figure 6(a)). This type of bifurcation is called a period-
doubling or “flip bifurcation.” System (1) presents therefore an
infinite cascade of flip bifurcations with a finite accumulation
point; the associated dynamics at this limit point is chaotic;
that is, the cascade of period-doubling bifurcations is a
continuous transition from periodic solutions to chaos (see
Figures 3–6).

Figure 6(b) shows the sensitivity to initial conditions of
two solutions of system (1) with very close initial conditions,
confirming the chaotic behaviour of the system, for these
parameter values.

A bifurcation diagram confirming the occurrence of the
period-doubling cascade mentioned above, culminating in
chaos, is shown in Figure 7.

4.1.The Elimination of Tumour and Immune System Cells after
the Chaotic Dynamics. The chaotic dynamics occurs when
the value of 𝑎 is approximately 1. In the adimensional system
(1) the parameter 𝑎, which represents the interaction between
tumour cells and healthy cells, can be obtained in terms of the
parameters in the original model (see [6]), given by

𝑑𝑇

𝑑�̃�

= 𝑟
1
𝑇(1 −

𝑇

𝑘
1

) − 𝑎𝑇𝐻 − �̃�𝑇𝐸,

𝑑𝐻

𝑑�̃�

= 𝑐𝐻(1 −
𝐻

𝑘
2

) − 𝑑𝑇𝐻,

𝑑𝐸

𝑑�̃�

=
𝑒𝑇𝐸

𝑇 + 𝑓

− 𝑔𝑇𝐸 − ℎ̃𝐸,

(30)

in the following way:

𝑎 =
𝑎𝑘
2

𝑟
1

, (31)

from which we have

𝑟
1
=

𝑎𝑘
2

𝑎
. (32)

Thus, for small values of parameter 𝑎 we have large values of
𝑟
1
, since 𝑘

2
is the largest parameter of the original system,

because it represents the carrying capacity of healthy cells.
Then the value of 𝑟

1
, which represents the growth rate of

tumour cells, is large when 𝑎 ≤ 1. This explains the fact
that the tumour-free equilibrium point 𝐵 = (0, 1, 0) is
unstable, since, as the growth rate of the tumour cells is
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Figure 2: Phase portrait of system (1) near the equilibrium𝐺, with initial conditions: (0.1325, 0.66, 0.19). (a)𝐺 is an unstable focus for 𝑎 = 0.8.
Integration time: [50, 500]. (b) Limit cycle createdwith theHopf bifurcation that occurs when 𝑎 passes through the critical value 𝑎 = 0.717455.
Integration time: [450, 500].

large, the tumour cells are increasing when 𝑎 ≤ 1. On the
other hand, the effector cells of the immune system also
grow because their growth is proportional to the growth of
tumour cells; then the number of effector cells is also large
when 𝑎 ≤ 1. Thus, we assume that this growth of tumour
cells and effector cells, along with the interactions of healthy
cells, results in a dispute whose apex occurs for 𝑎 = 1. This
analysis suggests that the apex of the battle between cancer
cells, healthy cells, and immune system cells is represented
by the chaotic behaviour of the system.

In turn, for 𝑎 > 1, the value of 𝑟
1
becomes smaller,

so the number of tumour cells decreases, which implies in

a decreasing in the number of effector cells of the immune
system, since its variation rate is directly proportional to the
number of tumour cells (see the last equation in (30)). In
this way, it is possible that the interactions with the immune
system eliminate the tumour cells. Thus, if there are no more
tumour cells, there will be no immune cells, leaving only
healthy cells, whichmakes the tumour-free equilibriumpoint
stable, allowing a possible cure of the disease for the set of
parameters considered in this analysis.

In Figure 8 we present some numerical simulations of the
solutions of system (1) with 𝑎 > 1, showing the stability of
the equilibrium point 𝐵 = (0, 1, 0), illustrating the fact that,
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for the set of parameters considered here, only healthy cells
survive after the battle between tumour cells and immune
cells.

5. Concluding Remarks

In this work, using the concepts of qualitative theory,
bifurcations, and chaos in dynamical systems, we analyze

a three-dimensional cancer model, describing the interac-
tions among healthy cells, tumour cells, and immune system
cells. The analyzed model was proposed in [6], where the
existence of chaotic dynamics for a fixed set of parameter
values was proved. Here we performed a bifurcation analysis
by varying one of the parameters involved in the system,
showing that a Hopf bifurcation occurs, giving rise to a stable
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limit cycle, which represents the possibility of coexistence of
tumour cells, immune cells, and healthy cells. Analyzing the
continuation of this limit cycle numerically, we find a cascade
of period-doubling bifurcations, leading to the creation of a
chaotic attractor, which is exactly the one shown to exist in
[6].

In a first glance one could argue that, from the biological
point of view, the chaotic dynamics could be related to
the process of uncontrolled growth of tumour cells. However,
we surprisingly observed that, for the set of parameter values
considered the period-doubling bifurcations which occur to
the cancer cells lead to the growth of effector cells, since
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their growth is proportional to the growth of tumour cells.
In this way, it seems that, for the particular values of the
parameter considered here, the growth of both types of cells
occurs simultaneously and is represented mathematically by
the period-doubling cascade, which leads to the creation of a
chaotic attractor. Furthermore, supposing the increasing val-
ues of the parameter 𝑎, then we observe that after the chaotic
dynamics (i.e., for 𝑎 > 1) both tumour cells and immune

system cells vanish and the healthy cells tend to their carrying
capacity. It indicates that in the studied model the chaotic
dynamics could be considered as a kind ofmechanism related
to a possible cure of the cancer, through the elimination
of tumour cells, at least for the set of parameter values
considered.This situation is obviously very optimistic but it is
mathematically possible in the studied model. Of course, the
model could be studied with other parameter values, in order
to detect other dynamical behaviour, which could represent
biological aspects different from the one presented here.
Indeed, after the acceptance of this paper for publication, we
knew about the paper by Lettelier et al. [11] concerning the
cancer model studied in this note, which can be of interest of
the readers.
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