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An (𝑎, 𝑠)-vertex-antimagic edge labeling (or an (𝑎, 𝑠)-VAE labeling, for short) of 𝐺 is a bijective mapping from the edge set 𝐸(𝐺) of
a graph 𝐺 to the set of integers 1, 2, . . . , |𝐸(𝐺)| with the property that the vertex-weights form an arithmetic sequence starting from
𝑎 and having common difference 𝑠, where 𝑎 and 𝑠 are two positive integers, and the vertex-weight is the sum of the labels of all
edges incident to the vertex. A graph is called (𝑎, 𝑠)-antimagic if it admits an (𝑎, 𝑠)-VAE labeling. In this paper, we investigate the
existence of (𝑎, 1)-VAE labeling for disconnected 3-regular graphs. Also, we define and study a new concept (𝑎, 𝑠)-vertex-antimagic
edge deficiency, as an extension of (𝑎, 𝑠)-VAE labeling, for measuring how close a graph is away from being an (𝑎, 𝑠)-antimagic
graph. Furthermore, the (𝑎, 1)-VAE deficiency of Hamiltonian regular graphs of even degree is completely determined. More open
problems are mentioned in the concluding remarks.

1. Background and Introduction

All graphs in this paper are finite simple, undirected, and
possibly disconnected, but without any isolated vertex or any
isolated edge. For graph theoretic notations, we follow [1].
Over the past fewdecades,many kinds of graph labelings have
been studied intensively, and an excellent survey of graph
labeling can be found in Gallian’s paper [2].

Hartsfield and Ringel in [3] introduced the concept of
an antimagic labeling. In their terminology, a (𝑝, 𝑞)-graph 𝐺
with 𝑝 vertices and 𝑞 edges is called antimagic if its edges are
labeled with labels 1, 2, . . . , 𝑞 in such a way that all vertex-
weights are pairwise distinct, where a vertex-weight of vertex
V is the sum of labels of all edges incident with V. Hartsfield
and Ringel [3] pointed out that antimagic graphs include
paths𝑃

𝑛
, 𝑛 ≥ 3, cycles, wheels, and complete graphs𝐾

𝑛
, 𝑛 ≥ 3.

They conjecture that every connected graph, except 𝐾2, is
antimagic. Alon et al. [4] used several probabilistic tools and
some techniques from analytic number theory to show that
this conjecture is true for all graphs having minimum degree
Ω(log|𝑉(𝐺)|).

In 1993, Bodendiek and Walther [5] investigated
antimagic labelings with certain restriction placed on the

vertex-weights. They defined the concept of an (𝑎, 𝑠)-vertex-
antimagic edge labeling as follows.

Definition 1. An (𝑎, 𝑠)-vertex-antimagic edge labeling (or an
(𝑎, 𝑠)-VAE labeling for short) of a (𝑝, 𝑞)-graph 𝐺 is a bijective
mapping 𝑓 from the edge set 𝐸(𝐺) of a graph 𝐺 to the
set of integers 1, 2, . . . , 𝑞 with the property that the vertex-
weights form an arithmetic sequence starting from 𝑎 and
having common difference 𝑠, where 𝑎 and 𝑠 are two positive
integers. The vertex-weight 𝑤𝑡

𝑓
(𝑢) of the vertex 𝑢 is the sum

of the labels of all edges incident with the vertex 𝑢 under the
mapping 𝑓. A graph is called (𝑎, 𝑠)-antimagic if it admits an
(𝑎, 𝑠)-VAE labeling.

Bodendiek andWalther in [6, 7] proved that the Herschel
graph is not (𝑎, 𝑠)-VAE and obtained both positive and
negative results about (𝑎, 𝑠)-VAE labelings for various cases
of graphs called parachutes 𝑃

𝛼,𝛽
. They investigated (𝑎, 𝑠)-VAE

labelings for paths, cycles, and complete graphs in [8]. Char-
acterization of all (𝑎, 𝑠)-antimagic graphs of the prism 𝐶

𝑛
◻𝑃2

when 𝑛 is even is given in [9]. In [10, 11] the (𝑎, 𝑠)-VAE label-
ings for antiprisms have been investigated. It is proved in [12]
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that the generalized Petersen graph 𝑃(𝑛,𝑚) has an (𝑎, 1)-VAE
labeling if and only if 𝑛 is even, 𝑛 ≥ 4, 1 ≤ 𝑚 ≤ 𝑛/2 − 1, and
𝑎 = (7𝑛 + 4)/2. Nicholas et al. [13] obtained several results
about (𝑎, 𝑑)-VAE labelings for caterpillars, unicyclic graphs,
and complete bipartite graphs.

On the other hand, in 2002, MacDougall et al. [14]
introduced the concept of vertex magic total labeling as
follows. If𝐺 is a finite simple undirected graphwith𝑝 vertices
and 𝑞 edges, then a vertex magic total labeling is a bijection
𝑓 from 𝑉(𝐺) ∪ 𝐸(𝐺) to the integers 1, 2, . . . , 𝑝 + 𝑞 with
the property that, for every 𝑢 ∈ 𝑉(𝐺), the sum 𝑓(𝑢) +

∑
𝑢V∈𝐸(𝐺) 𝑓(𝑢V) is a constant. Note that, for regular graphs,

the vertex magic total labeling is equivalent to the (𝑎, 1)-
VAE labeling, while the vertices (edges) are assigned the
smallest labels. More recently, Wang and Zhang [15] verified
the existence of (𝑎, 1)-VAE labeling for particular classes of
3-regular graph 𝐻, where 𝐻 contains a 1-factor and a 2-
factor which consists of two 2-regular subgraphs with equal
size. These results generalize and contain previous known
examples such as Generalized Petersen Graphs.

The following theorem was proved in [16] by Ivančo and
Semaničová, which guarantees the existence of the (𝑎, 1)-
VAE-ness by adding an arbitrary even factor to an arbitrary
(𝑎, 1)-antimagic graph.

Theorem 2 (see [16]). Let the graph 𝐺 admit an (𝑎, 1)-VAE
labeling, and let𝐻 be any 2-factor over𝑉(𝐺). Then,𝐺∪𝐻 still
admits an (𝑏, 1)-VAE labeling for some 𝑏.

Therefore in order to study the (𝑎, 1)-antimagicness of a
general regular graph, based upon Theorem 2 and the fact,
pointed out by Petersen [17], that any regular graph of even
degree has a 2-factorization, it is natural to explore the (𝑎, 1)-
antimagicness of 2-regular graphs and 3-regular graphs,
respectively. In this paper, we in particular investigate the
existence of (𝑎, 1)-VAE labeling for disconnected 3-regular
graphs and also define a new concept (𝑎, 1)-VAE deficiency,
as an extension of (𝑎, 1)-VAE labeling, for studying those
(regular) graphs not admitting an (𝑎, 1)-VAE labeling. The
(𝑎, 1)-VAE deficiency is a parameter to measure how close
a graph is from being (𝑎, 1)-antimagic. We notice that the
method employed here is also valid for those graphs with
multiple edges and loops. More examples and open problems
will be provided in Section 5.

2. Preliminary Results

Suppose 𝐺 is a (𝑝, 𝑞)-graph with 𝑝 vertices and 𝑞 edges. The
following are necessary conditions for graphs to admit an
(𝑎, 𝑠)-VAE labeling and (𝑎, 1)-VAE labeling in particular.

Lemma 3. If a (𝑝, 𝑞)-graph is (𝑎, 𝑠)-antimagic, then 𝑞(𝑞+1) =
𝑝𝑎 + 𝑠((𝑝 − 1)𝑝/2).

Proof. Consider that the total sum of all vertex-weights in
(𝑝, 𝑞)-graph is

2 (1+ 2+ ⋅ ⋅ ⋅ + 𝑞) = 𝑎 + (𝑎 + 𝑠) + ⋅ ⋅ ⋅ + (𝑎 + 𝑠 (𝑝 − 1)) (1)
by two-way counting, and it implies that 𝑞(𝑞+1) = 𝑝𝑎+𝑠((𝑝−
1)𝑝/2).

By Lemma 3 and for 𝑠 = 1, in case 𝑞 = 𝑝, then 𝑎 = (𝑝 +

3)/2. Note that 𝑎 is a positive integer, which implies that 𝑝 is
odd. Furthermore, in the case 𝑞 = 𝑝−1, one has 𝑎 = (𝑝−1)/2,
which implies that 𝑝 is odd.Therefore, we have the following
properties for (𝑎, 1)-VAE-ness.

Corollary 4. Let 𝐺 be a (𝑝, 𝑝 − 1)-graph. If 𝐺 is (𝑎, 1)-
antimagic, then 𝑝 is odd.

Corollary 5. Trees of even order are not (𝑎, 1)-antimagic. In
particular, a path of even order is not (𝑎, 1)-antimagic.

Corollary 6. Let 𝐺 be a (𝑝, 𝑝)-graph. If 𝐺 is (𝑎, 1)-antimagic,
then 𝑝 is odd.

Corollary 7. The even cycle 𝐶2𝑛 is not (𝑎, 1)-antimagic.

Proposition 8. Let 𝐺 be an 𝑟-regular graph of order 𝑝 and let
𝐺 admit an (𝑎, 1)-VAE labeling. Then, we have the following:

(1) If 𝑟 is odd, then 𝑝 ≡ 0 (mod 4).
(2) If 𝑟 is even, then 𝑝 ≡ 1 (mod 2).

Proof. Let 𝐺 have 𝑞 edges.Then, by hand-shaking lemma, we
have that 𝑝𝑟 = 2𝑞. Since 𝐺 admits an (𝑎, 1)-VAE labeling, by
Lemma 3, we have 𝑞(𝑞 + 1) = 𝑝𝑎 + (𝑝 − 1)𝑝/2. Combining
these equations, one has that 𝑎 = (1+𝑟𝑝/2)(𝑟/2)−(𝑝−1)/2 =
(2𝑟 + 𝑟2𝑝 − 2𝑝 + 2)/4, which must be an integer. Therefore, it
follows that if 𝑟 is odd, then 𝑝 ≡ 0 (mod 4), and if 𝑟 is even,
then 𝑝 ≡ 1 (mod 2).

3. (𝑎, 1)-VAE for 3-Regular Graphs

In this section, we study the (𝑎, 1)-VAE labeling of disjoint
union of 3-regular graphs. The main result is the following.

Theorem 9. Let 𝐺 be an (𝑎, 1)-antimagic 3-regular graph
having a perfect matching.Then, the disjoint union of arbitrary
number of copies of 𝐺, that is, 𝑚𝐺, 𝑚 ≥ 1, is also a (𝑏, 1)-
antimagic graph.

Proof. Let 𝐺 be a 3-regular graph with 𝑝 vertices having a
perfect matching.

Suppose that 𝐺 admits an (𝑎, 1)-VAE labeling 𝑓 such that

𝑓 : 𝐸 (𝐺) 󳨀→ {1, 2, . . . ,
3𝑝
2
} ,

{𝑤𝑡
𝑓
(V) = ∑
𝑢V∈𝐸(𝐺)

𝑓 (𝑢V) : V ∈𝑉 (𝐺)}

= {𝑎, 𝑎 + 1, . . . , 𝑎 + 𝑝− 1} .

(2)

As𝐺 contains a perfect matching, we can divide the edges
of 𝐺 into two subsets 𝐸1(𝐺) and 𝐸2(𝐺), such that

𝐸1 (𝐺) ∪𝐸2 (𝐺) = 𝐸 (𝐺) ,

𝐸1 (𝐺) ∩𝐸2 (𝐺) = 0,
(3)

where the subset 𝐸1(𝐺) consists of all edges belonging to the
perfect matching.
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For every vertex V in 𝐺, we denote by symbol V
𝑖
the

corresponding vertex in the 𝑖th copy of𝐺 in𝑚𝐺. Analogously,
let 𝑒
𝑖
= 𝑢
𝑖
V
𝑖
denote the corresponding edge in the 𝑖th copy of

𝐺 in𝑚𝐺.
Define the labeling𝑓 for the edges of𝑚𝐺 in the following

way:

𝑔 (𝑒
𝑖
)

=
{

{

{

𝑚(𝑓 (𝑒) − 1) + 𝑖, if 𝑒 ∈ 𝐸2 (𝐺) , 𝑖 = 1, 2, . . . 𝑚,

𝑚𝑓 (𝑒) + 1 − 𝑖, if 𝑒 ∈ 𝐸1 (𝐺) , 𝑖 = 1, 2, . . . 𝑚.

(4)

Let 𝑡 ∈ {1, 2, . . . , 3𝑝/2}. We consider two cases.

Case 1. If the number 𝑡 is assigned by the labeling 𝑓 to an
edge from 𝐸2(𝐺), then the corresponding edges in the copies
in𝑚𝐺 will receive labels under the labeling 𝑔:

𝑚(𝑡 − 1) + 1, 𝑚 (𝑡 − 1) + 2, ⋅ ⋅ ⋅ 𝑚 (𝑡 − 1) + 𝑖, ⋅ ⋅ ⋅ 𝑚𝑡.

in 𝐺1 in 𝐺2 ⋅ ⋅ ⋅ in 𝐺
𝑖

⋅ ⋅ ⋅ in 𝐺
𝑚
.

(5)

Case 2. If the number 𝑡 is assigned by the labeling 𝑓 to an
edge from 𝐸1(𝐺), then the corresponding edges in the copies
in𝑚𝐺 will have the following labels under the labeling 𝑔:

𝑚𝑡, 𝑚𝑡 − 1, ⋅ ⋅ ⋅ 𝑚𝑡 + 1 − 𝑖, ⋅ ⋅ ⋅ 𝑚 (𝑡 − 1) + 1.
in 𝐺1 in 𝐺2 ⋅ ⋅ ⋅ in 𝐺

𝑖
⋅ ⋅ ⋅ in 𝐺

𝑚
.

(6)

It is easy to see that the edge labels in 𝑚𝐺 are not
overlapping; thus, the labeling 𝑔 is a bijective function which

assigns the integers {1, 2, . . . , 3𝑚𝑝/2} to the edges of𝑚𝐺; thus,
𝑔 is an edge labeling.

As 𝐺 is a 3-regular graph with a perfect matching, then
every vertex in 𝐺 is incident to exactly one edge from 𝐸1(𝐺)
and exactly two edges from 𝐸2(𝐺). For a given vertex V, let
𝑒1V,1, 𝑒

2
V,2, 𝑒

2
V,3 be the three edges incident to the vertex V, where

𝑒𝑗 means that the edge belongs to the subset 𝐸
𝑗
(𝐺), 𝑗 = 1, 2.

For the vertex-weight of V
𝑖
∈ 𝑉(𝐺

𝑖
), we have

𝑤𝑡
𝑔
(V
𝑖
) = 𝑔 (𝑒

1
V,1𝑖) + 𝑔 (𝑒

2
V,2𝑖) + 𝑔 (𝑒

2
V,3𝑖)

= (𝑚𝑓 (𝑒
1
V,1) + 1− 𝑖) + (𝑚 (𝑓 (𝑒

2
V,2) − 1) + 𝑖)

+ (𝑚 (𝑓 (𝑒
2
V,3) − 1) + 𝑖)

= 𝑚 (𝑓 (𝑒
1
V,1) +𝑓 (𝑒

2
V,2) +𝑓 (𝑒

2
V,3)) − 2𝑚+ 1

+ 𝑖 = 𝑚𝑤𝑡
𝑓
(V) − 2𝑚+ 1+ 𝑖

= 𝑚 (𝑤𝑡
𝑓
(V) − 2) + 1+ 𝑖.

(7)

As

{𝑤𝑡
𝑓
(V) = ∑
𝑢V∈𝐸(𝐺)

𝑓 (𝑢V) : V ∈𝑉 (𝐺)}

= {𝑎, 𝑎 + 1, . . . , 𝑎 + 𝑝− 1} ,

(8)

we get that the vertex-weights under the labeling 𝑔 in the
components are

𝐺1: 𝑚(𝑎 − 2) + 2, 𝑚 (𝑎 − 1) + 2, ⋅ ⋅ ⋅ 𝑚 (𝑎 + 𝑝 − 3) + 2,

𝐺2: 𝑚(𝑎 − 2) + 3, 𝑚 (𝑎 − 1) + 3, ⋅ ⋅ ⋅ 𝑚 (𝑎 + 𝑝 − 3) + 3,

...
...

...
...

𝐺
𝑖
: 𝑚(𝑎 − 2) + 1 + 𝑖, 𝑚 (𝑎 − 1) + 1 + 𝑖, ⋅ ⋅ ⋅ 𝑚 (𝑎 + 𝑝 − 3) + 1 + 𝑖,
...

...
...

...

𝐺
𝑚
: 𝑚(𝑎 − 1) + 1, 𝑚𝑎 + 1, ⋅ ⋅ ⋅ 𝑚 (𝑎 + 𝑝 − 2) + 1.

(9)

The reader can easily verify that the vertex-weights are
distinct and consecutive:

{𝑤𝑡
𝑔
(V) : V ∈𝑉 (𝑚𝐺)} = {𝑚 (𝑎 − 2) + 2, 𝑚 (𝑎 − 2)

+ 3, . . . , 𝑚 (𝑎 +𝑝− 2) + 1} .
(10)

This means that𝑚𝐺 has a (𝑚(𝑎 − 2) + 2, 1)-VAE labeling.

It is possible to extend the result from the previous theo-
rem also for the disjoint union of arbitrary 3-regular graphs
having a perfect matching that satisfy certain additional
conditions.

We will follow the notation used in the proof of
Theorem 9.

Theorem 10. Let 𝐺
𝑖
be an (𝑎, 1)-antimagic 3-regular graph of

order 𝑝 having a perfect matching, 𝑖 = 1, 2, . . . , 𝑚. Let the set
of all edge labels belonging to the perfect matching under the
(𝑎, 1)-VAE labeling 𝑓

𝑖
of a graph 𝐺

𝑖
be the same for every 𝑖,

𝑖 = 1, 2, . . . , 𝑚.
Then, the disjoint union ⋃𝑚

𝑖=1 𝐺𝑖 is also a (𝑏, 1)-antimagic
graph.

Proof. Let 𝐺
𝑖
, 𝑖 = 1, 2, . . . , 𝑚, be a 3-regular graph of order 𝑝

having a perfect matching, 𝑖 = 1, 2, . . . , 𝑚, and note that 𝐺
𝑖
is

not necessarily isomorphic to 𝐺
𝑗
for 𝑖 ̸= 𝑗.
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For each 𝐺
𝑖
, 𝑖 = 1, 2, . . . , 𝑚, there exists an (𝑎, 1)-VAE

labeling 𝑓
𝑖
such that the set of all edge labels belonging to the

perfect matching under the (𝑎, 1)-VAE labeling 𝑓
𝑖
of a graph

𝐺
𝑖
is the same for every graph 𝐺

𝑖
. This means that

𝑓
𝑖
: 𝐸1 (𝐺𝑖) 󳨀→ {𝑡1, 𝑡2, . . . , 𝑡𝑝/2}

𝐸2 (𝐺𝑖) 󳨀→
{1, 2, . . . , 3𝑝/2}
{𝑡1, 𝑡2, . . . , 𝑡𝑝/2}

,

{

{

{

𝑤𝑡
𝑓𝑖
(V) = ∑
𝑢V∈𝐸(𝐺𝑖)

𝑓 (𝑢V) : V ∈𝑉 (𝐺
𝑖
)
}

}

}

= {𝑎, 𝑎 + 1, . . . , 𝑎 + 𝑝− 1} .

(11)

We define the labeling 𝑓 for the edges of ⋃𝑚
𝑖=1 𝐺𝑖 in the

following way:

𝑓 (𝑒) =
{

{

{

𝑚(𝑓
𝑖
(𝑒) − 1) + 𝑖, if 𝑒 ∈ 𝐸2 (𝐺𝑖) ,

𝑚𝑓
𝑖
(𝑒) + 1 − 𝑖, if 𝑒 ∈ 𝐸1 (𝐺𝑖) .

(12)

Let 𝑡 ∈ {1, 2, . . . , 3𝑝/2}. We consider two cases.

Case 1. If the number 𝑡 is assigned by the labeling 𝑓
𝑖
to an

edge from𝐸2(𝐺𝑖), then the corresponding edge in⋃
𝑚

𝑖=1 𝐺𝑖 will
receive the following label under the labeling 𝑓:

𝑚(𝑡 − 1) + 1, 𝑚 (𝑡 − 1) + 2, ⋅ ⋅ ⋅ 𝑚 (𝑡 − 1) + 𝑖, ⋅ ⋅ ⋅ 𝑚𝑡.

in 𝐺1 in 𝐺2 ⋅ ⋅ ⋅ in 𝐺
𝑖

⋅ ⋅ ⋅ in 𝐺
𝑚
.

(13)

Case 2. If the number 𝑡 is assigned by the labeling 𝑓
𝑖
to an

edge from𝐸1(𝐺𝑖), then the corresponding edge in⋃
𝑚

𝑖=1 𝐺𝑖 will
receive this label under the labeling 𝑓:

𝑚𝑡, 𝑚𝑡 − 1, ⋅ ⋅ ⋅ 𝑚𝑡 + 1 − 𝑖, ⋅ ⋅ ⋅ 𝑚 (𝑡 − 1) + 1.
in 𝐺1 in 𝐺2 ⋅ ⋅ ⋅ in 𝐺

𝑖
⋅ ⋅ ⋅ in 𝐺

𝑚
.

(14)

It is easy to see that the edge labels in ⋃
𝑚

𝑖=1 𝐺𝑖 are not
overlapping; thus, the labeling 𝑓 is a bijective function which
assigns the integer {1, 2, . . . , 3𝑚𝑝/2} to the edges of ⋃𝑚

𝑖=1 𝐺𝑖;
thus, 𝑓 is an edge labeling.

Moreover, analogously as in the proof of Theorem 9, we
get that the vertex-weights form an arithmetic sequence with
a difference 1. This produces the desired result.

4. (𝑎, 1)-VAE Deficiency of
Even Regular Graphs

We start this section by defining a new concept (𝑎, 𝑠)-vertex-
antimagic edge deficiency for a (𝑝, 𝑞)-graph𝐺 as follows. It is
a parameter to study furthermore those graphs which do not
admit any (𝑎, 𝑠)-VAE labeling and to measure how close they
are away from being an (𝑎, 𝑠)-antimagic graph.

Definition 11. The (𝑎, 𝑠)-vertex-antimagic edge deficiency (or
(𝑎, 𝑠)-VAE deficiency for short) is defined as the min 𝑘 such
that the edge labeling 𝑓 : 𝐸(𝐺) → {1, 2, . . . , 𝑞 + 𝑘} is (𝑎, 𝑠)-
VAE. The (𝑎, 𝑠)-VAE deficiency of the graph 𝐺 is denoted by

𝑑
𝑠
(𝐺). Note that𝑑

𝑠
(𝐺) = 0 if𝐺 is (𝑎, 𝑠)-antimagic and𝑑

𝑠
(𝐺) =

+∞ if no such 𝑘 exists for the graph 𝐺 to be (𝑎, 𝑠)-antimagic.

In the following, we determine completely the (𝑎, 1)-VAE
deficiency of paths and cycles. Also, as a corollary, the (𝑎, 1)-
VAE deficiency of Hamiltonian regular graphs of even degree
is obtained. First, we have the following two lemmas giving
(𝑎, 1)-VAE labelings for odd cycles and paths; see also [8].

Lemma 12. The cycle 𝐶2𝑛+1 is (𝑎, 1)-antimagic for 𝑛 ≥ 1.

Proof. Given a notation for 𝐶2𝑛+1 with 𝑉(𝐶2𝑛+1) = {V
𝑖
: 𝑖 =

1, 2, . . . , 2𝑛 + 1} and 𝐸(𝐶2𝑛+1) = {V
𝑖
V
𝑖+1 : 𝑖 = 1, 2, . . . , 2𝑛} ∪

{V1V2𝑛+1}, we give an edge labeling 𝑓 for 𝐸(𝐶2𝑛+1) with

𝑓 (V1V2𝑛+1) = 𝑛 + 1,

𝑓 (V
𝑖
V
𝑖+1) =

{{

{{

{

𝑖 + 1
2

, if 𝑖 = 1, 3, . . . , 2𝑛 − 1,

𝑛 + 1 + 𝑖

2
, if 𝑖 = 2, 4, . . . , 2𝑛

(15)

and it implies the vertex-weight at V
𝑖
as follows:

𝑤𝑡
𝑓
(V
𝑖
) = 𝑛 + 1+ 𝑖, for 𝑖 = 1, 2, . . . , 2𝑛 + 1. (16)

Hence, 𝐶2𝑛+1 is (𝑛 + 2, 1)-antimagic.

Lemma 13. The path 𝑃2𝑛+1 is (𝑎, 1)-antimagic for 𝑛 ≥ 1.

Proof. Given a notation for 𝑃2𝑛+1 with 𝑉(𝑃2𝑛+1) = {V
𝑖
: 𝑖 =

1, 2, . . . , 2𝑛 + 1} and 𝐸(𝑃2𝑛+1) = {V
𝑖
V
𝑖+1 : 𝑖 = 1, 2, . . . , 2𝑛}, we

give an edge labeling 𝑓 for 𝐸(𝑃2𝑛+1) such that

𝑓 (V
𝑖
V
𝑖+1) =

{{

{{

{

𝑖

2
, if 𝑖 = 2, 4, . . . , 2𝑛,

𝑛 +
𝑖 + 1
2

, if 𝑖 = 1, 3, . . . , 2𝑛 − 1
(17)

and it implies the vertex-weight at V
𝑖
as follows:

𝑤𝑡
𝑓
(V
𝑖
) =

{

{

{

𝑛 + 𝑖, if 𝑖 = 1, 2, . . . , 2𝑛,

𝑛, if 𝑖 = 2𝑛 + 1.
(18)

Hence, 𝑃2𝑛+1 is (𝑛, 1)-antimagic.

Here, we have a general observation that every graph 𝐺
of order 𝑝, where 𝑝 ≡ 2 (mod4), can not be made (𝑎, 1)-
antimagic.

Lemma 14. Let 𝐺 be a graph of order 𝑝, where 𝑝 ≡ 2 (mod
4). Then, 𝑑1(𝐺) = +∞.

Proof. Let𝐺have 𝑞 edges and𝑝 = 4𝑘+2 vertices. Assign labels
𝑒1, 𝑒2, . . . , 𝑒𝑞 to edges of graph 𝐺 and suppose the existence
of an (𝑎, 1)-VAE labeling with the associated vertex-weights
𝑎, 𝑎+1, . . . , 𝑎+(4𝑘+1). Consider the sumof all vertex-weights:

𝑎 + (𝑎 + 1) + ⋅ ⋅ ⋅ + 𝑎 + (4𝑘 + 1)

= (4𝑘 + 2) 𝑎 + (4𝑘 + 1) (2𝑘 + 1)
(19)
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which is also equal to 2(𝑒1 +𝑒2 + ⋅ ⋅ ⋅ + 𝑒𝑞). Note that 2(𝑒1 +𝑒2 +
⋅ ⋅ ⋅ + 𝑒

𝑞
) and (4𝑘 + 2)𝑎 are both even, but (4𝑘 + 1)(2𝑘 + 1) is

odd, a contradiction.

In the following lemmas, we are dealing with the (𝑎, 1)-
VAE deficiency of cycles and paths.

Lemma 15. Consider 𝑑1(𝐶4𝑛) = 1 for 𝑛 ≥ 1.

Proof. First, we find the missing value 𝑥 in the set of edge
labels {1, 2, . . . , 4𝑛}. Note that

2 (1+ 2+ ⋅ ⋅ ⋅ + (4𝑛 + 1) − 𝑥)

= 𝑎 + (𝑎 + 1) + ⋅ ⋅ ⋅ + (𝑎 + 4𝑛 − 1)
(20)

and it implies 𝑎 = (4𝑛2+7𝑛+1−𝑥)/2𝑛 = 2𝑛+3+(𝑛+1−𝑥)/2𝑛 ∈
Z and thus (𝑛+1−𝑥)/2𝑛 ∈ Z. Suppose that (𝑛+1−𝑥)/2𝑛 = 𝑡,
and then one has −𝑛 ≤ −2𝑛𝑡 ≤ 3𝑛 − 1 since 1 ≤ 𝑥 ≤ 4𝑛.
Therefore, 𝑡 must be 0 or −1, and it implies that the missing
value 𝑥must be 𝑛+1 or 3𝑛+1.We show that for bothmissing
values there exist (𝑎, 1)-VAE labelings.

Let the vertex set and the edge set of𝐶4𝑛 be𝑉(𝐶4𝑛) = {V𝑖 :
𝑖 = 1, 2, . . . , 4𝑛} and 𝐸(𝐶4𝑛) = {V

𝑖
V
𝑖+1 : 𝑖 = 1, 2, . . . , 4𝑛 − 1} ∪

{V1V4𝑛}.

Case 1. If themissing value is 𝑛+1, then the (𝑎, 1)-VAE labeling
can be defined as follows:

𝑓1 (V1V4𝑛) = 4𝑛 + 1,

𝑓1 (V𝑖V𝑖+1)

=

{{{{{{{{

{{{{{{{{

{

𝑖 + 1
2

, if 𝑖 = 1, 3, . . . , 2𝑛 − 1,

𝑖 + 3
2

, if 𝑖 = 2𝑛 + 1, 2𝑛 + 3, . . . , 4𝑛 − 1,

2𝑛 + 1 + 𝑖

2
, if 𝑖 = 2, 4, . . . , 4𝑛 − 2.

(21)

Case 2. If the missing value is 3𝑛 + 1, then, for example,
consider the following edge labeling:

𝑓2 (V1V4𝑛) = 4𝑛 + 1,

𝑓2 (V𝑖V𝑖+1)

=

{{{{{{{{

{{{{{{{{

{

𝑖 + 1
2

, if 𝑖 = 1, 3, . . . , 4𝑛 − 1,

2𝑛 + 𝑖

2
, if 𝑖 = 2, 4, . . . , 2𝑛,

2𝑛 + 1 + 𝑖

2
, if 𝑖 = 2𝑛 + 2, 2𝑛 + 4, . . . , 4𝑛 − 2.

(22)

Then, we find that the vertex-weights form the set {2𝑛+3, 2𝑛+
4, . . . , 6𝑛 + 2} for Case 1 and the set {2𝑛 + 2, 2𝑛 + 3, . . . , 6𝑛 + 1}
for Case 2. Hence, 𝑑1(𝐶4𝑛) = 1 as required.

Lemma 16. Consider 𝑑1(𝑃4𝑛) = 1 for 𝑛 ≥ 1.

Proof. First, we suppose that 𝑑1(𝑃4𝑛) ≤ 1 and we want to find
the missing value 𝑥 in the set of edge labels {1, 2, . . . , 4𝑛 − 1}.
Then,

2 (1+ 2+ ⋅ ⋅ ⋅ + 4𝑛 − 𝑥)

= 𝑎 + (𝑎 + 1) + ⋅ ⋅ ⋅ + (𝑎 + 4𝑛 − 1)
(23)

and it implies that 𝑎 = (4𝑛2 +3𝑛−𝑥)/2𝑛 = 2𝑛+1+ (𝑛−𝑥)/2𝑛
and thus (𝑛 − 𝑥)/2𝑛 ∈ Z. Suppose that (𝑛 − 𝑥)/2𝑛 = 𝑡, and
then 1 − 𝑛 ≤ −2𝑛𝑡 ≤ 3𝑛 − 1, since 1 ≤ 𝑥 ≤ 4𝑛 − 1. Therefore, 𝑡
must be 0 or −1 and it implies that the missing value is 𝑥 = 𝑛
or 3𝑛. As in the proof of the previous lemma we show that for
both cases it is possible to find required (𝑎, 1)-VAE labelings.

We denote the vertices and the edges of 𝑃4𝑛 such that
𝑉(𝑃4𝑛) = {V

𝑖
: 𝑖 = 1, 2, . . . , 4𝑛} and 𝐸(𝑃4𝑛) = {V

𝑖
V
𝑖+1 : 𝑖 =

1, 2, . . . , 4𝑛 − 1}.

Case 1. If the missing value is 𝑛, then we define the edge
labeling 𝑓3 in the following way:

𝑓3 (V𝑖V𝑖+1)

=

{{{{{{

{{{{{{

{

2𝑛 + 𝑖 + 1
2

, if 𝑖 = 1, 3, . . . , 4𝑛 − 1,
𝑖

2
, if 𝑖 = 2, 4, . . . , 2𝑛 − 2,

1 + 𝑖

2
, if 𝑖 = 2𝑛, 2𝑛 + 2, . . . , 4𝑛 − 2.

(24)

Case 2. If the missing value is 3𝑛, then we define the labeling
𝑓4 such that

𝑓4 (V𝑖V𝑖+1)

=

{{{{{{

{{{{{{

{

2𝑛 + 𝑖 − 1
2

, if 𝑖 = 1, 3, . . . , 2𝑛 − 1,

2𝑛 + 𝑖 + 1
2

, if 𝑖 = 2𝑛 + 1, 2𝑛 + 3, . . . , 4𝑛 − 1,
𝑖

2
, if 𝑖 = 2, 4, . . . , 4𝑛 − 2.

(25)

Then, we obtain that the vertex-weights attain the values
from the sets {2𝑛 + 1, 2𝑛 + 2, . . . , 6𝑛} for Case 1 and {2𝑛, 2𝑛 +
3, . . . , 6𝑛 − 1} for Case 2. Thus, 𝑑1(𝑃4𝑛) = 1.

To summarize, we have the following (𝑎, 1)-VAE defi-
ciency for paths 𝑃

𝑚
and cycles 𝐶

𝑚
.

Theorem 17. Let𝑚 ≥ 2. Then,

𝑑1 (𝑃𝑚) =

{{{{

{{{{

{

0, 𝑖𝑓 𝑚 ≡ 1, 3 (mod 4) ,

1, 𝑖𝑓 𝑚 ≡ 0 (mod 4) ,

+∞, 𝑖𝑓 𝑚 ≡ 2 (mod 4) .

(26)

Theorem 18. Let𝑚 ≥ 3. Then,

𝑑1 (𝐶𝑚) =

{{{{

{{{{

{

0, 𝑖𝑓 𝑚 ≡ 1, 3 (mod 4) ,

1, 𝑖𝑓 𝑚 ≡ 0 (mod 4) ,

+∞, 𝑖𝑓 𝑚 ≡ 2 (mod 4) .

(27)
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Therefore, as a corollary of Theorem 18, we immediately
have the following result.

Theorem 19. Let 𝐺 be a 2𝑟-regular, 𝑟 ≥ 2, Hamiltonian graph
of order 𝑝. Then,

𝑑1 (𝐺) =

{{{{

{{{{

{

0, 𝑖𝑓 𝑝 ≡ 1, 3 (mod 4) ,

1, 𝑖𝑓 𝑝 ≡ 0 (mod 4) ,

+∞, 𝑖𝑓 𝑝 ≡ 2 (mod 4) .

(28)

Proof. By Theorem 18, Lemma 12, Theorem 2, and also
Petersen’s 2-factorization of regular graphs of even degree,
we get that a Hamiltonian even regular graph of odd order
is (𝑎, 1)-antimagic. On the other hand, by Lemma 15 and
Theorem 2, we get that the Hamiltonian even regular graphs
of order 4𝑛 have the (𝑎, 1)-VAE deficiency equal to 1. Finally,
by Lemma 14, we complete the proof.

As a corollary, we have the following example of (𝑎, 1)-
VAE deficiency for the Cartesian product of two cycles
𝐶
𝑚
◻𝐶
𝑛
, 𝑚, 𝑛 ≥ 3. Note that 𝐶

𝑚
◻𝐶
𝑛
always contains a

Hamiltonian cycle.

Corollary 20. Let𝑚, 𝑛 ≥ 3. Then,

𝑑1 (𝐶𝑚◻𝐶𝑛) =

{{{{

{{{{

{

0, 𝑖𝑓 𝑚𝑛 ≡ 1, 3 (mod 4) ,

1, 𝑖𝑓 𝑚𝑛 ≡ 0 (mod 4) ,

+∞, 𝑖𝑓 𝑚𝑛 ≡ 2 (mod 4) .

(29)

Note that similarly one may have the formula for (𝑎, 1)-
VAE deficiency of the higher dimensional toroidal grids, that
is, the Cartesian product of 𝑡 cycles 𝐶

𝑚1
◻𝐶
𝑚2
◻ ⋅ ⋅ ⋅ ◻𝐶

𝑚𝑡
, 𝑚
𝑖
≥

3, for each 𝑖.

5. Concluding Remarks and Further Studies

Notice that in 2009 Holden et al. [18] raised a conjecture for
the existence of (𝑎, 1)-VAE labeling of 2-regular graphs as
follows: a 2-regular graph of odd order possesses an (𝑎, 1)-
VAE labeling if and only if it is not one of𝐶4∪𝐶3,𝐶4∪3𝐶3, or
𝐶5∪2𝐶3. Note that the terminology of the labeling theymade
is the strong vertex magic total labeling, which is exactly
equivalent to the (𝑎, 1)-VAE labeling. Therefore, it is natural
to ask for the following.

Problem 1. Determine the (𝑎, 1)-VAE deficiency for 𝐶4 ∪ 𝐶3,
𝐶4 ∪ 3𝐶3, and 𝐶5 ∪ 2𝐶3.

Moreover, as a generalization of the above result, we
obtain in the last section the (𝑎, 1)-VAE deficiency of a
Hamiltonian regular graph of even degree, and we are con-
cerned with the following situation. Note that Swaminathan
and Jeyanthi [19] pointed out the following: 𝑚𝐶

𝑛
is (𝑎, 1)-

antimagic if and only if 𝑚, 𝑛 are odd. Therefore, it is natural
to ask for the following.

Problem 2. Determine the (𝑎, 1)-VAE deficiency for the 2-
regular graph𝑚𝐶

𝑛
.

If Problem 2 is answered, then the (𝑎, 1)-VAE deficiency
for an arbitrary regular graph of even degree containing
a 2-factor 𝑚𝐶

𝑛
is answered. More generally, we have the

following.

Problem 3. Determine the (𝑎, 1)-VAE deficiency for a general
2-regular graph.

If Problem 3 is answered, then the (𝑎, 1)-VAE deficiency
for an arbitrary regular graph of even degree is answered. As
for 3-regular graphs and general odd regular graphs, we ask
for the following.

Problem 4. Determine the (𝑎, 1)-VAE deficiency for 3-regular
Generalized Petersen Graphs 𝑃(𝑛, 𝑘) and Möbius Ladder
Graphs𝑀

𝑛
.

Problem 5. Determine the (𝑎, 1)-VAE deficiency for a general
3-regular graph.

Problem 6. Determine the (𝑎, 1)-VAE deficiency for a general
odd regular graph.

It is not hard to check that 𝐾4 does not admit any (𝑎, 1)-
VAE labeling. However, with the aid of computer programs,
we have found that 𝑡𝐾4 admits an (𝑎, 1)-VAE labeling for 2 ≤
𝑡 ≤ 9. This leads to the following conjecture.

Conjecture 21. 𝑡𝐾4, the disjoint union of 𝑡 copies of𝐾4, admits
the (𝑎, 1)-VAE labeling for 𝑡 ≥ 2.
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