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To reflect the interactions among criteria, Choquet integral is employed to stochastic multicriteria acceptability analysis. Models
are first given to roughly identify the best and worst ranking orders of each alternative, based on which the weight information
spaces are explored to support some alternative for ranking at some position and calculate the acceptability indices of alternatives.
Models are then given to analyze the characters of information spaces, which can describe what kind of information supports
alternatives for ranking at some position and can give an analysis about the effect of characters on the decision result.The proposed
method considers not only the interactions between two criteria, but also the interactions among three, four, andmore criteria.The
proposed method can be considered as an extension of the existing ones.

1. Introduction

Multicriteria decision-making has been applied in many
areas [1, 2]. Most of the existing multicriteria decision-
making is to find the rankings of alternatives from the known
information, while stochasticmulticriteria acceptability anal-
ysis (SMAA [3]) is to find the information space that supports
each alternative for the best ranking. Lahdelma and Salminen
[4] introduced the SMAA-2 method, which extends the
original SMAAby considering all the rankings in the analysis.
SMAA and SMAA-2 methods assume the utility function
is linear and the criteria are independent corresponding
to decision maker’s constant marginal value or risk-neutral
behaviour. By using one real-life problem and a large number
of artificial test problems, Lahdelma and Salminen [5] showed
that, in most cases, slight nonlinearity does not significantly
affect the SMAA results. Sometimes, there exist interactions
among criteria [6–8]. For example, supplier selection is
an important issue in supply chain management. Product
quality, offering price, delivery time, and service quality are
key criteria for supplier evaluation. From one side, delivery
time and service quality are redundant criteria, because,
in general, the supplier who has good service will deliver
on time. Therefore, even if these two criteria can be very
important, their comprehensive importance is smaller than

the sum of the importance of the two criteria. From the
other side, the two criteria, product quality and offering price,
lead to a positive interaction because a supplier who supplies
high quality and offers a low price is very well appreciated.
Therefore, the comprehensive importance of quality and price
should be greater than the sum of the importance of them.

By considering the interactions of the criteria, Angilella
et al. [7, 8] applied Choquet integral [6] to SMAA-2 method,
but they only consider the interactions of two criteria and
neglect the interactions among three, four, or more criteria.
For example, in a manufacturing enterprise, there are three
kinds of equally important and necessarymaterials thatmake
one product. If the number of any kind of material is zero, the
product can not be produced. In such cases, these three kinds
of materials can be considered to be three criteria, which
have positive interactions (a numerical illustration is given in
Example 2). In addition, SMAA method, SMAA-2 method,
and Angilella et al.’s method [7, 8] only focus on exploring the
spaces of the weight information but do not give an analysis.

By taking into account the decision maker’s attitudinal
character (orness), Ahn [9] presented a reverse decision-
aiding method for analyzing the effect of orness on the
multicriteria decision-making. Ma et al. [10] extended it to
the situation when a few best or worst alternatives need to be
identified. But Ahn’s and Ma et al.’s models are all based on
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ordered weighted averaging (OWA) operator [11]. Moreover,
they only analyze the impact of orness on the multicriteria
decision-making. Actually, the properties of the aggregation
operator can be expressed more specifically through different
concepts except orness [12].

In this paper, Choquet integral and SMAA-2 are com-
bined to deal with the multicriteria decision-making with
interactions among criteria. Models are firstly given to
roughly estimate the best and worst ranking orders of
each alternative, based on which the information space that
supports each alternative at some position is explored, and
the acceptability indices of alternatives are calculated. Then
the characters of Choquet integral are used to describe the
information spaces to try to analyze the effect of these
characters on the decision results. Several examples are also
given to compare the proposed methods with the existing
ones.

2. Basic Concepts of Choquet Integral

A fuzzy measure 𝜇 on 𝑋 is a function 𝜇: 𝑃(𝑋) → [0, 1],
satisfying the axioms [13] (i) 𝜇(𝜙) = 0 and (ii) 𝐴 ⊂ 𝐵 ⊂ 𝑋

implies 𝜇(𝐴) ≤ 𝜇(𝐵). It is assumed that 𝜇(𝑋) = 1 as usual.
TheMöbius transform of 𝜇 is a set function on𝑋 defined

as [14]𝑤
𝐴
= ∑
𝐵⊂𝐴

(−1)
|𝐴\𝐵|

𝜇(𝐵), ∀𝐴 ⊂ 𝑋. In terms of Möbius
representation, (i) and (ii) can be represented by (iii) 𝑤

𝜙
= 0;

(iv) ∀𝑖 ∈ 𝑋 and ∀𝑆 ⊆ 𝑋\{𝑖},∑
𝑇⊆𝑆

𝑤
𝑇∪{𝑖}

≥ 0. 𝜇(𝑋) = 1 can be
expressed as ∑

𝑇⊆𝑆
𝑤
𝑇
= 1.

The Choquet integral [6] is firstly defined on fuzzy
measure [13], and then other transformations are defined.
Suppose the performance of an alternative under criteria
(𝐺
1
, 𝐺
2
, . . . , 𝐺

𝑛
) is expressed as 𝑥 = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈ 𝑅
𝑛. The

Choquet integral with respect to the Möbius representation
can be given as [15]

𝐶 (𝑥) = ∑

𝑇⊆𝑁

𝑤
𝑇

∧
𝑖∈𝑇

𝑥
𝑖
, (1)

where 𝑤
𝜙

= 0, ∑
𝑇⊆𝑁

𝑤
𝑇

= 1, ∀𝑖 ∈ 𝑁, ∀𝑆 ⊆ 𝑁 \{𝑖},
∑
𝑇⊆𝑆

𝑤
𝑇∪{𝑖}

≥ 0, and𝑁 = {1, 2, . . . , 𝑛}.
In expression (1), 𝑤

𝑇
measures the interactions of the

criteria that belong to 𝑇 [12]. If 𝑤
𝑇

> 0, then the set of
criteria 𝑐

𝑗
, 𝑗 ∈ 𝑇, has positive interactions. Choquet integral

uses the minimum value of the criteria evaluations in the
coalition 𝑇 as the value of 𝑇. Some authors [16–19] have
tried to substitute the minimum operation with other ones.
Marichal [20] denoted that other operations are not stable for
the admissible positive linear transformation.

Choquet integral is continuous, nondecreasing, and sta-
ble under the same transformations of interval scales in the
sense of the theory of measurement, and it coincides with
the weighted arithmetic (WA) operator [21] and the ordered
weighted averaging (OWA) operator [11]. Choquet integral
has some characters [20], which can be described by the
following.

The importance of criteria 𝑗 is expressed by the Shapley
value [20] as follows:

𝜑
𝑗
= ∑

𝑗∈𝑇

1

𝑡
𝑤
𝑇
, (2)

where 𝑡 is the cardinality of the coalition 𝑇; that is, 𝑡 = |𝑇|.
The Shapley value is a fundamental concept in game theory
expressing a power index. It can be interpreted as a weighted
average value of themarginal contribution of criterion 𝑗 alone
in all combinations.

The interaction index expresses the sign and the magni-
tude of the interactions of the criteria in the coalition 𝑇 [20]
as follows:

𝜑
𝑇
= 𝑤
𝑇
. (3)

The degree of orness is defined by [20]

orn =
1

𝑛 − 1
∑

𝑇⊆𝑁

𝑛 − 𝑡

𝑡 + 1
𝑤
𝑇 (4)

which represents the degree to which the overall value is close
to that of “min.” In some sense, it also reflects the extent to
which the overall value behaves like a minimum or has a
conjunctive behavior.

An interesting phenomenon in aggregation is the veto
effect and its counterpart, the favor effect. It seems reasonable
to define indices that measure the degree of veto or favor
of a given criterion. If the Choquet integral is considered, a
natural definition of a degree of veto (resp., favor) consists in
considering the probability [20] as follows:

V
𝑗
= 1 −

1

𝑛 − 1
∑

𝑇⊆𝑁\𝑗

1

𝑡 + 1
𝑤
𝑇
, 𝑗 ∈ 𝑁,

𝑜
𝑗
=

𝑛

𝑛 − 1
∑

𝑇⊆𝑁\𝑗

1

𝑡 + 1
(𝑤
𝑇∪𝑗

+ 𝑤
𝑇
) −

1

𝑛 − 1
, 𝑗 ∈ 𝑁.

(5)

Here V
𝑗
measures the degree to which the decision maker

demands that criterion 𝐺
𝑗
is satisfied. V

𝑗
is different from the

weight of criterion𝐺
𝑗
: wemight have a high degree of veto on

a not very important criterion. 𝑜
𝑗
is the degree to which the

decisionmaker considers that a good score along criterion𝐺
𝑗

is sufficient to be satisfied.
The dispersion is to measure how much of the infor-

mation in the arguments is used. In a certain sense, the
more disperse the weight vector is, the more the information
about the individual criteria is being used in the aggregation
process.The dispersion of Choquet integral can be defined by
[20]

dis = −
1

ln 𝑛

⋅

𝑛

∑

𝑗=1

∑

𝑇⊆𝑁\𝑗

(𝑛 − 𝑡 − 1)!𝑡!

𝑛!
[∑

𝐾⊆𝑇

𝑤
𝐾∪𝑗

ln ∑

𝐾⊆𝑇

𝑤
𝐾∪𝑗

] .

(6)
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3. Stochastic Multicriteria Acceptability
Analysis Based on Choquet Integral

In a decision matrix, assume that 𝐴 = (𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑚
)

represents the set of alternatives and 𝐺 = (𝐺
1
, 𝐺
2
, . . . , 𝐺

𝑛
)

represents the set of relevant criteria. Usually, it is difficult
to obtain the exact information about the criteria evaluations
and interactions between criteria, because the decisionmaker
may not be willing or able to provide exact estimations of
decision parameters under time pressure, lack of knowledge
or data, and fear of commitment [22] or because the decision
maker has limited attention and information processing
capabilities to exact value judgements [23].

Stochastic multicriteria acceptability analysis (SMAA)
has been developed in particular for situations where neither
the criteria evaluations nor the criteria weight vectors are
precisely known.The evaluation value of alternative𝐴

𝑖
under

criterion 𝐺
𝑗
is represented by the stochastic variable 𝜉

𝑖𝑗
with

a probability distribution 𝑓
𝑋

over the space 𝑋 ⊆ 𝑅
𝑚×𝑛

.
Similarly, the decision makers’ unknown or partially known
preferences are represented by a weight distribution with
density function 𝑓

𝑊
over the space of all compatible weights

𝑊.
Considering the interactions of the criteria [6], the weight

information can be defined as

𝑊 = {{𝑤
𝑇
, 𝑇 ⊆ 𝑁} : 𝑤

𝜙
= 0, ∑

𝑇⊆𝑁

𝑤
𝑇
= 1,

∑

𝑇⊆𝑆

𝑤
𝑇∪{𝑙}

≥ 0, ∀𝑆 ⊆ 𝑁 \ {𝑙} , ∀𝑙 ∈ 𝑁} ,

(7)

where𝑁 = {1, 2, . . . , 𝑛}.
Based on Choquet integral [6], the overall evaluation of

alternative 𝐴
𝑖
can be given as

𝑢 (𝑖, 𝜉, 𝑤) = ∑

𝑇⊆𝑁

𝑤
𝑇

∧
𝑗∈𝑇

𝜉
𝑖𝑗
, (8)

where 𝜉 ∈ 𝑋 and 𝑤 ∈ 𝑊.
If 𝑤
𝑇
= 0, 𝑡 ≥ 2, then 𝑊 reduces to the classical weight

information set as follows:

𝑊

=
{

{

{

{𝑤


𝑗
, 𝑗 = 1, 2, . . . , 𝑛} :

𝑛

∑

𝑗=1

𝑤


𝑗
= 1,

𝑤


𝑗
≥ 0, 𝑗 = 1, 2, . . . , 𝑛

}

}

}

(9)

and (8) reduces to the WAmean [21] as follows:

𝑢 (𝑖, 𝜉, 𝑤

) =

𝑛

∑

𝑗=1

𝑤
𝑗
𝜉
𝑖𝑗
. (10)

For each 𝜉 in𝑋 and𝑤 in𝑊, 𝑢(𝑖, 𝜉, 𝑤) provides a complete
ranking of alternatives, and then the position of alternative𝐴

𝑖

is denoted by

rank (𝑖, 𝜉, 𝑤) = 1 +∑

𝑘 ̸=𝑖

𝜌 (𝑢 (𝜉
𝑘
, 𝑤) > 𝑢 (𝜉

𝑖
, 𝑤)) , (11)

where 𝜌(true) = 1 and 𝜌(false) = 0.

Here, we can give a rough estimation about the best and
worst ranking orders of alternative𝐴

𝑖
, which can be obtained

by solving the following model:

Min /Max rank (𝑖, 𝜉, 𝑤)

s.t. 𝑤 ∈ 𝑊, 𝜉 ∈ 𝑋.

(MOD 1)

When Choquet integral reduces to the OWA operator
[11], (MOD 1) reduces to the one given by Ahn [9] and Ma
et al. [10].

Suppose the optimal solutions of (MOD 1) are denoted
by rank

∗
(𝑖, 𝜉, 𝑤) and rank∗(𝑖, 𝜉, 𝑤), respectively; thenwe have

the following theorem.

Theorem 1. Let 𝜉 ∈ 𝑋, 𝑤 ∈ 𝑊, and 𝑤

∈ 𝑊
; then we have

rank∗ (𝑖, 𝜉, 𝑤) ≥ rank∗ (𝑖, 𝜉, 𝑤) ,

rank
∗ (𝑖, 𝜉, 𝑤) ≤ rank

∗
(𝑖, 𝜉, 𝑤


) .

(12)

Proof. Since𝑊 ⊆ 𝑊, we have

rank∗ (𝑖, 𝜉, 𝑤) = max
𝜉∈𝑋,𝑤∈𝑊

rank (𝑖, 𝜉, 𝑤)

= 1 + max
𝜉∈𝑋,𝑤∈𝑊

∑

𝑘 ̸=𝑖

𝜌 (𝑢 (𝜉
𝑘
, 𝑤) > 𝑢 (𝜉

𝑖
, 𝑤))

≥ 1 + max
𝜉∈𝑋,𝑤∈𝑊



∑

𝑘 ̸=𝑖

𝜌 (𝑢 (𝜉
𝑘
, 𝑤

) > 𝑢 (𝜉

𝑖
, 𝑤

))

= max
𝜉∈𝑋,𝑤∈𝑊



rank (𝑖, 𝜉, 𝑤) = rank∗ (𝑖, 𝜉, 𝑤) ,

rank
∗ (𝑖, 𝜉, 𝑤) = min

𝜉∈𝑋,𝑤∈𝑊

rank (𝑖, 𝜉, 𝑤)

= 1 + min
𝜉∈𝑋,𝑤∈𝑊

∑

𝑘 ̸=𝑖

𝜌 (𝑢 (𝜉
𝑘
, 𝑤) > 𝑢 (𝜉

𝑖
, 𝑤))

≤ 1 + min
𝜉∈𝑋,𝑤∈𝑊



∑

𝑘 ̸=𝑖

𝜌 (𝑢 (𝜉
𝑘
, 𝑤

) > 𝑢 (𝜉

𝑖
, 𝑤

))

= min
𝜉∈𝑋,𝑤∈𝑊



rank (𝑖, 𝜉, 𝑤) = rank∗ (𝑖, 𝜉, 𝑤)

(13)

which completes the proof.

Theorem 1 means the best ranking order of alternative
𝐴
𝑖
obtained by considering the interactions of the criteria

is not worse than that obtained without considering the
interactions of the criteria, while the worst ranking order
of alternative 𝐴

𝑖
obtained by considering the interactions

of the criteria is not better than that obtained without
considering the interactions of the criteria.That is because the
information space is enlarged by considering the interactions
of the criteria.

For each 𝜉 ∈ 𝑋, suppose alternative 𝐴
𝑖
ranks 𝑟th, where

𝑟 ∈ [rank
∗
(𝑖, 𝜉, 𝑤), rank∗(𝑖, 𝜉, 𝑤)]; we can compute the set of

possible weights based on SMAA [3] as follows:

𝑊
𝑟

𝑖
(𝜉) = {𝑤 ∈ 𝑊, rank (𝑖, 𝜉, 𝑤) = 𝑟} (14)
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which is called the favorable ranking weights of alternative𝐴
𝑖

at position 𝑟.
On the basis of the favorable ranking weights, the ranking

acceptability index that alternative 𝐴
𝑖
is at position 𝑟 is given

as

𝑏
𝑟

𝑖
= ∫
𝜉∈𝑋

𝑓
𝑋 (𝜉) ∫

𝑤∈𝑊
𝑟

𝑖
(𝜉)

𝑓
𝑊 (𝑤) 𝑑𝑤𝑑𝜉 (15)

which describes the share of parameters supporting alter-
native 𝐴

𝑖
at position 𝑟 in the obtained final ranking; in

particular, 𝑏1
𝑖
measures the variety of parameters making

alternative 𝐴
𝑖
the most preferred one.

Next, the characters of Choquet integral can be used to
analyze the information space𝑊𝑟

𝑖
(𝜉), such as the interactions

of criteria in coalition 𝑇 as follows:

Max /Min 𝑤
𝑇
, 𝑇 ⊆ 𝑁

s.t. 𝑤 ∈ 𝑊
𝑟

𝑖
(𝜉) .

(MOD 2)

The Shapley value of criterion 𝑗 is as follows:

Max /Min 𝜑
𝑗 (𝑤) = ∑

𝑗∈𝑇

1

𝑡
𝑤
𝑇
, 𝑇 ⊆ 𝑁

s.t. 𝑤 ∈ 𝑊
𝑟

𝑖
(𝜉) .

(MOD 3)

The degree of veto or favor of a given criterion [12] is as
follows:

Max /Min V
𝑗 (𝑤) = 1 −

1

𝑛 − 1
∑

𝑇⊆𝑁\𝑗

1

𝑡 + 1
𝑤
𝑇

s.t. 𝑤 ∈ 𝑊
𝑟

𝑖
(𝜉) ,

(MOD 4)

Max /Min 𝑜
𝑗 (𝑤) =

𝑛

𝑛 − 1
∑

𝑇⊆𝑁\𝑗

1

𝑡 + 1
(𝑤
𝑇∪𝑗

+ 𝑤
𝑇
) −

1

𝑛 − 1

s.t. 𝑤 ∈ 𝑊
𝑟

𝑖
(𝜉) .

(MOD 5)

The degree of orness [12] is as follows:

Max /Min orn (𝑤) =
1

𝑛 − 1
∑

𝑇⊆𝑁

𝑛 − 𝑡

𝑡 + 1
𝑤
𝑇

s.t. 𝑤 ∈ 𝑊
𝑟

𝑖
(𝜉) .

(MOD 6)

The dispersion to measure is as follows:

Max /Min dis (𝑤) = −

𝑛

∑

𝑗=1

∑

𝑇⊆𝑁\𝑗

(𝑛 − 𝑡 − 1)!𝑡!

𝑛!
∑

𝐾⊆𝑇

𝑤
𝐾∪𝑗

s.t. 𝑤 ∈ 𝑊
𝑟

𝑖
(𝜉) .

(MOD 7)

By solving ((MOD 2)–(MOD 7)), we can roughly
describe what kind of information 𝑊

𝑟

𝑖
(𝜉) supports

alternative 𝐴
𝑖
for ranking at position 𝑟. We can find

that some alternatives might be identified for a lower range

Table 1: A decision matrix with four alternatives evaluated by three
criteria.

𝐺
1

𝐺
2

𝐺
3

𝐴
1

0.3 0.9 0.6
𝐴
2

0.7 0.8 0.5
𝐴
3

0.5 1.0 0.4
𝐴
4

0.4 0.85 0.6

of characters and others for a higher range. The range
of characters of two alternatives may be nonoverlapping,
overlapping, or inclusion, or equivalent depending upon the
end points of the ranges. An alternative with wider range of
character is more probable to be selected than the one with a
narrower range of character.

In real decision-making, the information about attribute
weights is incompletely known because of time pressure, lack
of knowledge or data, and the expert’s limited expertise about
the problem domain [22–25].The proposed method can help
the decision makers identify the corresponding alternatives
in the case when the decision makers have difficulty in
specifying the precise information about the criteria weight
vector. Based on the known information about the criteria
weight vector, the ranges of the above characters can be cal-
culated, and the corresponding alternatives can be identified
according to the results obtained by the proposed method;
meanwhile the redundant alternatives can be removed.

((MOD 2)–(MOD 7)) analyze the ranges of the charac-
ters of the weight information space. We can calculate the
central values of them to give a clear description of these
characters as follows:

𝑤
𝑖
=

1

𝑏1
𝑖

∫
𝜉∈𝑋

𝑓
𝑋 (𝜉) ∫

𝑤∈𝑊
𝑟

𝑖
(𝜉)

𝑓
𝑊 (𝑤)𝑤𝑑𝑤𝑑𝜉,

𝜑
𝑖
=

1

𝑏1
𝑖

∫
𝜉∈𝑋

𝑓
𝑋 (𝜉) ∫

𝑤∈𝑊
𝑟

𝑖
(𝜉)

𝑓
𝑊 (𝑤) 𝜑 (𝑤) 𝑑𝑤𝑑𝜉

= 𝜑 (𝑤
𝑐

𝑖
) ,

V𝑖 =
1

𝑏1
𝑖

∫
𝜉∈𝑋

𝑓
𝑋 (𝜉) ∫

𝑤∈𝑊
𝑟

𝑖
(𝜉)

𝑓
𝑊 (𝑤) V (𝑤) 𝑑𝑤𝑑𝜉

= V (𝑤𝑐
𝑖
) ,

𝑜
𝑖
=

1

𝑏1
𝑖

∫
𝜉∈𝑋

𝑓
𝑋 (𝜉) ∫

𝑤∈𝑊
𝑟

𝑖
(𝜉)

𝑓
𝑊 (𝑤) 𝑓 (𝑤) 𝑑𝑤𝑑𝜉

= 𝑜 (𝑤
𝑐

𝑖
) ,

dis
𝑖

=
1

𝑏1
𝑖

∫
𝜉∈𝑋

𝑓
𝑋 (𝜉) ∫

𝑤∈𝑊
𝑟

𝑖
(𝜉)

𝑓
𝑊 (𝑤) dis (𝑤) 𝑑𝑤𝑑𝜉

= dis (𝑤𝑐
𝑖
) ,

orn𝑖 = 1

𝑏1
𝑖

∫
𝜉∈𝑋

𝑓
𝑋 (𝜉) ∫

𝑤∈𝑊
𝑟

𝑖
(𝜉)

𝑓
𝑊 (𝑤) orn (𝑤) 𝑑𝑤𝑑𝜉

= orn (𝑤
𝑐

𝑖
) .

(16)
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Table 2: Best and worst ranking orders for each alternative.

Rank
∗

Rank∗

(MOD 1) By Ma et al.’s model By Ahn’s model (MOD 1) By Ma et al.’s model By Ahn’s model
𝐴
1

1 1 1 4 4 4
𝐴
2

1 1 1 4 4 4
𝐴
3

1 1 1 4 4 4
𝐴
4

1 2 >1 4 4 4

Table 3: The ranking acceptability indices obtained by OWA-
SMAA-2.

𝑏
1

𝑖
𝑏
2

𝑖
𝑏
3

𝑖
𝑏
4

𝑖

𝐴
1

1 25 25 50
𝐴
2

67 17 6 11
𝐴
3

32 25 18 23
𝐴
4

0 34 51 16

Table 4: The ranking acceptability indices obtained by Choquet-
SMAA-2.

𝑏
1

𝑖
𝑏
2

𝑖
𝑏
3

𝑖
𝑏
4

𝑖

𝐴
1

3 5 19 73
𝐴
2

88 5 5 2
𝐴
3

3 44 29 24
𝐴
4

6 46 47 1

The central weight vector describes the preference of a typical
decision maker that makes alternative 𝐴

𝑖
the most preferred

one, which can be presented to the decision makers in order
to help them understand how different weights correspond to
different choices.

For convenience, if the OWA operator and Choquet
integral are used instead ofWAmean in SMAA-2 [4], thenwe
denote the methods as OWA-SMAA-2 and Choquet-SMAA-
2, respectively. Angilella et al. [7, 8] proposed a method by
integrating the SMAA-2 with the Choquet integral, but their
method only considers the positive and negative interactions
of two criteria, neglecting possible interactions among three,
four, or more criteria. In this paper, Angilella et al.’s method
[7, 8] is denoted as 2-Choquet-SMAA-2. In particular, if Cho-
quet integral reduces to the WA mean [21], then Choquet-
SMAA-2 reduces to SMAA-2 [4]; if the interactions between
two criteria are only considered, that is, 𝑤

𝑇
= 0, 𝑡 > 2, then

Choquet-SMAA-2 reduces to 2-Choquet-SMAA-2 [7, 8].

4. Illustrative Examples

Example 1 (see [9]). Assume that an artificial decision prob-
lem characterized by four alternatives (i.e., 𝐴

1
, 𝐴
2
, 𝐴
3
, and

𝐴
4
) and three criteria (i.e.,𝐺

1
,𝐺
2
, and𝐺

3
) is shown inTable 1.

By considering the interactions of the criteria, (MOD 1)

is firstly used to estimate the best and worst ranking orders
of each alternative, which are listed in Table 2. It is noted
that 𝐴

4
is not one of the potential best alternatives in both

Ahn’s model [9] and Ma et al.’s model [10]. The best ranking
order of 𝐴

4
is the second in Ma et al.’s model [10], while the

Table 5: Determination of the ranges of orness under r = 1.

𝐴
1

𝐴
2

𝐴
3

𝐴
4

Ahn’s and Ma et
al.’s models [0.25, 0.25] [0.25, 1.00] [0.00, 0.67] 𝜙

The proposed
model [0.17, 0.92] [0.00, 0.92] [0.17, 1.00] [0.08, 0.70]

best ranking order of 𝐴
4
is first in the proposed model. The

ranking intervals of alternatives obtained by the proposed
model are wider than those obtained by Ahn’s model [9]
and Ma et al.’s model [10], which is also consistent with the
findings inTheorem 1.

Next, the ranking acceptability index 𝑏
𝑟

𝑖
of alternative

𝐴
𝑖
at position 𝑟 can be calculated. Tables 3 and 4 show the

acceptability indices of alternatives obtained by using OWA-
SMAA-2 and Chqouet-SMAA-2, respectively. It is noted that
𝑏
1

4
= 0 in OWA-SMAA-2, and 𝑏

1

4
= 6 in Choquet-SMAA-2,

which shows that although the possibility that 𝐴
4
ranks first

is low in Choquet-SMAA-2, it is possible for 𝐴
4
to rank first.

But it is impossible for 𝐴
4
to rank first in OWA-SMAA-2.

But what kind of information supports alternative 𝐴
𝑖

for ranking at position 𝑟? The decision makers may be very
interested about this question, which can help the decision
maker analyze the decision result. Take orness as an example;
by assuming that each alternative is the preferred one, we can
estimate the ranges of orness, which are listed in Table 5.

It is noted that the range of orness of alternative 𝐴
2
is

even wider than that of 𝐴
1
and thus has a greater chance of

being chosen. Except for estimating the ranges of orness, we
can also estimate the ranges of other characters, such as the
Shapley values of the criteria, the interactions of the criteria,
the veto and favor degree of each criterion, and the degree of
the use of date. By using ((MOD 2)–(MOD 7)), the results
are given in Table 6.

By analyzing Table 6, the lowest condition that alternative
𝐴
𝑖
ranks at position 𝑟 can be obtained. For example, if 𝐴

1

is at the first ranking, then the Shapley value of criterion
𝑐
1
should not be bigger than 0.58, 𝑐

2
not bigger than 0.83,

and 𝑐
3
not smaller than 0.08; 𝑤

2
should not be bigger than

0.67; the interaction effect 𝑤
12

of criteria 𝑐
1
and 𝑐
2
should

not be smaller than −0.67 and should not be bigger than
0.50; the interaction effect 𝑤

23
of criteria 𝑐

1
and 𝑐
2
should not

be smaller than −0.67; the interaction effect 𝑤
123

of criteria
𝑐
1
, 𝑐
2
, and 𝑐

3
should not be smaller than −1.50 and should

not be bigger than 0.67; V
1
should not be smaller than 0.08

and should not be bigger than 0.50; V
3
should not be smaller
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Table 6: Determination of the ranges of characters under r = 1.

𝐴
1

𝐴
2

𝐴
3

𝐴
4

𝜑
1

[0.00, 0.58] [0.08, 1.00] [0.00, 0.75] [0.00, 0.47]
𝜑
2

[0.00, 0.83] [0.00, 0.83] [0.11, 1.00] [0.00, 0.70]
𝜑
3

[0.08, 1.00] [0.00, 0.83] [0.00, 0.67] [0.20, 1.00]
𝑤
1

[0.00, 1.00] [0.00, 1.00] [0.00, 1.00] [0.00, 0.60]
𝑤
2

[0.00, 0.67] [0.00, 0.50] [0.33, 1.00] [0.00, 0.44]
𝑤
3

[0.00, 1.00] [0.00, 1.00] [0.00, 1.00] [0.00, 1.00]
𝑤
12

[−0.67, 0.50] [−0.50, 1.00] [−1.00, 0.50] [−0.44, 0.50]
𝑤
13

[−1.00, 1.00] [−1.00, 1.00] [−1.00, 1.00] [−0.60, 1.00]
𝑤
23

[−0.67, 1.00] [−0.50, 1.00] [−1.00, 0.50] [−0.44, 1.00]
𝑤
123

[−1.50, 0.67] [−2.00, 1.00] [−1.50, 1.00] [−1.50, 0.75]
V
1

[0.08, 0.50] [0.13, 1.00] [0.00, 0.75] [0.25, 0.75]
V
2

[0.00, 1.00] [0.00, 1.00] [0.00, 1.00] [0.13, 1.00]
V
3

[0.13, 1.00] [0.13, 1.00] [0.00, 0.75] [0.45, 1.00]
𝑜
1

[0.00, 1.00] [0.00, 1.00] [0.08, 1.00] [0.00, 0.70]
𝑜
2

[0.25, 0.75] [0.00, 0.75] [0.33, 1.00] [0.13, 0.55]
𝑜
3

[0.19, 1.00] [0.00, 1.00] [0.08, 1.00] [0.13, 1.00]
orn [0.17, 0.92] [0.00, 0.92] [0.17, 1.00] [0.08, 0.70]
dis [0.00, 0.97] [0.21, 1.00] [0.39, 0.99] [0.00, 0.97]

Table 7: The impact of orness on the decision-making by the
proposed model.

Ranges of attitudinal character Best alternatives
[0.00, 0.08) 𝐴

2

[0.08, 0.17) 𝐴
2
and 𝐴

4

[0.17, 0.70] 𝐴
1
, 𝐴
2
, 𝐴
3
, and 𝐴

4

(0.70, 0.92] 𝐴
1
, 𝐴
2
, and 𝐴

3

(0.92, 1.00] 𝐴
3

than 0.13; 𝑜
2
should not be smaller than 0.25 and should not

be bigger than 0.75; 𝑜
3
should not be smaller than 0.19; orn

should not be smaller than 0.17 and should not be bigger than
0.92; dis should not be bigger than 0.97.

From the reverse view, we can analyze the effect of
these characters on the decision results. Take orness as an
example; the corresponding potential optimal alternatives
can be identified as the value of orness increases from zero
to one. In Table 7, if orness takes the value between 0.00 and
0.08, then the potential optimal alternative is 𝐴

2
; if orness

takes the value between 0.08 and 0.17, then the potential
optimal alternatives are 𝐴

2
and 𝐴

4
; if orness takes the value

between 0.92 and 1.00, then the potential optimal alternative
is 𝐴
3
. By comparing the proposed method with the ones

given by Ahn andMa et al., it is noted that the range of orness
that contains the most potential optimal alternatives in Ahn’s
and Ma et al.’s methods is [0.25, 0.67]; the corresponding
alternatives are 𝐴

1
, 𝐴
2
, and 𝐴

3
in Table 8. But Table 7 shows

the range of orness that contains most potential optimal
alternatives in the proposed method is [0.17, 0.70], and the
corresponding alternatives are𝐴

1
,𝐴
2
,𝐴
3
, and𝐴

4
. Similarly,

Table 8:The impact of orness on the decision-making by Ahn’s and
Ma et al.’s models.

Ranges of attitudinal character Best alternatives
[0.00, 0.25) 𝐴

3

[0.25, 0.67] 𝐴
1
, 𝐴
2
, and 𝐴

3

(0.67, 1.00] 𝐴
2

we can analyze the impact of other characters on the decision
results. Here we will not repeat them.

The central values of the characters can be further
calculated; please see Table 9. These values show us how
different weights correspond to different choices.

Example 2. An artificial decision problem characterized by
four alternatives and three criteria is shown in Table 10.

By using SMAA-2, 2-Choquet-SMAA-2, and Choquet-
SMAA-2, respectively, we can obtain the ranking acceptabil-
ity indices of alternatives as listed in Tables 11–13.

It is noted that the results obtained by SMAA-2, 2-
Choquet-SMAA-2, and Choquet-SMAA-2 are similar. If
SMAA-2 and 2-Choquet-SMAA-2 are used, we can obtain
𝑏
1

4
= 0, which means it is impossible for 𝐴

4
to rank first; if

Choquet-SMAA-2 is used, we can obtain 𝑏
1

4
= 1, which shows

it is possible for 𝐴
4
to rank first.

Suppose alternatives 𝐴
1
, 𝐴
2
, 𝐴
3
, and 𝐴

4
denote four

manufacturers, who produce the same production, and cri-
teria 𝐺

1
, 𝐺
2
, and 𝐺

3
denote three kinds of equally important

and necessary rawmaterials which produce such production.
The production is made if and only if these three kinds of
materials are all obtained. In such cases, we have 𝐴

4
≻ 𝐴
1
∼
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Table 9: Determination of the central values of the characters.

𝐴
1

𝐴
2

𝐴
3

𝐴
4

𝜑
1

0.188 0.349 0.289 0.206
𝜑
2

0.400 0.328 0.415 0.333
𝜑
3

0.412 0.323 0.296 0.461
𝑤
1

0.241 0.205 0.262 0.164
𝑤
2

0.350 0.189 0.482 0.231
𝑤
3

0.298 0.197 0.264 0.262
𝑤
12

−0.063 0.145 −0.080 −0.063
𝑤
13

0.067 0.119 0.119 0.130
𝑤
23

0.271 0.111 −0.069 0.250
𝑤
123

−0.163 0.035 0.021 0.027
V
1

0.379 0.656 0.475 0.505
V
2

0.563 0.639 0.546 0.616
V
3

0.589 0.632 0.482 0.736
𝑜
1

0.403 0.368 0.459 0.304
𝑜
2

0.537 0.353 0.576 0.384
𝑜
3

0.530 0.353 0.462 0.456
dis 0.824 0.847 0.846 0.823
orn 0.490 0.358 0.499 0.381

Table 10: A decision matrix with four alternatives evaluated by four
criteria.

𝐺
1

𝐺
2

𝐺
3

𝐴
1

0.7 0.7 0.0
𝐴
2

0.0 0.7 0.7
𝐴
3

0.7 0.0 0.7
𝐴
4

0.2 0.2 0.2

Table 11: The ranking acceptability indices obtained by SMAA-2.

𝑏
1

𝑖
𝑏
2

𝑖
𝑏
3

𝑖
𝑏
4

𝑖

𝐴
1

33 33 25 8
𝐴
2

33 34 25 8
𝐴
3

33 33 25 8
𝐴
4

0 0 25 76

𝐴
2

∼ 𝐴
3
. If SMAA-2 or 2-Choquet-SMAA-2 is used, the

following equations have no solution:

𝐴
1
∼ 𝐴
2

𝐴
2
∼ 𝐴
3

𝐴
4
≻ 𝐴
1

⇐⇒

{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{

{

∑

𝑇⊆𝑁

𝑤
𝑇
( ∧
𝑗∈𝑇

𝑝
1𝑗
− ∧
𝑗∈𝑇

𝑝
2𝑗
) = 0

∑

𝑇⊆𝑁

𝑤
𝑇
( ∧
𝑗∈𝑇

𝑝
2𝑗
− ∧
𝑗∈𝑇

𝑝
3𝑗
) = 0

∑

𝑇⊆𝑁

𝑤
𝑇
( ∧
𝑗∈𝑇

𝑝
4𝑗
− ∧
𝑗∈𝑇

𝑝
3𝑗
) > 0

𝑤
𝜙
= 0, ∑

𝑇⊆𝑆

𝑤
𝑇
= 1,

∀𝑖 ∈ 𝑁, ∀𝑆 ⊆ 𝑁 \ {𝑖} , ∑

𝑇⊆𝑆

𝑤
𝑇∪{𝑖}

≥ 0

𝑤
𝑇
= 0, 𝑡 ≥ 2.

(17)

Table 12: The rank acceptability indices obtained by 2-Choquet-
SMAA-2.

𝑏
1

𝑖
𝑏
2

𝑖
𝑏
3

𝑖
𝑏
4

𝑖

𝐴
1

33 33 29 4
𝐴
2

34 33 29 4
𝐴
3

33 33 29 4
𝐴
4

0 0 13 87

Table 13: The ranking acceptability indices obtained by Choquet-
SMAA-2.

𝑏
1

𝑖
𝑏
2

𝑖
𝑏
3

𝑖
𝑏
4

𝑖

𝐴
1

33 33 27 7
𝐴
2

33 33 27 7
𝐴
3

33 33 27 7
𝐴
4

1 1 19 80

Table 14: The ranking acceptability obtained by Choquet-SMAA-2
with constrains.

𝑏
1

𝑏
2

𝑏
3

𝑏
4

𝐴
1

0 32 34 33
𝐴
2

0 34 35 32
𝐴
3

0 34 32 35
𝐴
4

100 0 0 0

That is because these three kinds of materials have positive
interactions, which is not considered in SMAA-2 and 2-
Choquet-SMAA-2. While Choquet-SMAA-2 is used, we can
obtain the results as listed in Table 14.

From the analysis shown in Table 14, we can find that
the proposed method not only can deal with the situation in
which there exist interactions of two criteria but also can deal
with the situation in which there exist interactions of three or
more interactions. The proposed method can be considered
to be a generalization of the existing ones.

5. Conclusions

This paper has investigated stochastic multicriteria accept-
ability analysis based on Choquet integral, which not only
considers the interactions of two criteria, but also considers
the interactions of three or more criteria. We have given
models to roughly estimate the best and worst ranking orders
of alternatives based on Choquet integral. We also have
explored the weight information spaces that support some
alternative for ranking at some position. The acceptability
indices of alternatives have been calculated to describe the
share of the information for alternatives. To describe these
information spaces, models have been established to estimate
the ranges of the characters. The impact of the characters
on decision results has been analyzed. Several examples
have been given to compare the proposed methods with the
existing ones.
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