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This paper deals essentially with a nonlinear degenerate evolution equation of the form 𝐾𝑢

− Δ𝑢 + ∑

𝑛

𝑗=1
𝑏
𝑗
(𝜕𝑢

/𝜕𝑥
𝑗
) + |𝑢|

𝜎
𝑢 = 0

supplemented with nonlinear boundary conditions of Neumann type given by 𝜕𝑢/𝜕] + ℎ(⋅, 𝑢

) = 0. Under suitable conditions

the existence and uniqueness of solutions are shown and that the boundary damping produces a uniform global stability of the
corresponding solutions.

1. Introduction

Let Ω be a smooth bounded open set of R𝑛, with 𝑛 ≥ 1,
and its boundary 𝜕Ω = Γ of class 𝐶

2. Assume that Γ is
constituted by two disjoint closed parts Γ

0
and Γ
1
both with

positive Lebesgue measure.
The main goal of this paper is to prove the existence and

uniqueness as well as the uniform decay rates for the energy
of the following nonlinear initial boundary value problem:

𝐾𝑢

− Δ𝑢 +

𝑛

∑

𝑗=1

𝑏
𝑗

𝜕𝑢


𝜕𝑥
𝑗

+ |𝑢|
𝜎
𝑢 = 0 in Ω × (0,∞) ,

𝑢 = 0 on Γ
0
× (0,∞) ,

𝜕𝑢

𝜕]
+ ℎ (⋅, 𝑢


) = 0 on Γ

1
× (0,∞) ,

𝑢 (0, 𝑥) = 𝑢
0

(𝑥) , 𝑢


(0, 𝑥) = 𝑢
1

(𝑥) in Ω,

(𝑃)

where 𝐾 = 𝐾(𝑥, 𝑡), 𝑏
𝑗

= 𝑏
𝑗
(𝑥, 𝑡), and ℎ = ℎ(𝑥, 𝑠) are real

functions, ] = ](𝑥) denotes the unit outward normal at 𝑥 ∈

Γ
1
, and 𝜎 > 1 is a constant.

The parabolic-hyperbolic equation 𝐾𝑢


− Δ(𝑢 − 𝑢

) +

𝑓(𝑢) = 0 when 𝑛 = 1 or 𝑛 = 2; this equation governs the
motion of a nonlinear Kelvin solid.That is, a bar for 𝑛 = 1 and
a plate for 𝑛 = 2, subject to no nonlinear elastic constraints.
The function𝐾 represents the mass density of the solid.

The existence of solutions of the linear problem associated
with (𝑃) (𝐾 = 1, 𝑏

𝑗
= 0, and without the function𝑓(𝑠) = |𝑠|

𝜎
𝑠

and with ℎ(𝑥, 𝑠) = 𝛿(𝑥)𝑠) was established by Komornik and
Zuazua in [1], via semigroup theory and by Milla Miranda
and Medeiros in [2], applying the Galerkin’s method, with
a special basis. The advantage of this second method is to
define the Sobolev space where 𝜕𝑢/𝜕] is lying. In the same
context, applying this second method for a wave equation
with a nonlinear term, Araruna andMaciel [3], derive similar
results. In Cavalcanti et al. [4] the existence of solution and an
exponential decay rate is established supposing 𝑓 = 0 and ℎ

being a particular function considered in our work; see also
Cavalcanti et al. [5].

For the wave equation with 𝐾 = 1 and 𝑏 = 0 there is a
vast literature on this problem. We cite the papers Cavalcanti
et al. [6], Lasiecka and Tataru [7], and references contained
therein for the reader.
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Following the ideas delivered in Milla Miranda and
Medeiros [2], but bringing more technical difficulties, Milla
Miranda and SanGil Jutuca [8] applied theGalerkin’smethod
with a special basis to show the existence of solutions for
Kirchhoff ’s equation with a linear dissipation on the bound-
ary. Applying a similar approach, Lourêdo and Miranda [9]
obtained the existence of solutions for a coupled system of
Kirchhoff ’s equations with nonlinear boundary dissipation.
For other models, but in the same context, we cite to the
reader Lourêdo and Miranda [10], and Lourêdo et al. [11].

Park and Kang studied the existence, uniqueness, and
uniform decay for the nonlinear degenerate equation with
memory condition on the boundary in [12]. For the asymp-
totic behavior they also used the Nakao’s method. de Lima
Santos and Junior [13] studied the equation with a boundary
condition with memory for Kirchhoff plates equations. An
abstract formulation with the coefficient 𝐾 satisfying the
same conditions as in our paper was studied by Pereira
in [14] and was established the existence, uniqueness, and
asymptotic behavior for the solutions associated with a
nonlinear beam equation.

In this paper we are interested in showing the global
existence of solutions for Problem (𝑃) under very general
conditions to be fixed in the next section.

In our approach, we apply the Galerkin’s method for a
perturbed problem and a special basis; an appropriate Strauss’
Lipschitz-continuous approximation ℎ

𝑙
of ℎ; the compact-

ness method; and results on trace mapping of nonsmooth
functions. Finally, the uniform stabilization of solutions is
accomplished by using the Nakao’s method.

2. Notations and Main Results

In order to establish the main results of this paper we assume
the following assumptions on the objects of problem (𝑃):

(H1)

(A1) 𝑏
𝑗
∈ 𝑊
1,∞

(0,∞;𝐶
1
(Ω)) and there exists a posi-

tive constant 𝑏
0
> 0 such that

(A2) div 𝑏(𝑥, 𝑡) ≤ −𝑏
0
∀𝑥 ∈ Γ

1
, 𝑡 ∈ [0,∞), where

𝑏(𝑥, 𝑡) = (𝑏
1
(𝑥, 𝑡), . . . , 𝑏

𝑛
(𝑥, 𝑡));

(H2)

1

𝑛
< 𝜎 ≤

2

𝑛 − 2
if 𝑛 ≥ 3,

𝜎 >
1

𝑛
if 𝑛 = 1, 2.

(1)

(H3) ℎ ∈ 𝐶
0
(R; 𝐿
∞
(Γ
1
)) with ℎ : Γ

1
× R → R strongly

monotone; that is,

[ℎ (𝑥, 𝑠) − ℎ (𝑥, 𝑟)] [𝑠 − 𝑟]

≥ ℎ
0
(𝑠 − 𝑟)

2 a.e. 𝑥 ∈ Γ
1
, ∀𝑠, 𝑟 ∈ R,

(2)

where 2ℎ
0

> ‖𝑏‖
Ω×(0,∞)

. We use the notation 𝑑
0

=

2ℎ
0
− ‖𝑏‖
∞
;

(H4) 𝐾 ∈ 𝐶
1
([0, 𝑇]; 𝐿

∞
(Ω)) with 𝐾(𝑥, 𝑡) ≥ 0, ∀𝑡 ≥ 0, a.e.

𝑥 ∈ Ω and there exists 𝛾 > 0 such that 𝐾(𝑥, 0) ≥ 𝛾 >

0, a.e. 𝑥 ∈ Ω;

(H5) |𝜕𝐾(𝑥, 𝑡)/𝜕𝑡|R ≤ 𝛿 + 𝐶(𝛿)𝐾(𝑥, 𝑡), for all 𝛿 > 0;

(H6) (𝑢0, 𝑢1) ∈ 𝐷(−Δ) × 𝐻
1

0
(Ω).

The scalar product and norm of 𝐿
2
(Ω) are denoted,

respectively, by (⋅, ⋅) and | ⋅ |. By 𝑉 we represent the Hilbert
space 𝑉 = {V ∈ 𝐻

1
(Ω); V = 0 on Γ

0
} which is equipped

with the scalar product and norm

((𝑢, V)) =
𝑛

∑

𝑖=1

(
𝜕𝑢

𝜕𝑥
𝑖

,
𝜕V
𝜕𝑥
𝑖

) ,

‖𝑢‖
2
=

𝑛

∑

𝑖=1



𝜕𝑢

𝜕𝑥
𝑖



2

.

(3)

Theoperator−Δ is defined by the triplet {𝑉, 𝐿2(Ω), ((⋅, ⋅))}.
Then its domain is given by

𝐷(−Δ) = {𝑢 ∈ 𝑉 ∩ 𝐻
2

(Ω) ;
𝜕𝑢

𝜕]
= 0 on Γ

1
} . (4)

From spectral theory it follows that 𝐷(−Δ) is dense in 𝑉; see
[15]. Moreover, it will be denoted

(𝑢, V)
𝐿
2
(Γ
1
)
= ∫
Γ
1

𝑢 (𝑥) V (𝑥) 𝑑Γ,

|𝑢|
2

𝐿
2
(Γ
1
)
= ∫
Γ
1

𝑢
2

(𝑥) 𝑑Γ,

‖𝑢‖
∞

= ess sup
𝑡≥0

‖𝑢 (𝑡)‖
𝐿
∞
(Ω)

.

(5)

Theorem 1. Assume hypotheses (H1)–(H6); there exists at least
a function 𝑢 : Ω × (0,∞) → R in the class

𝑢 ∈ 𝐿
∞

loc (0,∞;𝑉) ,

𝑢

∈ 𝐿
∞

loc (0,∞;𝑉) ,

𝑢

∈ 𝐿
∞

loc (0,∞; 𝐿
2

(Ω)) ,

Δ𝑢 ∈ 𝐿
∞

loc (0,∞; 𝐿
2

(Ω)) ,

𝜕𝑢

𝜕]
∈ 𝐿
1

loc (0,∞; 𝐿
1
(Γ
1
)) ,

(6)
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satisfying

𝐾𝑢

− Δ𝑢 +

𝑛

∑

𝑗=1

𝑏
𝑗

𝜕𝑢


𝜕𝑥
𝑗

+ |𝑢|
𝜎
𝑢 = 0

𝑖𝑛 𝐿
∞

loc (0,∞; 𝐿
2

(Ω)) ,

𝜕𝑢

𝜕]
+ ℎ (⋅, 𝑢


) = 0 𝑖𝑛 𝐿

1

loc (0,∞; 𝐿
1
(Γ
1
)) ,

𝑢 (0) = 𝑢
0
, 𝑢


(0) = 𝑢
1

𝑖𝑛 Ω.

(7)

In addition, if

(H7) |ℎ(𝑥, 𝑠)| ≤ ℎ
1
|𝑠| ∀𝑠 ∈ R and a.e. 𝑥 in Γ

1
(ℎ
1
a positive

constant), holds true, we have the following result.

Corollary 2. Under the hypothesis ofTheorem 1 and (H7), the
solution 𝑢 of Problem (𝑃) (obtained in Theorem 1) is unique
and has the following regularity:

𝑢 ∈ 𝐿
∞

loc (0,∞;𝑉) ∩ 𝐿
2

loc (0,∞;𝐻
3/2

(Ω)) ,

𝑢

∈ 𝐿
∞

loc (0,∞;𝑉) ,

𝑢

∈ 𝐿
∞

loc (0,∞; 𝐿
2

(Ω)) ,

𝐾𝑢

− Δ𝑢 +

𝑛

∑

𝑗=1

𝑏
𝑗

𝜕𝑢


𝜕𝑥
𝑗

+ |𝑢|
𝜎
𝑢 = 0

𝑖𝑛 𝐿
∞

loc (0,∞; 𝐿
2

(Ω)) ,

𝜕𝑢

𝜕]
+ ℎ (⋅, 𝑢


) = 0 𝑖𝑛 𝐿

2

loc (0,∞; 𝐿
2
(Γ
1
)) ,

𝑢 (0) = 𝑢
0
, 𝑢


(0) = 𝑢
1

𝑖𝑛 Ω.

(8)

Remark 3. If we replace the function 𝑓(𝑠) = |𝑠|
𝜎
𝑠 in

Theorem 1 by a continuous function 𝑔 such that

[𝑔 (𝑠) − 𝑔 (𝑟)] (𝑠 − 𝑟)

≥ 𝑔
0
(𝑠 − 𝑟)

2
, ∀𝑠, 𝑟 ∈ R, (𝑔

0
a positive constant) ,

(9)

and further

𝑔 (𝑠)
 ≤ 𝑔
1
|𝑠| , ∀𝑠 ∈ R, (10)

Theorem 1 remains valid. Indeed, from (10), we obtain

𝑔𝑙 (𝑠)
 ≤ 𝑔
1
|𝑠| , ∀𝑠 ∈ R, (11)

where (𝑔
𝑙
) is the Strauss’ approximations (see [16]) of the

function 𝑔.

Remark 4. Analogously if |ℎ(𝑥, 𝑠)| ≤ ℎ
1
|𝑠| ∀𝑠 ∈ R and a.e. 𝑥

in Γ
1
(ℎ
1
a positive constant), we obtain |ℎ

𝑙
(𝑥, 𝑠)| ≤ (3/2)ℎ

1
|𝑠|

for all 𝑠 ∈ R (see [10]).

For use later, note that

|𝑤|
2
≤

1

𝜆
1

‖𝑤‖
2
,

‖𝑤‖
𝐿
2
(Γ
1
)
≤ 𝑘
1
‖𝑤‖ ,

∀𝑤 ∈ 𝑉, (𝑘
1
positive constants) ;

(12)

where 𝜆
1
is the first eigenvalue of the spectral problem ((𝑢,

V)) = 𝜆(𝑢, V) for all V ∈ 𝑉 (see [15]).
In order to establish the uniform decay rate for energy, we

assume

(H8) ‖𝐾‖
∞

< 𝑏
0
/2;

(H9) ‖𝐾‖
∞

= ess sup
𝑡≥0

‖𝐾(𝑡)‖
𝐿
∞
(Ω)

;
(H10) ‖ div 𝑏‖

∞
≤ 𝛿
0
;

(H11) ‖𝑏‖
∞

< (21/32)𝜆
1
, 𝑏
0
> (32(1/𝜆

1
)/𝑀)‖𝐾‖

∞
, ‖𝐾‖
∞

>

‖𝑏‖
∞
/2 + 8(1/𝜆

1
)/𝑀, where𝑀 = min{1, 1 − (9/32 +

(1/𝜆
1
)‖𝑏‖
∞
)}.

Remark 5. There are functions that satisfy hypothesis (H5)
and (H8). In fact, the function 𝐾(𝑥, 𝑡) = (𝛼(𝑥)/‖𝛼‖

∞
)𝛽(𝑡)

with 𝛼 ∈ 𝐶
1
(Ω), 𝛼(𝑥) ≥ 0, and 𝛽(𝑡) = (𝑏

0
/4)𝑒
−𝑡 satisfies such

hypothesis, since


𝐾


(𝑥, 𝑡)

≤

𝛼 (𝑥)

‖𝛼‖
∞

𝑏
0

4
𝑒
−𝑡

≤
𝑏
0

4
<

𝑏
0

2
, (13)

and so

𝐾


(𝑥, 𝑡)

≤ 𝛿 + 𝐾 (𝑥, 𝑡) , ∀𝛿 ≥ 0. (14)

Theorem 6. Under the hypothesis of Theorem 1 and (H7)–
(H11), with ℎ

1
(𝑠) satisfying (9) and (10), the energy

𝐸 (𝑡) =
1

2
{𝐾
1/2

(𝑡)

𝑢


(𝑡)


2

+ ‖𝑢 (𝑡)‖
2

+
2

𝜎 + 2
∫
Ω

|𝑢 (𝑡)|
𝜎+2

𝑑𝑥} 𝑓𝑜𝑟 𝑡 ≥ 1,

(15)

associated with the solution, 𝑢, obtained in Corollary 2 is
uniformly stable; that is, there exists a positive constant such
that

𝐸 (𝑡) ≤ 𝐶 exp (−𝜛𝑡) , ∀𝑡 ≥ 1, (16)

where 𝐶 and 𝜛 are positive constants.

For use later, we observe that hypothesis in (𝐻3)
1
on 𝜎

implies 𝑞
∗

= 2𝑛/(𝑛 − 2) ≥ 2𝜎 + 2 and 𝑞
∗

≥ 𝜎𝑛. Thus, the
Sobolev’s embedding gives

𝑉 → 𝐿
𝑞
∗

(Ω) → 𝐿
2𝜎+2

(Ω) for 𝑛 ≥ 3,

𝑉 → 𝐿
2𝜎+2

(Ω) for 𝑛 = 1, 2,

(17)

𝑉 → 𝐿
𝑞
∗

(Ω) → 𝐿
𝜎𝑛

(Ω) for 𝑛 ≥ 3,

𝑉 → 𝐿
𝜎𝑛

(Ω) for 𝑛 = 1, 2.

(18)
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Here, 𝑋 → 𝑌 indicates that the subspace 𝑋 is continuously
embedded in the space 𝑌.

Next, following the ideas contained in Strauss [16], we
approximate the function ℎ by Lipschitz-continuous ones ℎ

𝑙
.

3. Proof of Theorem 1

For our purposes we need the following previous results,
whose proof can be seen in [10].

Lemma 7. Let ℎ be a function satisfying hypothesis (H3).Then
there exists a sequence (ℎ

𝑙
) of functions in 𝐶

0
(R; 𝐿
∞
(Γ
1
)) such

that

(i) ℎ
𝑙
(𝑥, 0) = 0 a.e. 𝑥 in Γ

1
;

(ii) [ℎ
𝑙
(𝑥, 𝑠) − ℎ

𝑙
(𝑥, 𝑟)](𝑠 − 𝑟) ≥ ℎ

0
(𝑠 − 𝑟)

2, ∀𝑠, 𝑟 ∈ R, and
a.e. 𝑥 in Γ

1
; (ℎ
0
positive constant);

(iii) for any 𝑙 there exists a function 𝑐
𝑙
in 𝐿
∞
(Γ
1
) satisfying

ℎ𝑙 (𝑥, 𝑠) − ℎ
𝑙
(𝑥, 𝑟)



≤ 𝑐
𝑙
|𝑠 − 𝑟| , ∀𝑠, 𝑟 ∈ R, 𝑎.𝑒. 𝑥 𝑖𝑛 Γ

1
;

(19)

(iv) (ℎ
𝑙
) converges to 𝑔 uniformly on bounded sets onR and

a.e. 𝑥 in Γ
1
.

Lemma 8. Let 𝑇 > 0 be a real number. Consider the sequence
(𝑤
𝑙
) of vectors in 𝐿

2
(0, 𝑇;𝐻

−1/2
(Γ
1
)) ∩ 𝐿

1
(0, 𝑇; 𝐿

1
(Γ
1
)) and

vectors 𝑤 ∈ 𝐿
2
(0, 𝑇;𝐻

−1/2
(Γ
1
)) and 𝜒 ∈ 𝐿

1
(0, 𝑇; 𝐿

1
(Γ
1
)) such

that

(i) 𝑤
𝑙
→ 𝑤 weak in 𝐿

2
(0, 𝑇;𝐻

−1/2
(Γ
1
));

(ii) 𝑤
𝑙
→ 𝜒 in 𝐿

1
(0, 𝑇; 𝐿

1
(Γ
1
)).

Then, 𝑤 = 𝜒.

Lemma 9. Let 𝑝 : R → R be a globally Lipschitz-continuous
function with 𝑝(0) = 0 and let

𝛾
0
: 𝑉 → 𝐻

1/2
(Γ
1
) (20)

be the continuous trace of order zero. Consider 𝑢 ∈ 𝐿
2
(0, 𝑇; 𝑉)

then 𝑝(𝑢) ∈ 𝐿
2
(0, 𝑇; 𝑉), 𝑝(𝛾

0
𝑢) ∈ 𝐿

2
(0, 𝑇;𝐻

1/2
(Γ
1
)), and

𝛾
0
𝑝(𝑢(𝑡)) = 𝑝(𝛾

0
𝑢(𝑡)) a.e. 𝑡 ∈ (0, 𝑇).

Proof. We see that

𝑝 : 𝑉 → 𝑉,

𝑝 : 𝐻
1/2

(Γ
1
) → 𝐻

1/2
(Γ
1
)

(21)

are continuous maps (see Brezis and Cazenave [17] and
Marcus and Mizel [18]). Let V ∈ 𝑉. Consider a sequence (V

𝑘
)

of functions of 𝐶1(Ω) such that

V
𝑘
→ V in 𝑉. (22)

Then by (21) and (22), we have 𝑝(V
𝑘
) → 𝑝(V) in 𝑉, and by

(20)

𝛾
0
𝑝 (V
𝑘
) → 𝛾

0
𝑝 (V) in 𝐻

1/2
(Γ
1
) . (23)

Also by (20) and (22), we deduce

𝑝 (𝛾
0
V
𝑘
) → 𝑝 (𝛾

0
V) in 𝐻

1/2
(Γ
1
) . (24)

As 𝛾
0
𝑝(V
𝑘
) = 𝑝(𝛾

0
V
𝑘
), it follows from (23) and (24) that

𝛾
0
𝑝(V) = 𝑝(𝛾

0
V). This implies

𝛾
0
𝑝 (𝑢 (𝑡)) = 𝑝 (𝛾

0
𝑢 (𝑡)) a.e. in (0, 𝑇) . (25)

Now, we consider the set O = {𝑠 ∈ R : 𝑝 is not
differentiable in 𝑠}. Then

𝜕

𝜕𝑥
𝑖

𝑝 (𝑢 (𝑥, 𝑡))

=

{{

{{

{

𝑝

(𝑢 (𝑥, 𝑡))

𝜕𝑢

𝜕𝑥
𝑖

(𝑥, 𝑡) , 𝑢 (𝑥, 𝑡) ∉ O,

0, 𝑢 (𝑥, 𝑡) ∈ O,

(26)

with 𝑖 = 1, 2, . . . , 𝑛 (see Brezis and Cazenave, loc. cit). As 𝑝 ∈
𝐿
∞
(R) then

𝑝 (𝑢) ∈ 𝐿
2

(0, 𝑇; 𝑉) . (27)

From this and since 𝛾
0

: 𝐿
2
(0, 𝑇; 𝑉) → 𝐿

2
(0, 𝑇;𝐻

1/2
(Γ
1
))

then 𝛾
0
𝑝(𝑢) ∈ 𝐿

2
(0, 𝑇;𝐻

1/2
(Γ
1
)). This and (25) furnish

𝑝 (𝛾
0
𝑢) ∈ 𝐿

2
(0, 𝑇;𝐻

1/2
(Γ
1
)) . (28)

From (25) to (28) we have the results of this Lemma.

Proof of Theorem 1. We will use the Faedo-Galerkin’s method
with a special basis of 𝑉 ∩ 𝐻

2
(Ω). Thus, let us consider the

Strauss’ approximation (ℎ
𝑙
) of ℎ given by Lemma 7. Let us

consider (𝑢1
𝑙
) a sequence of vectors inD(Ω) such that

𝑢
1

𝑙
→ 𝑢
1 in 𝐻

1

0
(Ω) . (29)

Note that ℎ
𝑙
(𝑥, 𝑢
1

𝑙
) = 0 and 𝜕𝑢

0
/𝜕] = 0 on Γ

1
since 𝑢

0
∈

𝐷(−Δ). Thus,

𝜕𝑢
0

𝜕]
+ ℎ
𝑙
(⋅, 𝑢
1

𝑙
) = 0 on Γ

1
, ∀𝑙. (30)

Now, we fix 𝑙 and construct the basis {𝑤
𝑙

1
, 𝑤
𝑙

2
, . . . , } of 𝑉 ∩

𝐻
2
(Ω) such that 𝑢

0, 𝑢
1

𝑙
belong to the subspace [𝑤

𝑙

1
, 𝑤
𝑙

2
]

spanned by 𝑤
𝑙

1
and 𝑤

𝑙

2
. Let 𝑉

𝑙

𝑚
= [𝑤

𝑙

1
, 𝑤
𝑙

2
, . . . , 𝑤

𝑙

𝑚
] be the

subspace of𝑉∩𝐻
2
(Ω) spanned by𝑤𝑙

1
, . . . , 𝑤

𝑙

𝑚
.With this basis



Journal of Applied Mathematics 5

we determine the approximate solutions 𝑢
𝜀𝑙𝑚

(𝑡) of Problem
(𝐴𝑃), where 0 < 𝜀 < 1 fixed.

Approximated Perturbed Problem. This consists to find the
functions 𝑢

𝜀𝑙𝑚
(𝑡) = ∑

𝑚

𝑗=1
𝑔
𝜀𝑗𝑙𝑚

(𝑡)𝑤
𝑙

𝑗
, solutions of the problem

((𝐾 (𝑡) + 𝜀) 𝑢


𝜀𝑙𝑚
(𝑡) , 𝑤

𝑙

𝑗
) + ((𝑢

𝜀𝑙𝑚
(𝑡) , 𝑤

𝑙

𝑗
))

+ (

𝑛

∑

𝑗=1

𝑏
𝑗
(𝑡)

𝜕𝑢


𝜀𝑙𝑚
(𝑡)

𝜕𝑥
𝑗

, 𝑤
𝑙

𝑗
)

+ (
𝑢𝜀𝑙𝑚 (𝑡)



𝜎

𝑢
𝜀𝑙𝑚

(𝑡) , 𝑤
𝑙

𝑗
)

+ (ℎ
𝑙
(⋅, 𝑢


𝜀𝑙𝑚
(𝑡)) , 𝑤

𝑙

𝑗
)
𝐿
2
(Γ
1
)

= 0, 𝑗 = 1, 2, . . . , 𝑚,

𝑢
𝜀𝑙𝑚

(0) = 𝑢
0
,

𝑢


𝜀𝑙𝑚
(0) = 𝑢

1

𝑙
.

(𝐴𝑃)

The above finite-dimensional system has a solution,
𝑢
𝜀𝑙𝑚

(𝑡), defined on [0, 𝑡
𝜀𝑙𝑚

[. The following estimate allows us
to extend this solution to the whole interval [0,∞).

3.1. Estimates

3.1.1. First Estimate. Considering 𝑤 = 2𝑢


𝜀𝑙𝑚
(𝑡) in (𝐴𝑃)

1
,

integrating from 0 to 𝑡 (0 ≤ 𝑡 < 𝑡
𝜀𝑙𝑚

), using the fact that
ℎ
𝑙
(𝑥, 𝑠)𝑠 ≥ ℎ

0
𝑠
2 (see Part (ii) of Lemma 7), assumptions (𝐻4)

and (𝐻5), and since 0 < 𝜀 < 1, we obtain

(𝐾 (𝑡) , 𝑢
2

𝜀𝑙𝑚
(𝑡)) + 𝜀


𝑢


𝜀𝑙𝑚
(𝑡)



2

+
𝑢𝜀𝑙𝑚 (𝑡)



2

+
2

𝜎 + 2
∫
Ω

𝑢𝜀𝑙𝑚 (𝑡)


𝜎+2

𝑑𝑥

+ 2ℎ
0
∫

𝑡

0

∫
Γ
1

(𝑢


𝜀𝑙𝑚
(𝑥, 𝑠))

2

𝑑Γ 𝑑𝑠

+ 2∫

𝑡

0

𝑛

∑

𝑗=1

∫
Ω

𝑏
𝑗
(𝑠)

𝜕𝑢


𝜀𝑙𝑚
(𝑠)

𝜕𝑥
𝑗

𝑢


𝜀𝑙𝑚
(𝑠) 𝑑𝑥 𝑑𝑠

≤

𝑢
1

𝑙



2

+

𝑢
0

2

+ |𝐾 (0)|

𝑢
1

𝑙



2

+
2

𝜎 + 2
∫
Ω


𝑢
0

𝜎+2

𝑑𝑥

+ ∫

𝑡

0

[𝛿

𝑢


𝜀𝑙𝑚
(𝑠)



2

+ 𝐶 (𝛿) (𝐾 (𝑠) , 𝑢
2

𝜀𝑙𝑚
(𝑠))] 𝑑𝑠.

(31)

Note that

𝑛

∑

𝑗=1

∫
Ω

𝑏
𝑗
(𝑡)

𝜕𝑢


𝜀𝑙𝑚

𝜕𝑥
𝑗

(𝑡) 𝑢


𝜀𝑙𝑚
(𝑡) 𝑑𝑥 = −

1

2
∫
Ω

div (𝑏) 𝑢


𝜀𝑙𝑚



2

𝑑𝑥

+
1

2
∫
Γ
1

𝑏 ⋅ ]

𝑢


𝜀𝑙𝑚



2

𝑑Γ.

(32)

In fact, by the Gauss’s formula we have

∫
Ω

𝑏
𝑗
𝑢


𝜀𝑙𝑚

𝜕𝑢


𝜀𝑙𝑚

𝜕𝑥
𝑗

𝑑𝑥 = −
1

2
∫
Ω

𝜕𝑏
𝑗

𝜕𝑥
𝑗


𝑢


𝜀𝑙𝑚



2

𝑑𝑥

+
1

2
∫
Γ
1

𝑏
𝑗
]
𝑗


𝑢


𝜀𝑙𝑚



2

𝑑Γ,

(33)

where ]
𝑗
is the 𝑗th entry of the normal vector ]. Hence, by

(𝐴2) we obtain

∫

𝑡

0

𝑛

∑

𝑗=1

∫
Ω

𝑏
𝑗
𝑢


𝜀𝑙𝑚

𝜕𝑢


𝜀𝑙𝑚
(𝑠)

𝜕𝑥
𝑗

𝑑𝑥 𝑑𝑠

≥
𝑏
0

2
∫

𝑡

0

∫
Ω


𝑢


𝜀𝑙𝑚
(𝑠)



2

𝑑𝑥 𝑑𝑠

+
1

2
∫

𝑡

0

∫
Γ
1

𝑏 (𝑠) ⋅ ]

𝑢


𝜀𝑙𝑚
(𝑡)



2

𝑑Γ 𝑑𝑠.

(34)

Using the hypothesis div 𝑏(𝑡) ≤ −𝑏
0
, choosing 𝛿 = 𝑏

0
/4 > 0,

and plugging (34) in (31), we find

(𝐾 (𝑡) , 𝑢
2

𝜀𝑙𝑚
(𝑡)) + 𝜀


𝑢


𝜀𝑙𝑚
(𝑡)



2

+
𝑢𝜀𝑙𝑚 (𝑡)



2

+
𝑏
0

2
∫

𝑡

0


𝑢


𝜀𝑙𝑚
(𝑠)



2

𝑑𝑠 +
2

𝜎 + 2
∫
Ω

𝑢𝜀𝑙𝑚 (𝑡)


𝜎+2

𝑑𝑥

+ 𝑑
0
∫

𝑡

0

∫
Γ
1

(𝑢


𝜀𝑙𝑚
(𝑥, 𝑠))

2

𝑑Γ 𝑑𝑠

≤ 𝑐
0


𝑢
1

2

+

𝑢
0

2

+ 𝑐
1


𝑢
0

𝜎+2

+ 𝐶 (𝛿) ∫

𝑡

0

(𝐾 (𝑠) , 𝑢
2

𝜀𝑙𝑚
(𝑠)) 𝑑𝑠,

(35)

where 𝑑
0
= 2ℎ
0
− ‖𝑏‖
∞
/2 > 0 for all 𝑙 ≥ 𝑙

0
, ∀𝑚 and 0 < 𝜀 < 1.

Moreover, ‖V‖
𝐿
𝜎+2
(Ω)

≤ 𝑐
1
‖V‖ for all V ∈ 𝑉. Therefore by the

Gronwall’s inequality and (35)

(𝐾
1/2

𝑢


𝜀𝑙𝑚
) is bounded in 𝐿

∞

loc (0,∞; 𝐿
2

(Ω)) ,

(𝑢
𝜀𝑙𝑚

) is bounded in 𝐿
∞

loc (0,∞;𝑉) ,

(𝑢


𝜀𝑙𝑚
) is bounded in 𝐿

2

loc (0,∞; 𝐿
2
(Γ
1
)) .

(36)

3.1.2. Second Estimate. Differentiating with respect to 𝑡 the
approximate equation (𝐴𝑃)

1
and taking 𝑤 = 2𝑢



𝜀𝑙𝑚
(𝑡), we

obtain

𝑑

𝑑𝑡
(𝐾 (𝑡) 𝑢



𝜀𝑙𝑚
(𝑡) , 𝑢


𝜀𝑙𝑚
(𝑡)) +

𝑑

𝑑𝑡
𝜀

𝑢


𝜀𝑙𝑚
(𝑡)



2

+
𝑑

𝑑𝑡


𝑢


𝜀𝑙𝑚
(𝑡)



2

+ (𝐾


(𝑡) 𝑢


𝜀𝑙𝑚
(𝑡) , 𝑢


𝜀𝑙𝑚
(𝑡))

+ 2∫
Γ
1

ℎ


𝑙
(⋅, 𝑢


𝜀𝑙𝑚
(𝑡))


𝑢


𝜀𝑙𝑚
(𝑡)



2

𝑑Γ
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𝑛

∑

𝑖=1

(𝑏
𝑖

𝜕𝑢


𝜀𝑙𝑚
(𝑡)

𝜕𝑥
𝑖

, 𝑢


𝜀𝑙𝑚
(𝑡))

+ 2 (𝜎 + 1) (
𝑢𝜀𝑙𝑚 (𝑡)



𝜎

𝑢


𝜀𝑙𝑚
(𝑡) , 𝑢


𝜀𝑙𝑚
(𝑡))

+ 2

𝑛

∑

𝑖=1

(𝑏


𝑖
(𝑡)

𝜕𝑢


𝜀𝑙𝑚
(𝑡)

𝜕𝑥
𝑖

(𝑡) , 𝑢


𝜀𝑙𝑚
(𝑡) (𝑡)) = 0.

(37)

Note that

𝑛

∑

𝑗=1

(𝑏
𝑗
(𝑡)

𝜕𝑢


𝜀𝑙𝑚
(𝑡)

𝜕𝑥
𝑗

(𝑡) , 𝑢


𝜀𝑙𝑚
(𝑡))

= −
1

2
∫
Ω

div (𝑏) 𝑢


𝜀𝑙𝑚
(𝑡)



2

𝑑𝑥 +
1

2
∫
Γ
1

𝑏 (𝑡) ⋅ ]

𝑢


𝜀𝑙𝑚
(𝑡)



2

𝑑Γ

(38)

and that


𝑛

∑

𝑗=1

(𝑏


𝑗
(𝑡)

𝜕𝑢


𝜀𝑙𝑚
(𝑡)

𝜕𝑥
𝑗

, 𝑢


𝜀𝑙𝑚
(𝑡))



≤ 𝑛 max
1≤𝑗≤𝑛


𝑏


𝑗

∞



𝜕𝑢


𝜀𝑙𝑚

𝜕𝑥
𝑗

(𝑡)




𝑢


𝜀𝑙𝑚
(𝑡)



≤ 𝑛 max
1≤𝑗≤𝑛


𝑏


𝑗

∞


∇𝑢


𝜀𝑙𝑚
(𝑡)




𝑢


𝜀𝑙𝑚
(𝑡)



≤

𝑛
1/2max

1≤𝑗≤𝑛


𝑏


𝑗

∞

2
𝐶
𝜌


∇𝑢


𝜀𝑙𝑚
(𝑡)



2

+ 𝜌

𝑢


𝜀𝑙𝑚
(𝑡)



2

,

(39)

where the last inequality becomes from Young’s inequality.
Therefore, if

𝐾
2
:= 𝐶
𝜌

𝑛
1/2max

1≤𝑗≤𝑛


𝑏
𝑗

∞

2
, (40)

then | ∑
𝑛

𝑗=1
(𝑏


𝑗
(𝑡)(𝜕𝑢



𝜀𝑙𝑚
(𝑡)/𝜕𝑥

𝑗
)(𝑡), 𝑢



𝜀𝑙𝑚
(𝑡))| ≤ 𝐾

2
‖𝑢


𝜀𝑙𝑚
(𝑡)‖
2
+

𝜌|𝑢


𝜀𝑙𝑚
(𝑡)|
2. Combining this inequality and (38) with (37),

after that using that ℎ


𝑙
(⋅, 𝑠) ≥ ℎ

0
, div 𝑏(𝑡) ≤ −𝑏

0
and

integrating from 0 to 𝑡, we obtain

(𝐾 (𝑡) , 𝑢
2

𝜀𝑙𝑚
(𝑡)) + 𝜀


𝑢


𝜀𝑙𝑚
(𝑡)



2

+

𝑢


𝜀𝑙𝑚
(𝑡)



2

+ (
𝑏
0

2
− 𝜌)∫

𝑡

0


𝑢


𝜀𝑙𝑚
(𝑠)



2

𝑑𝑠

+ (2ℎ
0
−

‖𝑏‖
∞

2
)∫

𝑡

0

∫
Γ
1


𝑢


𝜀𝑙𝑚
(𝑠)



2

𝑑Γ 𝑑𝑠

≤

𝑢


𝜀𝑙𝑚
(0)



2

+

𝑢
1

𝑙



2

+

𝐾
1/2

(0)



𝑢


𝜀𝑙𝑚
(0)



− 2 (𝜎 + 1) ∫

𝑡

0

(
𝑢𝜀𝑙𝑚 (𝑠)



𝜎

𝑢


𝜀𝑙𝑚
(𝑠) , 𝑢


𝜀𝑙𝑚
(𝑠)) 𝑑𝑠

+ 𝛿∫

𝑡

0


𝑢


𝜀𝑙𝑚
(𝑠)



2

𝑑𝑠 + 𝐾
2
∫

𝑡

0


𝑢


𝜀𝑙𝑚
(𝑠)



2

+ ∫

𝑡

0

𝐶 (𝛿) (𝐾 (𝑠) , 𝑢
2

𝜀𝑙𝑚
(𝑠)) 𝑑𝑠.

(41)

We also have used the above hypotheses (H4) and (H5). Now,
by Hölder’s inequality for 1/𝑞∗

1
+ 1/𝑛 + 1/2 = 1, embedding

(18) and first estimate (36), we find

(
𝑢𝜀𝑙𝑚 (𝑡)



𝜎

𝑢


𝜀𝑙𝑚
(𝑡) , 𝑢


𝜀𝑙𝑚
(𝑡))



≤ (∫
Ω

𝑢𝜀𝑙𝑚 (𝑡)


𝜎𝑛

)

1/𝑛

(∫
Ω


𝑢


𝜀𝑙𝑚
(𝑡)



𝑞
∗

1

)

1/𝑞
∗

1

⋅ (∫
Ω


𝑢


𝜀𝑙𝑚
(𝑡)



2

)

1/2

≤ 𝐶
𝑢𝜀𝑙𝑚 (𝑡)



𝜎 
𝑢


𝜀𝑙𝑚
(𝑡)




𝑢


𝜀𝑙𝑚
(𝑡)



≤ 𝐶

𝑢


𝜀𝑙𝑚
(𝑡)




𝑢


𝜀𝑙𝑚
(𝑡)



≤ 𝐶
𝜂


𝑢


𝑙𝑚
(𝑡)



2

+ 𝜂

𝑢


𝑙𝑚
(𝑡)



2

,

(42)

where the constant 𝐶 is independent of 𝑙,𝑚, 𝜀 and 𝑡 ≥ 0, and
𝐶
𝜂
is a positive constant that depends on 𝜂. Substituting this

inequality in (41) yields

(𝐾 (𝑡) 𝑢


𝜀𝑙𝑚
(𝑡) , 𝑢


𝜀𝑙𝑚
(𝑡)) + 𝜀


𝑢


𝜀𝑙𝑚
(𝑡)



2

+

𝑢


𝜀𝑙𝑚
(𝑡)



2

(
𝑏
0

2
− (𝜌 + 𝜂))∫

𝑡

0


𝑢


𝜀𝑙𝑚
(𝑠)



2

𝑑𝑠

+ (2ℎ
0
−

‖𝑏‖
∞

2
)∫

𝑡

0

∫
Γ
1


𝑢


𝜀𝑙𝑚
(𝑠)



2

𝑑Γ 𝑑𝑠

≤

𝑢


𝜀𝑙𝑚
(0)



2

+

𝑢
1

𝑙



2

+ sup
𝑥∈Ω

𝐾 (𝑥, 0)

𝑢


𝜀𝑙𝑚
(0)



2

+ 𝐾
2
∫

𝑡

0


𝑢


𝜀𝑙𝑚
(𝑠)



2

+ 𝛿∫

𝑡

0


𝑢


𝜀𝑙𝑚
(𝑠)



2

𝑑𝑠

+ ∫

𝑡

0

𝐶 (𝛿) (𝐾 (𝑠) 𝑢


𝜀𝑙𝑚
(𝑠) , 𝑢


𝜀𝑙𝑚
(𝑠)) 𝑑𝑠.

(43)

Choosing 𝛿 = 𝑏
0
/4 and 𝜌, 𝜂 small such that 𝑏

1
= (𝑏
0
/2 − (𝜌 +

𝜂)) > 0, we find

(𝐾 (𝑡) , 𝑢
2

𝜀𝑙𝑚
(𝑡)) + 𝜀


𝑢


𝜀𝑙𝑚
(𝑡)



2

+

𝑢


𝜀𝑙𝑚
(𝑡)



2

+ 𝑏
1
∫

𝑡

0


𝑢


𝜀𝑙𝑚
(𝑠)



2

𝑑𝑠 + 𝑑
0
∫

𝑡

0

∫
Γ
1


𝑢


𝜀𝑙𝑚
(𝑠)



2

𝑑Γ 𝑑𝑠

≤

𝑢


𝜀𝑙𝑚
(0)



2

+

𝑢
1

𝑙



2

+ sup
𝑥∈Ω

𝐾 (𝑥, 0)

𝑢


𝜀𝑙𝑚
(0)



2

+ 𝐾
2
∫

𝑡

0


𝑢


𝜀𝑙𝑚
(𝑠)



2

+ 𝐶 (𝛿) (𝐾 (𝑠) 𝑢


𝜀𝑙𝑚
(𝑠) , 𝑢


𝜀𝑙𝑚
(𝑠)) 𝑑𝑠.

(44)
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Now we need to derive an estimate for (𝑢
𝜀𝑙𝑚

(0)). Thus, taking
𝑡 = 0 in approximate Problem (𝐴𝑃)

1
and choosing V =

𝑢


𝜀𝑙𝑚
(0), one has

((𝐾 (0) + 𝜀) 𝑢


𝜀𝑙𝑚
(0) , 𝑢



𝜀𝑙𝑚
(0)) + ((𝑢

0
, 𝑢


𝜀𝑙𝑚
(0)))

+ ∫
Γ
1

ℎ
𝑙
(⋅, 𝑢
1

𝑙
) 𝑢


𝜀𝑙𝑚
(0) 𝑑Γ +

𝑛

∑

𝑖=1

(𝑏
𝑗
(0)

𝜕𝑢
1

𝑙

𝜕𝑥
𝑖

, 𝑢


𝜀𝑙𝑚
(0))

+ (

𝑢
0

𝜎

𝑢
0
, 𝑢


𝜀𝑙𝑚
(0)) = 0.

(45)

Applying Green’s formula

((𝐾 (0) + 𝜀) 𝑢


𝜀𝑙𝑚
(0) , 𝑢



𝜀𝑙𝑚
(0)) − (Δ𝑢

0
, 𝑢


𝜀𝑙𝑚
(0))

+ ∫
Γ
1

[
𝜕𝑢
0

𝜕]
+ ℎ
𝑙
(⋅, 𝑢
1

𝑙
)] 𝑢


𝜀𝑙𝑚
(0) 𝑑Γ

+

𝑛

∑

𝑖=1

(𝑏
𝑗
(0)

𝜕𝑢
1

𝑙

𝜕𝑥
𝑖

, 𝑢


𝜀𝑙𝑚
(0)) + (


𝑢
0

𝜎

𝑢
0
, 𝑢


𝜀𝑙𝑚
(0)) = 0.

(46)

Thanks to (30), the integrals on Γ
1
in (46) are null. Using

convergence (29), embedding (17), and the hypothesis (H4)
give


𝑢


𝜀𝑙𝑚
(0)


≤ 𝐶, ∀𝑙, 𝑚, 𝜀. (47)

From this boundedness and (46), we get

(𝐾 (𝑡) 𝑢


𝜀𝑙𝑚
(𝑡) , 𝑢


𝜀𝑙𝑚
(𝑡)) + 𝜀


𝑢


𝜀𝑙𝑚
(𝑡)



2

+

𝑢


𝜀𝑙𝑚
(𝑡)



2

+ 𝑏
1
∫

𝑡

0


𝑢


𝜀𝑙𝑚
(𝑠)



2

𝑑𝑠 + 𝑑
0
∫

𝑡

0

∫
Γ
1


𝑢


𝜀𝑙𝑚
(𝑠)



2

𝑑Γ 𝑑𝑠

≤ 𝐶
1
+ 𝐾
2
∫

𝑡

0


𝑢


𝜀𝑙𝑚
(𝑠)



2

+ ∫

𝑡

0

𝐶 (𝛿) (𝐾 (𝑠) 𝑢


𝜀𝑙𝑚
(𝑡) , 𝑢


𝜀𝑙𝑚
(𝑠)) 𝑑𝑠,

(48)

where 𝐶
1
is constant independent of 𝑙, 𝑚, and 𝜀. Applying

Gronwall’s inequality in (48) and using estimate (47), we have

(𝐾
1/2

𝑢


𝜀𝑙𝑚
) is bounded in 𝐿

∞

loc (0,∞; 𝐿
2

(Ω)) ;

(𝑢


𝜀𝑙𝑚
) is bounded in 𝐿

2

loc (0,∞; 𝐿
2

(Ω)) ;

(𝑢


𝜀𝑙𝑚
) is bounded in 𝐿

∞

loc (0,∞;𝑉) ;

(𝑢


𝜀𝑙𝑚
) is bounded in 𝐿

2

loc (0,∞; 𝐿
2
(Γ
1
)) .

(49)

From estimates (36), (49), induction, and diagonal process,
we obtain a subsequence of (𝑢

𝜀𝑙𝑚
), which is still denoted by

(𝑢
𝜀𝑙𝑚

), and a function 𝑢
𝜀𝑙
: Ω×]0,∞[→ R, such that

𝑢
𝜀𝑙𝑚

→ 𝑢
𝜖𝑙
weak star in 𝐿

∞

loc (0,∞;𝑉) ;

𝑢


𝜀𝑙𝑚
→ 𝑢


𝜖𝑙
weak star in 𝐿

∞

loc (0,∞;𝑉) ;

𝐾𝑢


𝜀𝑙𝑚
→ 𝐾𝑢



𝜖𝑙
weak star in 𝐿

∞

loc (0,∞; 𝐿
2

(Ω)) ;

𝑢


𝜀𝑙𝑚
→ 𝑢


𝜖𝑙
weak in 𝐿

2

loc (0,∞; 𝐿
2
(Γ
1
)) ;

𝑢


𝜀𝑙𝑚
→ 𝑢


𝜖𝑙
weak in 𝐿

2

loc (0,∞; 𝐿
2
(Γ
1
)) .

(50)

From the convergence (49)
2
we obtain

𝑛

∑

𝑖=1

𝑏
𝑗
⋅
𝜕𝑢


𝜀𝑙𝑚

𝜕𝑥
𝑗

→

𝑛

∑

𝑖=1

𝑏
𝑗
⋅
𝜕𝑢


𝜀𝑙

𝜕𝑥
𝑗

weak star in 𝐿
∞

loc (0,∞; 𝐿
2

(Ω)) .

(51)

3.1.3. Analysis of the Nonlinear Terms. By estimates (36)
1
,

(36)
2
, compactness method (cf. Lions [19] or Simon [20]),

embedding (17), induction, and diagonal process, we obtain
a subsequence of (𝑢

𝜀𝑙𝑚
), which also is denoted by (𝑢

𝜀𝑙𝑚
), such

that
𝑢𝜀𝑙𝑚



𝜎

𝑢
𝑙𝑚

→
𝑢𝜀𝑙



𝜎

𝑢
𝜀𝑙
weak star in 𝐿

∞

loc (0,∞; 𝐿
2

(Ω)) .

(52)

From (48)
1
, we have that (𝑢



𝜀𝑙𝑚
) is bounded in 𝐿

∞

loc(0,∞;

𝐻
1/2

(Γ
1
)). Thus, estimate (49)

3
and the compactness embed-

ding of 𝐻
1/2

(Γ
1
) in 𝐿

2
(Γ
1
), give 𝑢



𝜀𝑙𝑚
→ 𝑢



𝜀𝑙
in 𝐿
2

loc(0,∞;

𝐿
2
(Γ
1
)). From this, property (iii) and Lemma 7 yield

ℎ
𝑙
(⋅, 𝑢


𝜀𝑙𝑚
) → ℎ

𝑙
(⋅, 𝑢


𝜀𝑙
) in 𝐿

2

loc (0,∞; 𝐿
2
(Γ
1
)) . (53)

3.1.4. Passage to the Limit as𝑚. Convergences (49), (51), and
(53) permit us to pass to the limits in approximate equations
(𝐴𝑃), as𝑚 → ∞. Thus, this fact and the density of 𝑉𝑙

𝑚
in 𝑉,

give

∫

𝑇

0

((𝐾 + 𝜀) 𝑢


𝜀𝑙
(𝑡) , V) 𝜓 (𝑡) 𝑑𝑡 + ∫

𝑇

0

((𝑢
𝜀𝑙
(𝑡) , V)) 𝜓 (𝑡) 𝑑𝑡

+ ∫

𝑇

0

∫
Γ
1

ℎ
𝑙
(⋅, 𝑢


𝜀𝑙
(𝑡)) V𝜓 (𝑡) 𝑑Γ 𝑑𝑡

+

𝑛

∑

𝑖=1

∫

𝑇

0

(𝑏
𝑖

𝜕𝑢


𝜀𝑙

𝜕𝑥
𝑖

(𝑡) , V)𝜓 (𝑡) 𝑑𝑡

+ ∫

𝑇

0

((
𝑢𝜀𝑙 (𝑡)



𝜎

𝑢
𝜀
(𝑡)) , V) 𝜓 (𝑡) = 0,

∀𝜓 ∈ D (0, 𝑇) , ∀V ∈ 𝑉.

(54)
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Now, if 𝜓 ∈ D(0, 𝑇) and V ∈ D(Ω) we obtain using the
regularity of 𝑢

𝜀𝑙
(given by (49)), that

(𝐾 + 𝜀) 𝑢


𝜀𝑙
− Δ𝑢
𝜀𝑙
+

𝑛

∑

𝑖=1

𝑏
𝑖

𝜕𝑢


𝜀𝑙

𝜕𝑥
𝑖

+
𝑢𝜀𝑙



𝜎

𝑢
𝜀𝑙
= 0 in 𝐿

∞

loc (0,∞; 𝐿
2

(Ω)) .

(55)

From (49)
1
and (55) we have 𝑢

𝜀𝑙
∈ 𝐿
∞
(0, 𝑇; 𝑉) and Δ𝑢

𝜀𝑙
∈

𝐿
∞
(0, 𝑇; 𝐿

2
(Ω)), respectively. Thus, 𝜕𝑢

𝜀𝑙
/𝜕] ∈ 𝐿

∞
(0, 𝑇;

𝐻
−1/2

(Γ
1
)). (compare to Lions [19] and Medeiros and Milla

Miranda [21]). Multiplying both sides of (55) by V𝜓, with
V ∈ 𝑉 and 𝜓 ∈ D(0, 𝑇), and integrating over Ω × [0, 𝑇[, then
the preceding regularity, 𝜕𝑢

𝜀𝑙
/𝜕], gives

∫

𝑇

0

((𝐾 + 𝜀) 𝑢


𝜀𝑙
, V) 𝜓 𝑑𝑡 + ∫

𝑇

0

((𝑢
𝜀𝑙
, V)) 𝜓 𝑑𝑡

− ∫

𝑇

0

⟨
𝜕𝑢
𝜀𝑙

𝜕]
, V⟩𝜓𝑑𝑡 + ∫

𝑇

0

(
𝑢𝜀𝑙



𝜎

𝑢
𝜀𝑙
, V) 𝜓 𝑑𝑡

+

𝑛

∑

𝑖=1

∫

𝑇

0

(𝑏
𝑖

𝜕𝑢


𝜀𝑙

𝜕𝑥
𝑖

, V)𝜓𝑑𝑡 = 0,

(56)

where ⟨⋅, ⋅⟩ denotes the duality paring between𝐻
−1/2

(Γ
1
) and

𝐻
1/2

(Γ
1
).

Comparing (54) and (56) and using the Lipschitz prop-
erty of ℎ

𝑙
, we obtain

𝜕𝑢
𝜀𝑙

𝜕]
+ ℎ
𝑙
(⋅, 𝑢


𝜀𝑙
) = 0 in 𝐿

2

loc (0,∞; 𝐿
2
(Γ
1
)) . (57)

3.1.5. Passage to the Limit in 𝜀 → 0 and 𝑙 → ∞. As
estimates (36) and (49) are independent of 𝑙, 𝑚, and 𝜀 we
obtain a subsequence of (𝑢

𝜀𝑙
), which still denoted by (𝑢

𝜀𝑙
),

and a function 𝑢
𝑙
such that all convergences (49) and (52)

are valid. These convergences will be denoted by (49)
𝜀
, (51)
𝜀
,

and (52)
𝜀
, respectively. These results imply that there exists

a function 𝑢
𝑙
belonging to class (49) and it is a solution of

equation

𝐾𝑢


𝑙
− Δ𝑢
𝑙
+

𝑛

∑

𝑖=1

𝑏
𝑖

𝜕𝑢


𝑙

𝜕𝑥
𝑖

+
𝑢𝑙



𝜎

𝑢
𝑙
= 0 in 𝐿

∞

loc (0,∞; 𝐿
2

(Ω)) ,

(58)

𝜕𝑢
𝑙

𝜕]
+ ℎ
𝑙
(⋅, 𝑢


𝑙
) = 0 in 𝐿

2

loc (0,∞; 𝐿
2
(Γ
1
)) . (59)

Denoting these convergence in 𝑙 by (49)
𝑙
, (51)
𝑙
, and (52)

𝑙
,

respectively, then the convergence (49)
𝑙
gives us𝑢

𝑙
→ 𝑢weak

star in 𝐿
∞
(0,∞;𝑉). From this and (55),Δ𝑢

𝑙
→ Δ𝑢weak star

in 𝐿
∞

loc(0,∞; 𝐿
2
(Ω)). Then

𝜕𝑢
𝑙

𝜕]
→

𝜕𝑢

𝜕]
weak star in 𝐿

∞

loc (0,∞;𝐻
−1/2

(Γ
1
)) . (60)

Moreover, convergence (49)
𝑙
furnishes 𝑢



𝑙
→ 𝑢
 in 𝐿

2

loc(0,

∞; 𝐿
2
(Γ
1
)). Now, we fix 𝑇 > 0. The preceding convergence

implies

𝑢


𝑙
(𝑥, 𝑡) → 𝑢



(𝑥, 𝑡) a.e in Σ
1
= Γ
1
× ]0, 𝑇[ . (61)

Fixing (𝑥, 𝑡) ∈ Σ
1
, then by (61) the set {𝑢

𝑙
(𝑥, 𝑡) : 𝑙 ∈ N} is

bounded. Part (iv) of Lemma 7 says that (ℎ
𝑙
) converges to ℎ

uniformly in bounded sets ofR, a.e. 𝑥 in Γ
1
.These two results

and (61) give

ℎ
𝑙
(𝑥, 𝑢


𝑙
(𝑥, 𝑡))

→ ℎ (𝑥, 𝑢


(𝑥, 𝑡)) a.e in Σ
1
= Γ
1
× ]0, 𝑇[ .

(62)

On the other hand, by (58) and (59), we obtain

∫
Γ
1

ℎ
𝑙
(⋅, 𝑢


𝑙
(𝑡)) 𝑢


𝑙
(𝑡) 𝑑Γ

= − (𝐾 (𝑡) 𝑢


𝑙
(𝑡) , 𝑢


𝑙
(𝑡)) −

1

2

𝑑

𝑑𝑡

𝑢𝑙 (𝑡)


2

−

𝑛

∑

𝑖=1

(𝑏
𝑖

𝜕𝑢


𝑙
(𝑡)

𝜕𝑥
𝑖

, 𝑢


𝑙
(𝑡)) − (

𝑢𝑙 (𝑡)


𝜎

𝑢
𝑙
(𝑡) , 𝑢


𝑙
(𝑡)) .

(63)

By familiar inequalities,


𝑛

∑

𝑖=1

(𝑏
𝑖

𝜕𝑢


𝑙
(𝑡)

𝜕𝑥
𝑖

, 𝑢


𝑙
(𝑡))



≤ 𝐶 [

𝑢


𝑙
(𝑡)



2

+

𝑢


𝑙
(𝑡)



2

] , (64)

and from embedding (17),

(
𝑢𝑙 (𝑡)



𝜎

𝑢
𝑙
(𝑡) , 𝑢


𝑙
(𝑡))



≤ 𝐶 [
𝑢𝑙 (𝑡)



2(𝜎+2)

+

𝑢


𝑙
(𝑡)



2

] ,

(65)

where 𝐶 > 0 is a constant independent of 𝑙 and 𝑡 ∈ [0, 𝑇].
As

(𝐾 (𝑡) 𝑢


𝑙
(𝑡) , 𝑢


𝑙
(𝑡)) =

1

2

𝑑

𝑑𝑡
(𝐾 (𝑡) 𝑢



𝑙
(𝑡) , 𝑢


𝑙
(𝑡))

−
1

2
(𝐾


(𝑡) 𝑢


𝑙
(𝑡) , 𝑢


𝑙
(𝑡)) ,

(66)

integrating the inequality above from 0 to 𝑇, and using the
hypothesis (H5) and (H6), we find

∫

𝑇

0

(𝐾 (𝑡) 𝑢


𝑙
(𝑡) , 𝑢


𝑙
(𝑡)) 𝑑𝑡

=
1

2
[(𝐾 (𝑇) 𝑢



𝑙
(𝑇) , 𝑢



𝑙
(𝑇)) − (𝐾 (0) 𝑢

1

𝑙
, 𝑢
1

𝑙
)]

−
1

2
∫

𝑇

0

(𝐾


(𝑡) 𝑢


𝑙
(𝑡) , 𝑢


𝑙
(𝑡)) 𝑑𝑡

≤ ‖𝐾‖
∞

[

𝑢


𝑙
(𝑇)



2

+

𝑢
1

𝑙



2

]

+ ∫

𝑇

0

[𝛿

𝑢


𝑙
(𝑠)



2

+ 𝐶 (𝛿) (𝐾 (𝑠) , 𝑢
2

𝑙
(𝑠))] 𝑑𝑠

≤ ‖𝐾‖
∞

[

𝑢


𝑙
(𝑇)



2

+

𝑢
1

𝑙



2

]

+ 𝐶 (𝛿, ‖𝐾‖
∞
) ∫

𝑇

0


𝑢


𝑙
(𝑡)



2

𝑑𝑡.

(67)
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Note that 𝑢
𝑙
∈ 𝐶
0
([0, 𝑇]; 𝑉), 𝑢

𝑙
∈ 𝐶
0
([0, 𝑇]; 𝐿

2
(Ω)) and

that (𝑢
𝑙
(𝑇)) and (𝑢



𝑙
(𝑇)) are bounded in 𝑉 and in 𝐿

2
(Ω),

respectively. Taking into account the preceding considera-
tions, estimates (49)

𝑙
and convergence (36)

𝑙
in (63), we obtain

∫

𝑇

0

∫
Γ
1

ℎ
𝑙
(⋅, 𝑢


𝑙
(𝑡)) 𝑢


𝑙
(𝑡) 𝑑Γ 𝑑𝑡 ≤ 𝐶,

∀𝑙 ≥ 𝑙
0
, ∀𝑡 ∈ [0, 𝑇] ,

(68)

where𝐶 > 0 is a constant independent of 𝑙 ≥ 𝑙
0
and 𝑡 ∈ [0, 𝑇].

Note that ℎ
𝑙
(⋅, 𝑢


𝑙
(𝑡))𝑢


𝑙
(𝑡) ≥ 0.

From (62), (68), Strauss’ approximations, Lemma 9 and
from a diagonal process, we get

ℎ
𝑙
(⋅, 𝑢


𝑙
) → ℎ (⋅, 𝑢


) in 𝐿

1

loc (0,∞; 𝐿
1
(Γ
1
)) . (69)

Convergences (60) and (69) imply 𝜕𝑢
𝑙
/𝜕] → 𝜕𝑢/𝜕] in

D(Γ
1
×]0,∞[) and ℎ

𝑙
(⋅, 𝑢


𝑙
) → ℎ(⋅, 𝑢


) in D(Γ

1
×]0,∞[).

Now we take the limit in (59). Moreover the last two
convergences and the regularity of ℎ(⋅, 𝑢


) imply 𝜕𝑢/𝜕] +

ℎ(⋅, 𝑢

) = 0 in 𝐿

1

loc(0,∞; 𝐿
1
(Γ
1
)), which shows that 𝑢 satisfies

𝐾𝑢

− Δ𝑢 +

𝑛

∑

𝑖=1

𝑏
𝑖

𝜕𝑢


𝜕𝑥
𝑖

+ |𝑢|
𝜎
𝑢 = 0

in 𝐿
∞

loc (0,∞; 𝐿
2

(Ω)) .

(70)

Hence, the result is done as in (58).
The verification of the initial conditions follows by con-

vergence (49)
𝑙
.

Remark 10. If |ℎ(𝑥, 𝑠)| ≤ ℎ
1
|𝑠| a.e. 𝑥 ∈ Γ, then the sequence

ℎ
𝑙
, which converges to ℎ, satisfies |ℎ

𝑙
(𝑥, 𝑠)| ≤ (3/2)ℎ

1
|𝑠| (see

Lourêdo and Miranda [10]). In these conditions, the solution
is unique and 𝜕𝑢/𝜕] + ℎ(⋅, 𝑢


) = 0 in 𝐿

2

loc(0,∞; 𝐿
2
(Γ
1
)).

Consequently, 𝑢 ∈ 𝐿
∞
(0,∞,𝑉 ∩ 𝐻

3/2
(Ω)).

The proof of Corollary 2 follows from Remark 10 and
from regularity of elliptic problems (see Lions and Magenes
[22]).

4. Asymptotic Behavior

In this section, by applyingNakao’s method (see [23]), we will
prove the uniform stabilization of the energy associated with
the solution of the Problem (𝑃).

Proof of Theorem 6. First, we prove the inequality (15) for the
approximate energy 𝐸

𝑙
(𝑡) given by

𝐸
𝑙
(𝑡) =

1

2
{𝐾
1/2

(𝑡)

𝑢


𝑙
(𝑡)



2

+
𝑢𝑙 (𝑡)



2

+
2

𝜎 + 2
∫
Ω

𝑢𝑙 (𝑡)


𝜎+2

𝑑𝑥} for 𝑡 ≥ 1,

(71)

andTheorem 6 will follow by taking the lim inf in 𝑙.
Taking the scalar product of 𝐿2(Ω) in both sides of

𝐾𝑢


𝑙
− Δ𝑢
𝑙
+

𝑛

∑

𝑗=1

𝑏
𝑗

𝜕𝑢


𝑙

𝜕𝑥
𝑗

+
𝑢𝑙



𝜎

𝑢
𝑙
= 0

in 𝐿
∞

loc (0,∞; 𝐿
2

(Ω))

(72)

with 𝑢


𝑙
, we find

𝑑

𝑑𝑡
𝐸
𝑙
(𝑡) =

1

2
(
𝜕𝐾 (𝑡)

𝜕𝑡
𝑢


𝑙
(𝑡) , 𝑢


𝑙
(𝑡))

− (ℎ
𝑙
(⋅, 𝑢


𝑙
(𝑡)) , 𝑢



𝑙
(𝑡))
Γ
1

+
1

2
∫
Ω

div 𝑏 (𝑡)

𝑢


𝑙
(𝑡)



2

𝑑𝑥

−
1

2
∫
Γ
1

𝑏 (𝑡) ⋅ ] 𝑢𝑙 (𝑡)


2

𝑑𝑥.

(73)

Using (73) and the hypotheses (A2), (H3), (H8), and (H2), we
obtain

𝑑

𝑑𝑡
𝐸
𝑙
(𝑡) ≤ −

𝑏
0

4


𝑢


𝑙
(𝑡)



2

+ (
‖𝑏‖
∞

2
− ℎ
0
)

𝑢


𝑙
(𝑡)



2

Γ
1

≤ 0.

(74)

Note that 𝐸
𝑙
(𝑡) is decreasing. From (73), the hypotheses (H1),

(H2), and Remark 10, we have that

𝑑

𝑑𝑡
𝐸
𝑙
(𝑡) ≤

𝑏
0

2


𝑢


𝑙
(𝑡)



2

+ 𝑑
1


𝑢


𝑙
(𝑡)



2

Γ
1

+
𝛿
0

2


𝑢


𝑙
(𝑡)



2

+
‖𝑏‖
∞

2


𝑢


𝑙
(𝑡)



2

Γ
1

.

(75)

Thus,

𝑑

𝑑𝑡
𝐸
𝑙
(𝑡) ≤ 𝑁

1


𝑢


𝑙
(𝑡)



2

+ 𝑁
2


𝑢


𝑙
(𝑡)



2

Γ
1

, (76)

where 𝑁
1
= (𝑏
0
/2 + 𝛿

0
/2) > 0 and 𝑁

2
= 𝑑
1
+ (‖𝑏‖

∞
/2) > 0.

Integrating (76) from 𝑡 to 𝑡 + 1, we obtain

𝐸
𝑙
(𝑡 + 1) − 𝐸

𝑙
(𝑡) ≤ 𝑁

1
∫

𝑡+1

𝑡


𝑢


𝑙
(𝑠)



2

𝑑𝑠

+ 𝑁
2
∫

𝑡+1

𝑡


𝑢


𝑙
(𝑠)



2

Γ
1

𝑑𝑠.

(77)

Furthermore, taking the scalar product in both sides of (72)
with 𝑢

𝑙
, we find

(𝐾 (𝑡) 𝑢


𝑙
(𝑡) , 𝑢
𝑙
(𝑡)) +

𝑢𝑙 (𝑡)


2

+ (𝑏 ⋅ ∇𝑢


𝑙
(𝑡) , 𝑢
𝑙
(𝑡))

+ (ℎ
𝑙
(⋅, 𝑢


𝑙
(𝑡)) , 𝑢

𝑙
(𝑡))
Γ
1

+ (
𝑢𝑙 (𝑡)



𝜎

𝑢
𝑙
(𝑡) , 𝑢
𝑙
(𝑡)) = 0.

(78)

As

(𝐾 (𝑡) 𝑢


𝑙
(𝑡) , 𝑢
𝑙
(𝑡)) =

𝑑

𝑑𝑡
(𝐾 (𝑡) 𝑢



𝑙
(𝑡) , 𝑢
𝑙
(𝑡))

− (𝐾


(𝑡) 𝑢


𝑙
(𝑡) , 𝑢
𝑙
(𝑡))

− (𝐾 (𝑡) 𝑢


𝑙
(𝑡) , 𝑢


𝑙
(𝑡)) ,

(79)
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then
𝑢𝑙 (𝑡)



2

+
𝑢𝑙 (𝑡)



𝜎+2

𝐿
𝜎+2
(Ω)

= − (𝑏 ⋅ ∇𝑢


𝑙
(𝑡) , 𝑢
𝑙
(𝑡)) − (ℎ

𝑙
(⋅, 𝑢


𝑙
(𝑡)) , 𝑢

𝑙
(𝑡))
Γ
1

+ (𝐾


(𝑡) 𝑢


𝑙
(𝑡) , 𝑢
𝑙
(𝑡)) + (𝐾 (𝑡) 𝑢



𝑙
(𝑡) , 𝑢


𝑙
(𝑡))

−
𝑑

𝑑𝑡
(𝐾 (𝑡) 𝑢



𝑙
(𝑡) , 𝑢
𝑙
(𝑡)) .

(80)

Now note that

(𝑏 ⋅ ∇𝑢


𝑙
(𝑡) , 𝑢
𝑙
(𝑡)) = ∫

Ω

𝑛

∑

𝑗=1

𝑏
𝑗
(𝑡)

𝜕𝑢


𝑙

𝜕𝑥
𝑗

(𝑡) 𝑢
𝑙
(𝑡) 𝑑𝑥 (81)

and by Gauss’ formula, we have

𝜕

𝜕𝑥
𝑗

(𝑏
𝑗
(𝑡) 𝑢
𝑙
(𝑡) 𝑢


𝑙
(𝑡)) = 𝑏

𝑗
(𝑡) 𝑢
𝑙
(𝑡)

𝜕𝑢


𝑙

𝜕𝑥
𝑗

(𝑡)

+

𝜕𝑏
𝑗
(𝑡)

𝜕𝑥
𝑗

𝑢
𝑙
(𝑡) 𝑢


𝑙
(𝑡)

+ 𝑏
𝑗
(𝑡)

𝜕𝑢
𝑙

𝜕𝑥
𝑗

(𝑡) 𝑢


𝑙
(𝑡) .

(82)

Therefore,
𝑛

∑

𝑗=1

∫
Ω

𝑏
𝑗
(𝑡) 𝑢
𝑙
(𝑡)

𝜕𝑢


𝑙
(𝑡)

𝜕𝑥
𝑗

𝑑𝑥 = ∫
Γ

𝑏 (𝑡) ⋅ ]𝑢
𝑙
(𝑡) 𝑢


𝑙
(𝑡) 𝑑Γ

− ∫
Ω

(div 𝑏 (𝑡)) 𝑢
𝑙
(𝑡) 𝑢


𝑙
(𝑡) 𝑑𝑥

− ∫
Ω

𝑏 (𝑡) ⋅ ∇𝑢
𝑙
(𝑡) 𝑢


𝑙
(𝑡) 𝑑𝑥.

(83)

Hence,

(𝑏 ⋅ ∇𝑢


𝑙
(𝑡) , 𝑢
𝑙
(𝑡)) = ∫

Γ
1

𝑏 (𝑡) ]𝑢
𝑙
(𝑡) 𝑢


𝑙
(𝑡) 𝑑Γ

− ∫
Ω

(div 𝑏 (𝑡)) 𝑢
𝑙
(𝑡) 𝑢


𝑙
(𝑡) 𝑑𝑥

− ∫
Ω

𝑏 (𝑡) ⋅ ∇𝑢
𝑙
(𝑡) 𝑢


𝑙
(𝑡) 𝑑𝑥.

(84)

Substituting (84) in (80), we obtain
𝑢𝑙 (𝑡)



2

+
𝑢𝑙 (𝑡)



𝜎+2

𝐿
𝜎+2
(Ω)

= −∫
Γ
1

𝑏 (𝑡) ⋅ ]𝑢
𝑙
(𝑡) 𝑢


𝑙
(𝑡) 𝑑Γ + ∫

Ω

(div 𝑏 (𝑡)) 𝑢
𝑙
(𝑡) 𝑢


𝑙
(𝑡) 𝑑𝑥

+ ∫
Ω

𝑏 (𝑡) ⋅ ∇𝑢
𝑙
(𝑡) 𝑢


𝑙
(𝑡) 𝑑𝑥 − (ℎ

𝑙
(⋅, 𝑢


𝑙
(𝑡)) , 𝑢

𝑙
(𝑡))
𝐿
2
(Γ
1
)

+ (𝐾


(𝑡) 𝑢


𝑙
(𝑡) , 𝑢
𝑙
(𝑡)) + (𝐾 (𝑡) 𝑢



𝑙
(𝑡) , 𝑢


𝑙
(𝑡))

−
𝑑

𝑑𝑡
(𝐾 (𝑡) 𝑢



𝑙
(𝑡) , 𝑢
𝑙
(𝑡)) .

(85)

Integrating (85) from 𝑡
1
to 𝑡
2
yields

∫

𝑡
2

𝑡
1

(
𝑢𝑙 (𝑡)



2

+
𝑢𝑙 (𝑡)



𝜎+2

𝐿
𝜎+2
(Ω)

) 𝑑𝑡

≤ ‖𝑏‖
∞

∫

𝑡
2

𝑡
1

𝑢𝑙 (𝑡)
Γ
1


𝑢


𝑙
(𝑡)

Γ
1

𝑑𝑡 + 𝛿
0
∫

𝑡
2

𝑡
1

𝑢𝑙 (𝑡)



𝑢


𝑙
(𝑡)


𝑑𝑡

+ ‖𝑏‖
∞

∫

𝑡
2

𝑡
1

∇𝑢
𝑙
(𝑡)




𝑢


𝑙
(𝑡)


𝑑𝑡

+ ∫

𝑡
2

𝑡
1


ℎ
𝑙
(⋅, 𝑢


𝑙
(𝑡))

Γ
1

𝑢𝑙 (𝑡)
Γ
1

𝑑𝑡

+ ∫

𝑡
2

𝑡
1

𝑏
0

2


𝑢


𝑙
(𝑡)



𝑢𝑙 (𝑡)
 𝑑𝑡 + ‖𝐾‖

∞
∫

𝑡
2

𝑡
1


𝑢


𝑙
(𝑡)



2

𝑑𝑡

− [(𝐾 (𝑡
2
) 𝑢


𝑙
(𝑡
2
) , 𝑢
𝑙
(𝑡
2
)) − (𝐾 (𝑡

1
) 𝑢


𝑙
(𝑡
1
) , 𝑢
𝑙
(𝑡
1
))] .

(86)

Using the embedding of𝑉 in 𝐿
2
(Ω) and𝑉 in 𝐿

2
(Γ
1
) (see (12)),

it follows that

(i) ‖𝑏‖
∞

∫
𝑡
2

𝑡
1

|𝑢
𝑙
(𝑡)|
Γ
1

|𝑢


𝑙
(𝑡)|
Γ
1

𝑑𝑡 ≤ 32‖𝑏‖
2

∞
𝑘
2

1
∫
𝑡
2

𝑡
1

|𝑢


𝑙
(𝑡)|
2

Γ
1

𝑑𝑡

+ (1/32) ∫
𝑡
2

𝑡
1

‖𝑢
𝑙
(𝑡)‖
2
𝑑𝑡;

(ii) 𝛿
0
∫
𝑡
2

𝑡
1

|𝑢
𝑙
(𝑡)||𝑢


𝑙
(𝑡)|𝑑𝑡 ≤ 32(1/𝜆

1
) ∫
𝑡
2

𝑡
1

|𝑢


𝑙
(𝑡)|
2
𝑑𝑡 + (1/

32) ∫
𝑡
2

𝑡
1

‖𝑢
𝑙
(𝑡)‖
2
𝑑𝑡;

(iii) ‖𝑏‖
∞

∫
𝑡
2

𝑡
1

|∇𝑢
𝑙
(𝑡)||𝑢


𝑙
(𝑡)|𝑑𝑡 ≤ (‖𝑏‖

2

∞
/2) ∫
𝑡
2

𝑡
1

‖𝑢
𝑙
(𝑡)‖
2
𝑑𝑡 +

(1/2) ∫
𝑡
2

𝑡
1

|𝑢


𝑙
(𝑡)|
2
𝑑𝑡.

(iv) ∫𝑡2
𝑡
1

|ℎ
𝑙
(⋅, 𝑢


𝑙
(𝑡))|
Γ
1

|𝑢
𝑙
(𝑡)|
Γ
1

𝑑𝑡 ≤ (3/2)ℎ
1
𝑘
1
∫
𝑡
2

𝑡
1

|𝑢


𝑙
(𝑡)|
Γ
1

⋅

|𝑢
𝑙
(𝑡)|
Γ
1

𝑑𝑡 ≤ ((3/2)ℎ
1
𝑘
1
)
2
(𝜆
1/2

1
)
2
16 ∫
𝑡
2

𝑡
1

|𝑢


𝑙
(𝑡)|
2

Γ
1

𝑑𝑡 +

(1/32) ∫
𝑡
2

𝑡
1

‖𝑢
𝑙
(𝑡)‖
2
𝑑𝑡;

(v) ∫𝑡2
𝑡
1

(𝑏
0
/2)|𝑢


𝑙
(𝑡)||𝑢
𝑙
(𝑡)|𝑑𝑡 ≤ 32(𝑏

0
/2)
2
(1/𝜆
1
) ∫
𝑡
2

𝑡
1

|𝑢


𝑙
(𝑡)|
2

+ (1/32) ∫
𝑡
2

𝑡
1

‖𝑢
𝑙
(𝑡)‖
2
𝑑𝑡;

(vi) |(𝐾(𝑡
2
)𝑢


𝑙
(𝑡
2
), 𝑢
𝑙
(𝑡
2
)) − (𝐾(𝑡

1
)𝑢


𝑙
(𝑡
1
), 𝑢
𝑙
(𝑡
1
)| ≤ ‖𝐾‖

∞
⋅

[|𝑢


𝑙
(𝑡
2
)||𝑢
𝑙
(𝑡
2
)| + |𝑢



𝑙
(𝑡
1
)||𝑢
𝑙
(𝑡
1
)|].

Note that

𝑢𝑙 (𝑡2)
 ≤ (

1

√𝜆
1

)
𝑢𝑙 (𝑡)

 ≤ (
1

√𝜆
1

)𝐸
1/2

𝑙
(𝑡
2
) , (87)

since 𝐸
𝑙
(𝑡) is decreasing and 𝑡 ≤ 𝑡

1
, 𝑡
2
≤ 𝑡 + 1. Analogously,

we obtain

𝑢𝑙 (𝑡1)
 ≤ (

1

√𝜆
1

)𝐸
1/2

𝑙
(𝑡
1
) . (88)
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Using (87) and (88) in (vi) we find

(𝐾 (𝑡
2
) 𝑢


𝑙
(𝑡
2
) , 𝑢
𝑙
(𝑡
2
)) − (𝐾 (𝑡

1
) 𝑢


𝑙
(𝑡
1
) , 𝑢
𝑙
(𝑡
1
))


≤ ‖𝐾‖
∞

(
1

𝜆
1/2

1

) sup
𝑡
1
≤𝑠≤𝑡
2

𝐸
1/2

𝑙
(𝑠) [


𝑢


𝑙
(𝑡
2
)

+

𝑢


𝑙
(𝑡
1
)

] .

(89)

Substituting (i)–(vi) and (89) in (86), we obtain

∫

𝑡
2

𝑡
1

[
𝑢𝑙 (𝑡)



2

+
𝑢𝑙 (𝑡)



𝜎+2

𝐿
𝜎+2
(Ω)

] 𝑑𝑡

≤ (32 + ‖𝑏‖
∞

1

𝜆
1

)∫

𝑡
2

𝑡
1

𝑢𝑙 (𝑡)


2

𝑑𝑡

+ (32(
1

𝜆
1

)

2

+ 8𝑏
2

0
(

1

𝜆
1

)

2

)∫

𝑡
2

𝑡
1


𝑢


𝑙
(𝑡)



2

𝑑𝑡

+ (32 ‖𝑏‖
2

∞
𝑘
2

1
+ 18 (ℎ

1
𝑘
1
)
2

𝜆
1
+

1

2
)∫

𝑡
2

𝑡
1


𝑢


𝑙
(𝑡)



2

Γ
1

𝑑𝑡

+ ‖𝐾‖
∞

(
1

√𝜆
1

) sup
𝑡
1
≤𝑠≤𝑡
2

𝐸
1/2

𝑙
(𝑠) [


𝑢


𝑙
(𝑡
2
)

+

𝑢


𝑙
(𝑡
1
)

] .

(90)

It follows from (74) that

𝐸
𝑙
(𝑡 + 1) − 𝐸

𝑙
(𝑡) ≤ −𝑁

3
∫

𝑡+1

𝑡


𝑢


𝑙
(𝑠)



2

𝑑𝑠

− 𝑁
4
∫

𝑡+1

𝑡


𝑢


𝑙
(𝑠)

Γ
1

𝑑𝑠,

(91)

where𝑁
3
= 𝑏
0
> 0 and𝑁

4
= ℎ
0
− ‖𝑏‖
∞
/2 > 0. Hence

𝐷
2

𝑙
(𝑡) = 𝐸

𝑙
(𝑡) − 𝐸

𝑙
(𝑡 + 1)

≥ 𝑁
3
∫

𝑡+1

𝑡


𝑢


𝑙
(𝑠)



2

𝑑𝑠 + 𝑁
4
∫

𝑡+1

𝑡


𝑢


𝑙
(𝑡)



2

Γ
1

𝑑𝑠

≥ 𝑑
1
[∫

𝑡+1

𝑡


𝑢


𝑙
(𝑠)



2

𝑑𝑠 + ∫

𝑡+1

𝑡


𝑢


𝑙
(𝑡)



2

Γ
1

𝑑𝑠] ,

(92)

where 𝑑
1
= min{𝑁

3
, 𝑁
4
} > 0.

From (92), we obtain

𝐷
2

𝑙
(𝑡)

𝑑
1

≥ ∫

𝑡+1

𝑡


𝑢


𝑙
(𝑠)



2

𝑑𝑠,

𝐷
2

𝑙
(𝑡)

𝑑
1

≥ ∫

𝑡+1

𝑡


𝑢


𝑙
(𝑠)



2

Γ
1

𝑑𝑠,

(93)

and from (93), we get

∫

𝑡+1/4

𝑡


𝑢


𝑙
(𝑠)



2

Γ
1

𝑑𝑠 ≤ ∫

𝑡+1

𝑡


𝑢


𝑙
(𝑠)



2

Γ
1

𝑑𝑠 ≤
𝐷
2

𝑙
(𝑡)

𝑑
1

,

∫

𝑡+1

𝑡+3/4


𝑢


𝑙
(𝑠)



2

Γ
1

𝑑𝑠 ≤ ∫

𝑡+1

𝑡


𝑢


𝑙
(𝑠)



2

Γ
1

𝑑𝑠 ≤
𝐷
2

𝑙
(𝑡)

𝑑
1

.

(94)

By the Mean Value Theorem, there are 𝑡
1
∈ (𝑡, 𝑡 + 1/4) and

𝑡
2
∈ (𝑡 + 3/4, 𝑡 + 1), such that

1

4


𝑢


𝑙
(𝑡
1
)


2

= ∫

𝑡+1/4

𝑡


𝑢


𝑙
(𝑠)



2

𝑑𝑠 ≤
𝐷
2

𝑙
(𝑡)

𝑑
1

,

1

4


𝑢


𝑙
(𝑡
2
)


2

= ∫

𝑡+1

𝑡+3/4


𝑢


𝑙
(𝑠)



2

𝑑𝑠 ≤
𝐷
2

𝑙
(𝑡)

𝑑
1

.

(95)

From (95), we can write


𝑢


𝑙
(𝑡
1
)

+

𝑢


𝑙
(𝑡
2
)

≤

2𝐷
𝑙
(𝑡)

√𝑑
1

. (96)

Now from (93) we have

𝑁
5
∫

𝑡
2

𝑡
1


𝑢


𝑙
(𝑠)



2

Γ
1

𝑑𝑠 ≤ 𝑁
5
∫

𝑡+1

𝑡


𝑢


𝑙
(𝑠)



2

Γ
1

𝑑𝑠

≤
𝑁
5

𝑑
1

𝐷
2

𝑙
(𝑡) ,

(97)

where𝑁
5
= 32‖𝑏‖

∞
+ 18(ℎ

1
𝑘
1
)
2.

Analogously we obtain

𝑁
6
∫

𝑡
2

𝑡
1


𝑢


𝑙
(𝑠)



2

𝑑𝑠 ≤ 𝑁
6
∫

𝑡+1

𝑡


𝑢


𝑙
(𝑠)



2

𝑑𝑠 ≤
𝑁
6

𝑑
1

𝐷
2

𝑙
(𝑡) , (98)

where𝑁
6
= 32(1/𝜆

1
) + 8𝑏

2

0
(1/𝜆
1
).

Substituting (96), (97), and (98) in (90) and considering

𝑁
7
=

9

32
+ (

1

𝜆
1

) ‖𝑏‖
∞

, (99)

we get

∫

𝑡
2

𝑡
1

[
𝑢𝑙 (𝑡)



2

+
𝑢𝑙 (𝑡)



𝜎+2

𝐿
𝜎+2
(Ω)

] 𝑑𝑡

≤ 𝑁
7
∫

𝑡
2

𝑡
1

𝑢𝑙 (𝑡)


2

𝑑𝑡 + 𝑁
5
∫

𝑡
2

𝑡
1


𝑢


𝑙
(𝑡)



2

𝑑𝑡

+ 𝑁
6
∫

𝑡
2

𝑡
1


𝑢


𝑙
(𝑡)



2

Γ
1

𝑑𝑡

+ ‖𝐾‖
∞

(
1

√𝜆
1

) sup
𝑡
1
≤𝑠≤𝑡
2

𝐸
1/2

𝑙
[

𝑢


𝑙
(𝑡
2
)

+

𝑢


𝑙
(𝑡
1
)

]

≤ 𝑁
7
∫

𝑡
2

𝑡
1

𝑢𝑙 (𝑡)


2

𝑑𝑡 +
𝑁
5

𝑑
1

𝐷
2

𝑙
(𝑡) +

𝑁
6

𝑑
1

𝐷
2

𝑙
(𝑡)

+

2 ‖𝐾‖
∞

(1/√𝜆
1
)

√𝑑
1

sup
𝑡
1
≤𝑠≤𝑡
2

𝐸
1/2

𝑙
𝐷
𝑙
(𝑡)

≤ 𝑁
7
∫

𝑡
2

𝑡
1

𝑢𝑙 (𝑡)


2

𝑑𝑡 + (
𝑁
5

𝑑
1

+
𝑁
6

𝑑
1

)𝐷
2

𝑙
(𝑡)

+

2 ‖𝐾‖
∞

(1/√𝜆
1
)

√𝑑
1

𝐷
𝑙
(𝑡) 𝐸
1/2

𝑙
(𝑡) .

(100)
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As 𝐷2
𝑙
(𝑡) = 𝐸

𝑙
(𝑡) − 𝐸

𝑙
(𝑡 + 1) ≤ 𝐸

𝑙
(𝑡) then 𝐷

𝑙
(𝑡) ≤ 𝐸

1/2

𝑙
(𝑡), and

substituting this inequality in (100), we obtain

∫

𝑡
2

𝑡
1

(
𝑢𝑙 (𝑡)



2

+
𝑢𝑙 (𝑡)



𝜎+2

𝐿
𝜎+2
(Ω)

) 𝑑𝑡

≤ 𝑁
7
∫

𝑡
2

𝑡
1

𝑢𝑙 (𝑡)


2

𝑑𝑡 + (
𝑁
5
+ 𝑁
6

𝑑
1

)𝐷
2

𝑙
(𝑡)

+

2 ‖𝐾‖
∞

(1/√𝜆
1
)

√𝑑
1

𝐷
𝑙
(𝑡) 𝐸
𝑙
(𝑡) .

(101)

Replacing 𝑡 = 𝑡
1
and 𝑡 + 1 = 𝑡

2
in (93), we have

∫

𝑡
2

𝑡
1

𝐾 (𝑡)

𝑢


𝑙
(𝑡)



2

≤ ‖𝐾‖
∞

∫

𝑡
2

𝑡
1


𝑢


𝑙
(𝑡)



2

𝑑𝑡

≤
‖𝐾‖
∞

𝑑
1

𝐷
2

𝑙
(𝑡) .

(102)

Adding (101) and (102), we obtain

∫

𝑡
2

𝑡
1

[𝐾 (𝑡)

𝑢


𝑙
(𝑡)



2

+
𝑢𝑙 (𝑡)



2

+
𝑢𝑙 (𝑡)



𝜎+2

𝐿
𝜎+2
(Ω)

] 𝑑𝑡

≤ 𝑁
7
∫

𝑡
2

𝑡
1

𝑢𝑙 (𝑡)


2

𝑑𝑡 + (
‖𝐾‖
∞

+ 𝑁
5
+ 𝑁
6

𝑑
1

)𝐷
2

𝑙
(𝑡)

+

2 (1/√𝜆
1
) ‖𝐾‖
∞

√𝑑
1

𝐸
𝑙
(𝑡) ,

(103)

and this implies

∫

𝑡
2

𝑡
1

[𝐾 (𝑡)

𝑢


𝑙
(𝑡)



2

+ (1 − 𝑁
7
)
𝑢𝑙 (𝑡)



2

+
𝑢𝑙 (𝑡)



𝜎+2

𝐿
𝜎+2
(Ω)

] 𝑑𝑡

≤ 𝑁
8
𝐷
2

𝑙
(𝑡) + 𝑁

9
𝐸
𝑙
(𝑡) ,

(104)

where

𝑁
8
=

‖𝐾‖
∞

+ 𝑁
5
+ 𝑁
6

𝑑
1

,

𝑁
9
=

2 (1/√𝜆
1
) ‖𝐾‖
∞

√𝑑
1

.

(105)

Thehypothesis (H11) yields ‖𝑏‖
∞

< 21𝜆
1
/32 and as 1−𝑁

7
> 0

then

∫

𝑡
2

𝑡
1

[
1

2
𝐾 (𝑡)


𝑢


𝑙
(𝑡)



2

+
1

2

𝑢𝑙 (𝑡)


2

+
1

𝜎 + 2

𝑢𝑙 (𝑡)


𝜎+2

𝐿
𝜎+2
(Ω)

] 𝑑𝑡

≤ 𝑁
10
𝐷
2

𝑙
(𝑡) + 𝑁

11
𝐸
𝑙
(𝑡) .

(106)

Since 1/(𝜎 + 2) < 1, 𝑁
10

= 𝑁
8
/𝑀 and 𝑁

11
= 𝑁
9
/𝑀, where

𝑀 = min{1, 1 − 𝑁
7
} > 0.

From (106), we obtain

∫

𝑡
2

𝑡
1

𝐸
𝑙
(𝑡) 𝑑𝑡 ≤ 𝑁

10
𝐷
2

𝑙
(𝑡) + 𝑁

11
𝐸
𝑙
(𝑡) . (107)

Note that by hypothesis (H11),𝑁
11

< 1/4, thus from (107),
we find

∫

𝑡
2

𝑡
1

𝐸
𝑙
(𝑡) 𝑑𝑡 ≤ 𝑁

10
𝐷
2

𝑙
(𝑡) +

1

4
𝐸
𝑙
(𝑡) . (108)

Again, by the Mean Value Theorem there exists 𝑡∗ ∈ (𝑡
1
, 𝑡
2
),

such that

∫

𝑡
2

𝑡
1

𝐸
𝑙
(𝑠) 𝑑𝑠 = 𝐸

𝑙
(𝑡
∗
) (𝑡
2
− 𝑡
1
) ≥

1

2
𝐸
𝑙
(𝑡
∗
) . (109)

Integrating (76) from 𝑡
∗ to 𝑡 and using (77) and (93), it follows

that

𝐸
𝑙
(𝑡) ≤ 𝐸

𝑙
(𝑡
∗
) + 𝑁
1
∫

𝑡

𝑡
∗


𝑢


𝑙
(𝑠)



2

𝑑𝑠

+ 𝑁
2
∫

𝑡

𝑡
∗


𝑢


𝑙
(𝑠)



2

Γ
1

𝑑𝑠

≤ 𝐸
𝑙
(𝑡
∗
) +

𝑁
1

𝑑
1

𝐷
2

𝑙
(𝑡) +

𝑁
2

𝑑
1

𝐷
2

𝑙
(𝑡) .

(110)

Substituting (109) in (110), we get

𝐸
𝑙
(𝑡) ≤ 2∫

𝑡
2

𝑡
1

𝐸
𝑙
(𝑠) 𝑑𝑠 + (

𝑁
1

𝑑
1

+
𝑁
2

𝑑
1

)𝐷
2

𝑙
(𝑡) . (111)

Now, substituting (108) in (111), we obtain

𝐸
𝑙
(𝑡) ≤

1

2
𝐸
𝑙
(𝑡) + (2𝑁

10
+

𝑁
1

𝑑
1

+
𝑁
2

𝑑
1

)𝐷
2

𝑙
(𝑡) , (112)

𝐸
𝑙
(𝑡) ≤ 2 (2𝑁

10
+

𝑁
1

𝑑
1

+
𝑁
2

𝑑
1

)𝐷
2

𝑙
(𝑡) . (113)

As 𝐸
𝑙
(𝑡) is decreasing, the inequality (113) provides that

sup
𝑡≤𝑠≤𝑡+1

𝐸
𝑙
(𝑠) ≤ 𝑁

12
[𝐸
𝑙
(𝑡) − 𝐸

𝑙
(𝑡 + 1)] , (114)

where

𝑁
12

= 2(2𝑁
10

+
𝑁
1

𝑑
1

+
𝑁
2

𝑑
1

) > 0. (115)

Thus, it follows using (114) and from Nakao’s Lemma, (see
[23]), that

𝐸
𝑙
(𝑡) ≤ 𝑐𝑒

−𝑤𝑡
, 𝑡 ≥ 1. (116)

Taking the lim inf as 𝑙 → ∞ in (116), we obtain

𝐸 (𝑡) ≤ 𝑐𝑒
−𝑤𝑡

, ∀𝑡 ≥ 1, (117)

where 𝑐 is positive constant.
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[9] A. T. Lourêdo and M. M. Miranda, “Local solutions for a
coupled system of Kirchhoff type,” Nonlinear Analysis: Theory,
Methods & Applications, vol. 74, no. 18, pp. 7094–7110, 2011.
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(Iniciação aos Problemas Eliticos NãoHomogêneos), Editora IM-
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