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This paper deals essentially with a nonlinear degenerate evolution equation of the form Ku'" — Au + Y"._ b,(du’ [0x;) + ul’u =0

=177

supplemented with nonlinear boundary conditions of Neumann type given by 0u/0v + h(-u') = 0. Under suitable conditions
the existence and uniqueness of solutions are shown and that the boundary damping produces a uniform global stability of the

corresponding solutions.

1. Introduction

Let Q be a smooth bounded open set of R”, with n > 1,
and its boundary 0Q = T of class C>. Assume that T is
constituted by two disjoint closed parts I, and I'} both with
positive Lebesgue measure.

The main goal of this paper is to prove the existence and
uniqueness as well as the uniform decay rates for the energy
of the following nonlinear initial boundary value problem:

n a !
Ku" = Au+ ijai +|uu=0 in Qx(0,00),
=1 9%

u=0 on I, x(0,00),

(P)
= +h(-,u,) =0 on I} x(0,00),

u(0,x)=u’(x), o 0,x)=u'(x) inQ,
where K = K(x,t), bj = bj(x, t), and h = h(x,s) are real
functions, v = ¥(x) denotes the unit outward normal at x €

I, and 0 > 1 is a constant.

The parabolic-hyperbolic equation Ku'' — A(u — u') +
f(u) = 0whenn = 1 orn = 2; this equation governs the
motion of a nonlinear Kelvin solid. That is, a bar forn = 1 and
a plate for n = 2, subject to no nonlinear elastic constraints.
The function K represents the mass density of the solid.

The existence of solutions of the linear problem associated
with (P) (K = l,b]- = 0, and without the function f(s) = |s|°s
and with h(x, s) = 8(x)s) was established by Komornik and
Zuazua in [1], via semigroup theory and by Milla Miranda
and Medeiros in [2], applying the Galerkin’s method, with
a special basis. The advantage of this second method is to
define the Sobolev space where 0u/0v is lying. In the same
context, applying this second method for a wave equation
with a nonlinear term, Araruna and Maciel [3], derive similar
results. In Cavalcanti et al. [4] the existence of solution and an
exponential decay rate is established supposing f = 0 and h
being a particular function considered in our work; see also
Cavalcanti et al. [5].

For the wave equation with K = 1 and b = 0 there is a
vast literature on this problem. We cite the papers Cavalcanti
et al. [6], Lasiecka and Tataru [7], and references contained
therein for the reader.
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Following the ideas delivered in Milla Miranda and
Medeiros [2], but bringing more technical difficulties, Milla
Miranda and San Gil Jutuca [8] applied the Galerkin’s method
with a special basis to show the existence of solutions for
Kirchhoft’s equation with a linear dissipation on the bound-
ary. Applying a similar approach, Lourédo and Miranda [9]
obtained the existence of solutions for a coupled system of
Kirchhoft’s equations with nonlinear boundary dissipation.
For other models, but in the same context, we cite to the
reader Lourédo and Miranda [10], and Lourédo et al. [11].

Park and Kang studied the existence, uniqueness, and
uniform decay for the nonlinear degenerate equation with
memory condition on the boundary in [12]. For the asymp-
totic behavior they also used the Nakaos method. de Lima
Santos and Junior [13] studied the equation with a boundary
condition with memory for Kirchhoff plates equations. An
abstract formulation with the coefficient K satisfying the
same conditions as in our paper was studied by Pereira
in [14] and was established the existence, uniqueness, and
asymptotic behavior for the solutions associated with a
nonlinear beam equation.

In this paper we are interested in showing the global
existence of solutions for Problem (P) under very general
conditions to be fixed in the next section.

In our approach, we apply the Galerkin’s method for a
perturbed problem and a special basis; an appropriate Strauss’
Lipschitz-continuous approximation h; of h; the compact-
ness method; and results on trace mapping of nonsmooth
functions. Finally, the uniform stabilization of solutions is
accomplished by using the Nakao’s method.

2. Notations and Main Results

In order to establish the main results of this paper we assume
the following assumptions on the objects of problem (P):

(H1)

(A1) bj € Wh®(0, 00; C'(Q)) and there exists a posi-
tive constant b, > 0 such that

(A2) div b(x,t) < -by Vx € I}, t € [0,00), where
b(x’ t) = (bl (x: t): R bn(x) t)))

(H2)
1 .
~ <0< if n>3,
n n-—
(1)
1 .
o>— ifn=1,2.

n

(H3) h € CO(R;L°(T})) with hh : T, x R — R strongly
monotone; that is,

[h(x,s) —h(x,7)][s—7]
(2)

> h, (s—r)2 ae xel, Vs,r eR,
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where 2h, > IIbIIEX(Om). We use the notation d;, =
2hy = 1blloos

(H4) K € C'([0,T]; L™(Q)) with K(x,1) > 0, V¢ > 0, a.e.
x € Q and there exists y > 0 such that K(x,0) >y >
0,a.e.x €

(H5) |0K(x,t)/0t|g < 8 + C(6)K(x, 1), for all § > 0;

(H6) (u’,u") € D(-A) x Hy (Q).

The scalar product and norm of L*(Q) are denoted,
respectively, by (:,-) and | - |. By V we represent the Hilbert
space V. = {v € H'(Q); v = 0 on I,} which is equipped
with the scalar product and norm

(1)) = Z(%‘;—;)
i=1 (3)

n

lul® =)

i=1

ou

2
0x;

The operator —A is defined by the triplet {V, LA(Q), ()}
Then its domain is given by

D(-A) = {ueVnHZ(Q);g—:’=o on rl}. (4)

From spectral theory it follows that D(—A) is dense in V; see
[15]. Moreover, it will be denoted

V), = L u(x)v(x)dT,
sy = | o Godr, (5)
I

letllo = ess sup [lu (E)ll (g -
10

Theorem 1. Assume hypotheses (H1)-(H6); there exists at least
a function u : Q x (0,00) — R in the class

(o)
u€ L,

(0,00;V),
u € LS. (0,00;V),

u" e L5 (0,00, L (), ©)

Au e LY

loc

(0,005 L% (),
ou 1

— €L

oy loc (0’ 03 Ll (FI)) >
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satisfying
a !
u” Au+zb +ul”u=0
Xj
in L} (0, o0; L? (Q)) , )
ou .
% (o) =0 i Ly (0.51' 1),

u@=4", 0 =u" inQ.
In addition, if

(H7) |h(x,s)| < hyls| Vs € R and a.e. x in I} (h; a positive
constant), holds true, we have the following result.

Corollary 2. Under the hypothesis of Theorem 1 and (H7), the
solution u of Problem (P) (obtained in Theorem 1) is unique
and has the following regularity:

u e L (0,00;V) N L, (0,00, H* (),

loc
u' € LSy (0,00;V),
u" e Ly, (0,00, L (),

I

n
Ku —Au+z +|u| u=0 ®)

in L. (0, 00; L2 (),

(1)),

in Q.

— +h

ou
ov (

) =0 in Li)c (0, 00;
u(0) = W, (0) = u'

Remark 3. If we replace the function f(s) = Is|’s in

Theorem 1 by a continuous function g such that

[9()-g®)](s-1)

> go(s—1)°, Vs,r€R, (g, a positive constant),
€)
and further
9| <g1lsl, VseR, (10)
Theorem 1 remains valid. Indeed, from (10), we obtain
g () <gilsl, VseR, (1)

where (g;) is the Strauss’ approximations (see [16]) of the
function g.

Remark 4. Analogously if |h(x, s)| < hy|s| Vs € R and a.e. x
in I} (h, a positive constant), we obtain |h;(x, s)| < (3/2)h,|s|
for all s € R (see [10]).

For use later, note that

1

2 2

lwl” < o= llwll”,
1

12
lwl, < ky lwl), 12)

Vw eV, (k; positive constants);

where A, is the first eigenvalue of the spectral problem ((u,
v)) = AMu, v) for all v € V (see [15]).

In order to establish the uniform decay rate for energy, we
assume

(H8) IK'llo,
(H9) Kl oo
(H10) || div b||, <

(H) |1l < (21/32)A1, by > (32(1/A 1)/ M)IK ]l o, 1Kl >
[blloo/2 + 8(1/A,)/M, where M = min{1,1 - (9/32 +
(1/ADNbl )}

Remark 5. There are functions that satisfy hypothesis (H5)
and (H8). In fact, the function K(x,t) = (a(x)/lall)B(t)
with & € C'(Q), a(x) > 0, and B(t) = (by/4)e”" satisfies such
hypothesis, since

< by/24
= €58 SuP;- o | K ()| 1o ()

oc(x 0 -t bo bo
(x,1) e < —=< =, 13
[ et < g 1 <2 ()
and so
|1<’ (x, t)| <8+K(xt), V6>0. (14)

Theorem 6. Under the hypothesis of Theorem 1 and (H7)-
(H11), with h,(s) satisfying (9) and (10), the energy

1 2
E@ = {KZ O O +lu @l
5 (15)
+—— | |lu@®? dx} ort>1,
— | we f

associated with the solution, u, obtained in Corollary 2 is
uniformly stable; that is, there exists a positive constant such
that

E(t) <Cexp(-at), Vt=1, (16)

where C and @ are positive constants.
For use later, we observe that hypothesis in (H3), on ¢

implies ¢* = 2n/(n - 2) > 20 + 2 and q" > on. Thus, the
Sobolev’s embedding gives

Ve L7 (Q) = L¥?(Q) forn>3,

(17)
VL2 (Q) forn=1,2,
Ve L9 (Q) = L7(Q) forn>3,

(18)

V—1Q) forn=1,2.



Here, X — Y indicates that the subspace X is continuously
embedded in the space Y.

Next, following the ideas contained in Strauss [16], we
approximate the function h by Lipschitz-continuous ones A;.

3. Proof of Theorem 1

For our purposes we need the following previous results,
whose proof can be seen in [10].

Lemma7. Lethbe a function satisfying hypothesis (H3). Then
there exists a sequence (h;) of functions in C'(R; L®(T))) such
that

(i) y(x,0) =0a.e. xinI};
(ii) [hy(x, 8) — hy(x,1)](s — 1) = hy(s — )% Vs, r € R, and
a.e. x in I'; (hy positive constant);
(iii) for any I there exists a function ¢ in L°(I}) satisfying
|hl (x,8) — hy (x, r)|

(19)

<qgls—-r|, VsreR, ae xinIj;

(iv) (hy) converges to g uniformly on bounded sets on R and
ae xinlj.

Lemma 8. Let T > 0 be a real number. Consider the sequence
(wy) of vectors in L*(0, T H_I/Z(I‘l)) n LY(0, T;Ll(l“l)) and
vectors w € L*(0, T; Hil/z(Fl)) and y € LY, T; LI(FI)) such
that

(i) w; — w weak in L*(0, T; H2(T)));

(ii) w, — yin L'(0, T; L'(T)).
Then, w = ¥.

Lemma9. Let p: R — R be a globally Lipschitz-continuous
function with p(0) = 0 and let

Yo:V — H'*(T)) (20)

be the continuous trace of order zero. Consider u € LZ(O, T;V)
then p(u) € L*(0,T;V), p(yyu) € L*(0,T; H*(T,)), and
Yopu(t)) = plyu(t)) a.e. t € (0,T).

Proof. We see that

p:V—=YV,
1/2 2 (21)
PiH/ (F1)—>Hl/ ()

are continuous maps (see Brezis and Cazenave [17] and
Marcus and Mizel [18]). Let v € V. Consider a sequence (v)

of functions of C'(Q) such that
v —v inV. (22)

Then by (21) and (22), we have p(v,) — p(v) in V, and by
(20)

Yob (V) — yop v) in H'?(T}). (23)
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Also by (20) and (22), we deduce

p(v) — pyv) in HP(T). (24)
As yop(vi) = p(yovi), it follows from (23) and (24) that
YoP() = p(y,v). This implies

Yop () = p(you () aein (0,T).  (25)

Now, we consider the set ® = {s € R

differentiable in s}. Then

: pis not

0
5 P (x1)

1

26
P wen 2w, uwneo, 0
= 0x;
0, u(x,t) € 0,
withi =1,2,...,n (see Brezis and Cazenave, loc. cit). As p' €
L®(R) then

pu) e L* (0,T;V). (27)

From this and since y, : L2(0,T;V) — L*0,T; Hl/z(l"l))
then y, p(u) € L*(0,T; Hl/z(l"l)). This and (25) furnish

pyou) € L2 (0, T; HY* (1)) (28)

From (25) to (28) we have the results of this Lemma. O

Proof of Theorem 1. We will use the Faedo-Galerkin’s method
with a special basis of VN H 2(Q). Thus, let us consider the
Strauss’ approximation (h;) of h given by Lemma 7. Let us
consider (ull) a sequence of vectors in 2(Q) such that

ull —u' in Hé Q). (29)

Note that #;(x, ull) = 0 and 0u’/dy = 0 on I since W’ e
D(-A). Thus,

a 0
a—L; +h (-,ull) =0 on I},VL (30)
Now, we fix | and construct the basis {wll,wlz, .. pof Vn

H?*(Q) such that u°, ull belong to the subspace [wll,wlz]
spanned by w!) and wh. Let V! = [w,wl,...,w ] be the

subspace of VNH?(Q) spanned by wl1 yeees win. With this basis
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we determine the approximate solutions u,,(t) of Problem

(AP), where 0 < € < 1 fixed.

elm

Approximated Perturbed Problem. This consists to find the
functions u,,(t) = Z;":l gsﬂm(t)w;, solutions of the problem

((K ) + &) ugy,, O, w)) + (e (), 7))

C uy,, ()

J
+ (luslm O thepyn (1), wi)
+ (hl ( Ueim (t))
Uelm (0) = MO,

u;lm 0) = ull.

(AP)

)Lz(r)—o, j=1,2,...,m

The above finite-dimensional system has a solution,
Uy, (t), defined on [0, t,,[. The following estimate allows us
to extend this solution to the whole interval [0, o). O

3.1. Estimates

3.L1 First Estimate. Considering w = 2ul, (t) in (AP),,
integrating from 0 to t (0 < t < t,,), using the fact that
hy(x,s)s = h052 (see Part (ii) of Lemma 7), assumptions (H4)
and (H5), and since 0 < € < 1, we obtain

(K @1l ) + & [y, Of + it O

2
+2

+

| Ueim (t)|a+2 dx

o

+ 2h, J J ulm (x,s))zdl"ds

I
(1)

' sm()/
+zLZLb() l] W, (s)dxds

=
2 J |u0'a+2 dx
+2 Ja

j [}, O +C®) (K ()12, (9))] d.

2 2 2
<lu |+ || + 1K )1 || + =

Note that

n

1
y J b (1) ssz (01, () =~ L div (b) |

=
1
+—j b-viu
2 Jn,

|dx

slm

| dr.
(32)

slm

5
In fact, by the Gauss’s formula we have
ou, 1 ob; 2
! Ugim
J‘Q b] elm a dx ,|-Q a slm| dx
(33)

; % L by, it T,

where v; is the jth entry of the normal vector v. Hence, by
(A2) we obtain

b t
> 2 [ Jul, O dxas (34)
2 Jo Ja

(t)| dr ds.

slm

Using the hypothesis div b(t) < —b,, choosing & = b,/4 > 0,
and plugging (34) in (31), we find

(K @1t ©) + [t O + [t O

b t
+_J
2

t
+d, L L (uélm (x, s))2 dl'ds (35)

2 o
Uy, (s)' ds + ) J [ttern (1)) 2 dx

<aou'[" 4 o e
+C (o) r (K(s),u2, (5)) ds,
0

where d, = 2h, — [|b||,,/2 > Oforalll > [,,Vmand 0 < e < 1.
Moreover, [|[vllio2q) < ¢llv] for all v € V. Therefore by the
Gronwall’s inequality and (35)

(Kl/z !

Ueim

) is bounded in Ly, (0, oo0; L? (Q)),
(4g,) is bounded in L7, (0,00; V), (36)

(uélm) is bounded in L%OC (0, 00; [? (Fl)) )

3.1.2. Second Estimate. Differentiating with respect to ¢ the
approximate equation (AP), and taking w = 2ul, (t), we
obtain

3 (O 01 ) + Sl @

dt

= O + (K © i, (0,14, 1)

(t)| dr

slm

2 J B (it (8)
rl



ZZ( auglm' ), é;m(t))

+2(0 + 1) (|t ()] 110, (1) s 14y, (8))

+2Z (b (t) —sm fl’"( ) (t),ul, () (t)) =
(37)

Note that

D <b () —2m—
j=1

1 .
-3 J;Z div (b) |u

Zmo

Xj

© ) m)

0| dr
(38)

elm

emawdx+§Lbayv

< n max ”b “ Slm (t)

1<j<n

£lm (t)|

< ], v olbio

1<j<n

1/2 !
P ma,c, 6]

< 2_ °°Cp|Vu;lm (t)'2 +plu

slm (t)'
(39)

where the last inequality becomes from Young’s inequality.
Therefore, if

1/2
max e ]

p 2

n

K, =C (40)

>

then |Z;-’:l(b}(f)(auélm(t)/axj)(t),uégm(t))l < K[, 017 +
plugm(t)lz. Combining this inequality and (38) with (37),
after that using that hl'(-, s) = hy, divb(t) < -b, and
integrating from 0 to t, we obtain

(K@), ul, ) + el O + [t O

+ (% - p) J |uelm (s)'2 ds
b
(oo M) | o o

< [l O + ]+ K72 @] [t )]

-2(0+1) Jo (|u£lm (S)lﬂ u::lm (s) ,ugm (s)) ds
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Elm

' 2
Ueim (S) ||

t
+8J
0

+ Lt C(8) (K (), (s)) ds.

s)| ds+ K, J

(41)
We also have used the above hypotheses (H4) and (H5). Now,

by Hoélder’s inequality for 1/q; + 1/n+ 1/2 = 1, embedding
(18) and first estimate (36), we find

[(ZGIENORWNG)]

([ o) (] )
<J |ugzm (t)|2>1/2 (42)

< Clttegyn O] |81 (t)"

<C ||uslm (t)" |uslm (t)|

Ueim (t)l

<C, ||, (t)” +17 |u, (t)]

where the constant C is independent of [, 1, e and t > 0, and
C, is a positive constant that depends on #. Substituting this
inequality in (41) yields

(K (®) 1y (1)1 () + € fulh O

it OF (2= oom) [t O s

[l 0o
(o) [ | o

2 1|2 " 2 (43)
|uslm (0)' + ”ul ” + sup K (x,0) |uslm (0)|
x€Q

+KJ"%W H+5mem)rﬁ

+ JO C (8) (K () hyy, (5) 1y, () s

Choosing § = b,/4 and p,
1)) > 0, we find

n small such that b, = (b,/2 - (p +

(0,15, 0) + eluly, @ + [, OF

slm (t)|

+b j ‘uslm (s)|2 ds+d, J J |uglm (s)|2 dr'ds

slm (0)| + "“1 “ + supK(x 0) |u

slm (0)|

+1<2J et (s)“ +C (&) (K (8) tulgy (5), 1y, (5)) ds.
(44)
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Now we need to derive an estimate for (ugm(O)). Thus, taking
t = 0 in approximate Problem (AP), and choosing v =
(0) one has

slm
(K (0) + &) ), (0), 1y, (0)) + (1, 4y, (0)))

+L () glm(o)dl“+z<b 0 5 s,,,1(0)>

i=1

|u0' u’ uslm (0))=

(45)
Applying Green’s formula
((K (0) + &) ), (0) 1y, (0)) = (A, ull, (0))
0
L[5 nt ]
+i(b.(0)% ul! (0)) |u| u’,uly,, (0)) = 0.
& j axi’ elm £lm
(46)

Thanks to (30), the integrals on I’ in (46) are null. Using
convergence (29), embedding (17), and the hypothesis (H4)
give

uly (0)| <C, Vlme (47)

From this boundedness and (46), we get

(K @ ulh, (0,1l ) + sy, O + ity O]

2 t
b J ol O e dy | |

t , 5
<G+ K | ol )

elm

(o) drds
(48)

+ L C (8) (K (5) gy, (1) 5 sy, (5)) dis,

where C, is constant independent of [, m, and e. Applying
Gronwall’s inequality in (48) and using estimate (47), we have

(Kl/2 " ) is bounded in L}, (0, 00; L? (Q));

(ugm) is bounded in L? (0, co; L (Q));

loc
(49)

(”Lzm) is bounded in L}, (0,005 V);

loc

(u] ) is bounded in L], (0, o0; L (1“1)).

elm

From estimates (36), (49), induction, and diagonal process,
we obtain a subsequence of (u,,,), which is still denoted by
(t4,,,)> and a function u,; : Ox]0, c0[ = R, such that

Ug,, — U weak star in L}, (0,00;V);

elm

!
Uy — uel weak star in LY (0,00;V);

loc

K”slm — Ku!! . weak star in L}, (0, co; L2 (Q)); (50)

ul, — ul, weak in L} (0, o0; L (Fl)) ;
ugm — usl weak in Lloc (0, oo; L? (Fl)) )

From the convergence (49), we obtain

n

Zb au‘slm
57 0x;
(51)

9 o, (0,00, L% ().

!
U,
ax]

—)Zb]

3.1.3. Analysis of the Nonlinear Terms. By estimates (36);,
(36),, compactness method (cf. Lions [19] or Simon [20]),
embedding (17), induction, and diagonal process, we obtain
a subsequence of (u,,,,), which also is denoted by (u,,,,), such
that

elm

|uslm|(T Upn ( 2)
5
—> |ug|” u, weak star in L5, (0, oo; L* (Q)) .

From (48),, we have that (uelm) is bounded in L (0, co;
HY 2(F )). Thus, estimate (49), and the compactness embed-
dmg of Hl/z(l" ) in L? (T)), give uelm (0, 0o
L*(I,)). From this, property (iii) and Lemma 7 yield

- usl in Lloc

hl( s,,,l)—>lal(-,1¢f€,) inLﬁoc(o,oo;Lz(rl)). (53)

3.1.4. Passage to the Limit as m. Convergences (49), (51), and
(53) permit us to pass to the limits in approximate equations

(AP),asm — oo0. Thus, this fact and the density of an inV,
give
T

T
L (K + &)t (6),v) y (6) dt + L (g (), ) w ()t

T !
g L y (- uly () vy () T dt

- (" a”éz
+;L (bia—xi(t),v)l//(t)dt

~

! J ((Jua O w.®),v)y () =0,

0

Yy e 2(0,T), VveV.

(54)



Now, if y € 2(0,T) and v € 2(Q) we obtain using the
regularity of u,; (given by (49)), that

" " oul

(K +&)uyy — Aug + Y b—2
— " Ox;

=1 9% (55)

+ [ug| 1y =0 in Ly, (0,00, L% (Q)).

From (49), and (55) we have u,; € L*(0,T;V) and Au, €
L®(0,T; L*(€Y)), respectively. Thus, du,/dv € L*(0,T;
H YT 1)). (compare to Lions [19] and Medeiros and Milla
Miranda [21]). Multiplying both sides of (55) by vy, with
v e Vandy € 2(0,T), and integrating over Q x [0, T[, then
the preceding regularity, ou,;/0v, gives

T T
J ((K +&) v ) ydt + L ((ue>v)) ydt

_ T<a”5’ v>wdt+JT(|u |”u V)l//dt 56
0 av > 0 el el ( )

+ZJ(~

where (-, -) denotes the duality paring between H -1 2(1"1) and
HY(T)).

Comparing (54) and (56) and using the Lipschitz prop-
erty of h;, we obtain

0
sy () =0 in L (Do (1)) 57

I

,v)t//dt =

3.1.5. Passage to the Limit ine — 0andl — o00. As
estimates (36) and (49) are independent of [, m, and & we
obtain a subsequence of (u), which still denoted by (u,;),
and a function u; such that all convergences (49) and (52)
are valid. These convergences will be denoted by (49),, (51),,
and (52),, respectively. These results imply that there exists
a function u; belonging to class (49) and it is a solution of
equation

nooo /
Kuj' — Auy + Zbla—ul
= 0% (58)

+|w| =0 in L (0, oo; L? (Q)) ,

aul
ov

Denoting these convergence in [ by (49),, (51);, and (52);,
respectively, then the convergence (49); givesusu; — uweak
star in L*°(0, 0o; V). From this and (55), Au; — Au weak star
in L% (0, 00; L*(Q2)). Then

loc

% — g—:l weak star in L}, (0, cos H /2 (1"1)). (60)

Moreover, convergence (49); furnishes ul — u'in LIOC(O,
00; L*(I})). Now, we fix T > 0. The preceding convergence
implies

+hy(»uy) =0 in Lj (0,00 L* (I})). (59)

ul' (x,t) — u' (x,t) aein 2, =TI, x]0,TT. (61)
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Fixing (x,t) € XZ,, then by (61) the set {ul'(x, t) : 1 € N} is
bounded. Part (iv) of Lemma 7 says that (/;) converges to h
uniformly in bounded sets of R, a.e. x in I;. These two results
and (61) give

h (x, “1, (x, t))

— h(x, u' (x, t)) aein X, =1} x]0,T[.

(62)
On the other hand, by (58) and (59), we obtain
| (o @) g @ ar
r,

=—(K®w' t),u (t))

n 0 o !
. Z( : (,t), u (t)) = (Ju O w ®) 1 ).
(63)

Iqu Ol

By familiar inequalities,

i (@%,u,’ (t)) <C

i=1

[l @ + | 0[], 60

and from embedding (17),

[l O w0, @)
(65)

2(0+2)

<C [l OF + |y 0 ]

where C > 0 is a constant independent of [ and ¢ € [0, T].
As

(KOu' @6 ©) = 2 (KOuf 00,4 0)

N | —

) (66)
- (K'®u 0, ),

integrating the inequality above from 0 to T, and using the
hypothesis (H5) and (H6), we find

T
L (K ) w) (t),u) (1)) dt

=~ [(K(T)u (T),u; (1)) = (K 0) 1}, 11y )]

l\)l»—t

1 (T, , ' !
-3 L (K" ®)u (), (1)) dt
< 1K || ) + [t ] (67)
J [6|ul (s)| + C(d) (K(S) Ul (5))]

< 1Kl [Juf (D + ][]

T o
+CO.IKI) | [ o
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Note that u; € C°([0,T]; V), u; € C°([0,T];L*(2)) and
that (14;(T)) and (ul'(T)) are bounded in V and in L*(Q),
respectively. Taking into account the preceding considera-
tions, estimates (49); and convergence (36); in (63), we obtain

T
L Ll hy (oup () w (1) dT dt < C, -

Vi>1l, Vtel[o,T],

where C > 0 is a constant independent of ] > I, and ¢ € [0, T].
Note that k(- ul'(t))ul'(t) > 0.

From (62), (68), Strauss’ approximations, Lemma 9 and
from a diagonal process, we get

hy (-,ul') —h (-, u') in L%OC (0, oo; L} (1"1)) ) (69)
Convergences (60) and (69) imply 0uy;/0v — 0u/dv in
2'(I,x]0, co[) and (-, ul') - h(,u') in 2'(I,x]0, col).
Now we take the limit in (59). Moreover the last two
convergences and the regularity of h(-u') imply ou/dv +
h(,u') =0 in L%OC(O, 00; L'(I})), which shows that u satisfies

n !

Ku" - Au+ Zb,.al +lulu=0

~ "' 0x;

i=1 i (70)

in L{y. (0,00; L ().

Hence, the result is done as in (58).
The verification of the initial conditions follows by con-
vergence (49);.

Remark 10. If |h(x, s)| < hy|s| a.e. x € T, then the sequence
hy, which converges to h, satisfies |h;(x, s)| < (3/2)h,s| (see
Lourédo and Miranda [10]). In these conditions, the solution
is unique and 0u/0v + h(,u') = 0in L} (0,00;L*(T})).
Consequently, u € L*(0,00,V N H2(Q)).

The proof of Corollary 2 follows from Remark10 and
from regularity of elliptic problems (see Lions and Magenes
[22]).

loc

4. Asymptotic Behavior

In this section, by applying Nakao's method (see [23]), we will
prove the uniform stabilization of the energy associated with
the solution of the Problem (P).

Proof of Theorem 6. First, we prove the inequality (15) for the
approximate energy E;(t) given by

E @ =3 {K2 O ©f + Ju ©f

(71)
" 2 J |y (t)|[er2 dx} for t > 1,
o+2 Ja
and Theorem 6 will follow by taking the lim inf in /.
Taking the scalar product of LZ(Q) in both sides of
Kuj' — Auy + Z +|w| w =0

(72)

in L. (0, 00; L* (Q))

with ul', we find

El(t) %(BK(t),
~(m

u; (t), 1 (t))

5
(g @) @),

(73)
%J divb (6) |u] (0] dx

1

2
-5 L b(t)- v|ul (t)| dx.

Using (73) and the hypotheses (A2), (H3), (H8), and (H2), we
obtain

%El(t)g-—| u] t)| (w_h >|u,’ (t)|§1 <0.

(74)

Note that E(t) is decreasing. From (73), the hypotheses (H1),
(H2), and Remark 10, we have that

d b() li 2 ! 2 80 ! 2
B0 |l O +4d, |ul (t)'rl + |y (1)
b (75)
Thus,
dpweN lu @) + N, [ 0 (76)
dt 1 1 1 I,
where Ny = (b,/2 + 6,/2) > 0and N, = d, + (||bll,/2) > 0.

Integrating (76) from ¢ to ¢ + 1, we obtain

t+1 , 2
E(t+1)—E (t) <N, L ) ds
t+1 77)
+ N, J |”1 (s)| ds.

Furthermore, taking the scalar product in both sides of (72)
with u;, we find

(KO u' #),u, @) + |y O + (0~ Vuy (1), (1))

+ (1 (o ), O+ (fa OF 1w €)1 0) =
(78)

As

(K ® ul o, “ (t)) : (K ) ”1 ),y (t))
— (K () uy (6, (1)) (79)

—(K®)uy (t),u] (1)),
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then
s O + e ()]75%

- (b . Vul (t) » U (t)) - (hl (') ull (t)) > Uy (t))r1

(80)
+(K' B (1), () + (K@) (£), 1 (1))

- (KW 0,1 0).

Now note that
(b- Vi (0, (1) = jzb (1) S (t)ulmdx (s1)

and by Gauss’ formula, we have

! a !
aixj (6O (8 ©) =bOw@ 52 O

j

b, (t
fx( )u, (t)u; (t) (82)
i

ou ,
+b; (t) a_xj. )y ().

Therefore,
- ’() ,
lej b; () u () J Lb(t)-vul (t)u; () dr
—j (divb (t)) uy () uy (t) dx
Q
—j b(t) Vuy (t) u, (t) dx.
Q
(83)
Hence,

(b Vuy (1), 1 (1)) = L b (£) vuy (t) u) (t) dT
—j (divh (B) () ul (dx  (34)
Q

—I b (1) - Vuy (1)l () dx
Q
Substituting (84) in (80), we obtain

o )] +

o+2

| (t)|L‘”2

= —J b(t) - vuy (t) u; (£)dT + J (divb (t) uy () u, (t) dx
I, Q

+ JQ b(t) - Vuy (O uy () dx — (hy (uy () (1))

L2(Ty)
+(K' O w ), (0) + (KO w (1), (1))

- % (K®u (t),u(1)).
(85)
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Integrating (85) from ¢, to t, yields

ZIZZ(Q))

[ or o
t, t
< bl L | O], |y (t)|rl dt + 8, L GIAGIES
bl f IV ()] |1, (8)] it
+ J: [ (o ©), o Oy, e
N r % ) )] | ()] it + 1K oo r luj 0| dt
ty ty

- [(K (t)w (t) 14 (tz)) - (K (t)w (1) (tl))] .

(86)

Using the embedding of V in L*(Q)and V in LZ(F1 ) (see (12)),
it follows that

) Wllo [;” 1 (Ol 1 )15, et < 320bIZ,K] [ 1] )1, e
+(1/32) [ I (0lPdt;

(iD) 8 [* Ol Dlde < 32(1/A,) [ lwf ()Pt + (1/
32) [, ly(®) |t

(i) bl J, 1Ve(®)luf Ol < (WIZ,/2) [ IOl de +
(172) [}* It

W) [ GOl @l de < G2k, [7 1 ©, -
@)l dt < ((3/2)hk,)* (V) 16j (O dt +
(1/32) [ I (0ldt;

™) [ @/l Ollw@lde < 328/2° A/A,) [} O
+(1/32) |7 Il dt;

(Vi) [(K (£ (85), y(t5)) = (Kt (1), iy (1) < 1K g
[l ED ety ()] + Jaay (E) ey (211

Note that

4 (8,)] < (%) i, )] < (%)5}/2 ), @)

since E;(t) is decreasing and t < t;, t, < t + 1. Analogously,
we obtain

|uy (1,)] < (\/—_) E(t). (88)
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Using (87) and (88) in (vi) we find

|(K (tz)”z’ (t2), (fz)) - (K (tl)ull (ty),uy (tl))|

< Koo (#)ﬂfﬂ E () [[w (8)] + [uy (21)]]-
1 (89)

Substituting (i)-(vi) and (89) in (86), we obtain

K o+
J, Tl F + o 02
< (32+ Wl 1) [ I O a
' 32<i) +8b2<i>2 rlu’(t)lzdt
M o\, ‘| !
1 ty ’ 2
+ §>Ll '”1 (t)|rl dt

+||K||m<\/%>tsug El/z (s) |”l tz)' 'u, (t, |
1 1585t

(90)

+ (32 1612, K2 + 18 (K, )* A

It follows from (74) that

B
E (t+1)-E () < -N, J |y (s)| ds
t (o)
o
-N, L |ul (s)|rl ds,
where N; = b, > 0 and N, = hy — [|bll,/2 > 0. Hence
D} (1)

=E(0) - E(t+1)

t+1 , 2 t+1 , 5
> N, J |ul (s)| ds+ N, J '”1 (t)|r ds (92)
t t 1

t+1 ) 2 t+1 , 2
sai [ s [ i, o]

where d, = min{N;, N,} > 0.
From (92), we obtain

D2 t t+1
ld—() > J |u,' (s)|2 ds,
1 t
, (93)
Dy (t)
dl J |“1 (S)|r ds,
and from (93), we get
t+1/4 , 2 t+1 , 2 D12 (¥
J |“1 (s)| ds < J |ul (s)| ds < ,
t L t L 1
(94)

t+1 D?
L3/4|u, (s)| ds<J |u;(s)|;d < ; (t).

1

By the Mean Value Theorem, there are t;, € (t,¢ + 1/4) and
t, € (t +3/4,t + 1), such that

t+1/4 2
Tl = [ o as< 2L,

1
=]

From (95), we can write

, (95)
'“z (s)' ds < Di ()

+3/4

2D, (t)

-l

| (£)] + w1 (12)| < (96)

Now from (93) we have

t, , 2 t+1 , 2
Ns L |ul (s)|r1 ds < N; Jt |ul (s)|1,1 ds

(97)
N;
=D} (1),
<4 ;)

where Ny = 32||bl, + 18(h,k,)’.
Analogously we obtain

t, , 2 t+1 , 2 N6 )
Ny J |”1 (s)| ds < Ng J |ul (s)| ds < d—Dl (), (98)
f t 1

where N = 32(1/A,) + 863 (1/A,).
Substituting (96), (97), and (98) in (90) and considering

9 (1
N, = =+ = |lbly
7 32+<A1)II lloo (99)

we get
& 0+2
J; [llul (t)" |ul (t)lL‘”'Z(Q)]
t ) t, , )

<N [l ae N [ o

t, , )
+N6J |y )] it

t 1

+ Kl (%A—) sup B [Juf (6)] + [ 1)
sN7J |y )| dt + &Dl (t) + 6Dl (t)

2Kl (1/vA
+ M sup Ell/le )

\d, ty<sst,
tZ
<N, [ @l de+ ( 52+ 58 ) DF 0
b d 4,

21Kl (1/4/A))
T ya

Dy () E (t).

(100)
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As D{(t) = E/(t) - E/(t + 1) < E/(t) then Dy(t) < E;’*(t), and
substituting this inequality in (100), we obtain

J, (e OF + i 0

o+2
LU+2(Q) ) dt

<N [ @ dr+ (

21Kl (1/4A7)
T ya

Replacing t = t; and t + 1 = t, in (93), we have

N: + N,
0

Dy (£) E; (1)

t RNY) Ly, 2
| K@ ©f <1kt [ of d

(102)
IKlloo 2
< D; (t).
< 4, D (t)
Adding (101) and (102), we obtain
f2 [N o+2
[ [k @ O + I OF + oy 02 g, | e
t2 K|l + N5 + Ng¢
<N [l e+ (Bl ) 2y g9
1 1
2(1/4/A) Kl
+ LEZ (t) R
Vd,
and this implies
t, 5 Y
[ (KO OF + 0= N) o OF + oy O ]
< NgD;j (t) + NoE; (t),
(104)
where
[Klloo + N5 + Ng
Ny = —M——=,
8 dl
(105)
. 2 (1/VA7) 1Kl
- Vd,
The hypothesis (H11) yields ||b]l, < 21A,/32andas1-N, > 0
then

tz l ! 1 o+
L [EK(t) |u1 (t)'2 *+3 |, @) = |“z (t)|L0+22 ]
< 1\7101)12 (t) + NllEl (f) .
(106)

Since 1/(0 +2) < 1, N;y = Ng/M and N;; = Ny/M, where
M =min{l,1 - N,;} > 0.
From (106), we obtain

t,
J E; (t)dt < NyoD; (t) + N, E; (). (107)
ty
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Note that by hypothesis (H11), N;; < 1/4, thus from (107),
we find

b
J E; (t)dt < N,,Dj (t) + }LE, ). (108)
t

Again, by the Mean Value Theorem there exists t* € (¢,,t,),
such that

t
J El(s)d5=El(t*)(t2—t1)2%E,(t*). (109)

t

Integrating (76) from ¢t to t and using (77) and (93), it follows
that

to,
E () <E(t")+N, L 'ul (s)' ds

t
+ N, J '”1’ (s)'i ds (110)
t 1

<E () + N D (t) + NZD (t).

Substituting (109) in (110), we get

E(t) <2 r E (s)ds + (2’— + %) D (t). (1)
ty 1 1

Now, substituting (108) in (111), we obtain

NN

1
E (t) < EEZ (t) + <2N10 + — 4, dl

) D (1), (12

E (t)<2 (2Nm AL &) D; (t). (113)
d d,

As E,(t) is decreasing, the inequality (113) provides that

sup 1E, (s) <Ny, [E (1) - E (t+1)], (114)
t<s<t+
where
Nl NZ
Ny, =2(2N,+—+—=]>0. (115)
dy  d

Thus, it follows using (114) and from Nakaos Lemma, (see
[23]), that

E (t) <ce™,

t>1. (116)
Taking the liminf as/ — oo in (116), we obtain
E(t)<ce™, Vvt=1, 117)

where c is positive constant. O
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