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The present study considers a deterministic compartmental model for obesity dynamics. The model exhibits forward bifurcation
at basic reproduction number, R

0
= 1, that is; for R

0
< 1, obesity is not sustained. However for R

0
> 1 the model approaches

a locally asymptotically stable endemic equilibrium. To control this epidemic and reduce the obesity at the endemic equilibrium,
we considered intervention strategies for the spread of overweight and obesity, where Pontryagin’s Maximum Principle is applied.
The numerical technique was used to show that there are effective control strategies that include minimizing the social contact rate
with the overweight and obese population and campaigning. Numerical results indicated the effects of the two controls (prevention
and education/campaigning) to be different. In societies with lower obesity, the social contact rate with the overweight and obese
population plays a more prominent role in spreading obesity than lack of educational programs/campaigns. However, for societies
with very high obesity burden, education/campaigning proved to be highly effective strategies. Reducing the social contact rate can
result in other results such as a depression and an invasion of their individual rights.The appropriate approach to obesity is needed
to lower obese societies.

1. Introduction

Excessive or abnormal fat gain in the body which produces
risk factors for life is categorized as a spectrum of illness
termed as obesity or overweight. To define obesity problem,
Body Mass Index (BMI) is widely used. BMI more than 25
is considered to be hazardous to health and is labelled as
overweight. Further, a person with BMI greater than 30 is
considered as obese [1]. Obesity is not a cosmetic problem,
but it rather has been proved to enhance the risk of life-
threatening diseases like coronary heart disease, high blood
pressure, stroke, type 2 diabetes, metabolic syndrome, cancer,
osteoarthritis, and many more [2]. Besides health issues,
obesity has notable impact on economy, as it was identified
that it is more than $215 billion in the United States [3], which
was estimated in early years to be $147 billion [4]. As risk of
severe diseases and growing economic drain are rooted into
obesity, it deserves to be analyzed thoroughly.

Nowadays inmany countries obesity has become a preva-
lent problem which is mostly overlooked at the beginning, as

it happens slowly and does not cause any immediate health
hazard. When someone is already in, s/he urges to recover,
which is not possible overnight.Obesity has been identified as
a contagious problemwhich is spreading over social networks
[5] and was studied theoretically using epidemic models [6–
9]. Epidemiology along with optimal control theory provides
us with tools to assess the evolution of the problem through
social network, identify major facts to control the epidemic,
and finally and most importantly establish optimal control
strategy.The authors in [6] studied infant obesity and through
numerical simulation they pointed to food consumption
behavior as a propeller for childhood obesity. Considering
adult obesity, the authors in [7] claimed that prevention
strategies are more effective by analyzing a variant of SIS epi-
demic model numerically. The authors in [8] experimented a
system of SIS difference equation model and drew a similar
conclusion. But in these studies constant controls have been
consideredwhichmight not be optimal and practically unfea-
sible. In [9], time-dependent controls for obesity including
dietary program for healthy life campaign and treatment have
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been considered in a deterministic model. It was suggested
that intervention program should be implemented as early as
possible to attack comparatively small epidemic, which was
also proved for another social contagious problem [10].

However, nowadays in some countries obesity captured
more than 70% of the total population [11, 12] and in
some countries it is not so high; that is, obesity is affecting
different societies in different scale. We have shown in this
paper that intervention strategies for societies with different
obesity burden are different. With this aim in Section 2 we
presented our model. In Section 3, the dynamics of system
was discussed. We pointed out the factors to be considered
as intervention measures, proved the existence of optimal
control strategy, and presented numerical results in Sections
4 and 5. Conclusion has been drawn in the last section.

2. Mathematical Model

Themodel is modified from the model of [13] as follows:

𝑑𝑆 (𝑡)

𝑑𝑡

= 𝛿𝑂 (𝑡) − 𝛽𝑆 (𝑡) (𝑂 (𝑡) +𝐻 (𝑡)) ,

𝑑𝑂 (𝑡)

𝑑𝑡

= 𝛽𝑆 (𝑡) (𝑂 (𝑡) +𝐻 (𝑡)) + 𝜂𝐻 (𝑡)

− (𝛾 + 𝛿)𝑂 (𝑡) ,

𝑑𝐻 (𝑡)

𝑑𝑡

= 𝛾𝑂 (𝑡) − 𝜂𝐻 (𝑡) .

(1)

In the model of [13], the social contacts with the overweight
and obese population are 𝛽1 and 𝛽2, respectively. However,
in model (1), we used 𝛽 (= 𝛽1 = 𝛽2); that is, we considered
that both parameters are the same, as they are close enough
to each other.

In this model, the adult population is divided into
three subpopulations: the normal population 𝑆(𝑡), overweight
population 𝑂(𝑡), and obese population 𝐻(𝑡). The adult
population sizes at time 𝑡 are normalized to unity; that is,
𝑆(𝑡) + 𝑂(𝑡) + 𝐻(𝑡) = 1, 0 ≤ 𝑆, 𝑂,𝐻 ≤ 1. All parameters used
in the model are assumed to be strictly positive constants.

The transitions between the subpopulations 𝑆(𝑡), 𝑂(𝑡),
and 𝐻(𝑡) are governed by terms proportional to the sizes
of these subpopulations. The transitions from the normal
compartment to the overweight compartment occurred at
a rate of 𝛽. The rate at which overweight adults with an
unhealthy lifestyle and inactivity become obese individuals
is 𝛾. The obese individuals become overweight adults at a
rate of 𝜂 and the overweight individuals become normal at
a rate of 𝛿 due to healthy lifestyles such as activity and less
food consumption. The basic reproduction number [14] R0
is given by

R0 =
𝛽 (𝜂 + 𝛾)

𝛿𝜂

. (2)

3. Equilibrium and Stability

To study the dynamics of themodel, taking into account 𝑆(𝑡)+
𝑂(𝑡) +𝐻(𝑡) = 1, the following reduced version is considered:

𝑑𝑆 (𝑡)

𝑑𝑡

= 𝛿 (1− 𝑆 (𝑡) −𝐻 (𝑡)) − 𝛽𝑆 (𝑡) (1− 𝑆 (𝑡)) ,

𝑑𝐻 (𝑡)

𝑑𝑡

= 𝛾 (1− 𝑆 (𝑡) −𝐻 (𝑡)) − 𝜂𝐻 (𝑡) .
(3)

Equating the right-hand sides of (3) to zero, we get
obesity-free equilibrium (OFE), 𝐸0 = (1, 0), and endemic
equilibrium (EE), 𝐸𝑒 = (𝑆𝑒, 𝐻𝑒), where

𝑆

𝑒
=

1
R0

,

𝐻

𝑒
=

𝛽𝛾

2
+ 𝜂𝛾 (𝛽 − 𝛿)

𝛽 (𝜂 + 𝛾)

2 .

(4)

Lemma 1. System (3) admits OFE, 𝐸0 = (1, 0), which is locally
asymptotically stable forR0 ≤ 1 and unstable ifR0 > 1.

Proof. To check the stability, we compute the Jacobian of
system (3) as

𝐽 = (

−𝛽 + 2𝛽𝑆 − 𝛿 −𝛿

−𝛾 −𝛾 − 𝜂

) . (5)

At OFE, 𝐸0, we have

Tr (𝐽OFE)
2
− 4Δ (𝐽OFE) = (𝛽 − 𝛿− 𝛾+ 𝜂)

2
+ 4𝛾 (𝛽 + 𝜂)

> 0,
(6)

where 𝐽OFE is the Jacobian at OFE. IfR0 ≤ 1, then Tr(𝐽OFE) <
0 and Δ(𝐽OFE) > 0 and consequently OFE is a stable node. On
the other hand, Δ(𝐽OFE) < 0 whenR0 > 1, which makes OFE
unstable.

Lemma 2. If R0 > 1, system (3) admits unique endemic
equilibrium (EE),𝐸𝑒 = (𝑆𝑒, 𝐻𝑒), which is locally asymptotically
stable forR0 > 1.

Proof. IfR0 < 1, then 𝑆𝑒 > 1 which is impossible. Therefore,
EE does not exist forR0 < 1.

At EE, 𝐸𝑒, we have

Tr (𝐽EE)
2
− 4Δ (𝐽EE)

= (

𝛿𝜂 (1 −R0)

𝜂 + 𝛾

−

𝛿𝛾

𝛾 + 𝜂

+ (𝜂 + 𝛾))

2

+ 4𝛾𝛿 > 0,
(7)

where 𝐽EE is the Jacobian at EE. If R0 > 1, then Tr(𝐽EE) < 0
and Δ(𝐽EE) > 0 and as a result EE is locally asymptotically
stable.

Combining Lemmas 1 and 2, we observe that there exists
only one OFE for R0 ≤ 1, which is locally asymptotically
stable. For R0 > 1, there exists an OFE along with a unique
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Figure 1:The bifurcation diagram for system (1). The solid line rep-
resents stable equilibrium and the dashed line represents unstable
equilibrium.

Table 1: Parameters used for numerical simulation [9].

Notation Value (week−1)
𝛽 0.0007
𝛾 0.00035
𝛿 0.00035
𝜂 0.00028

EE between which the former is unstable while the latter is
asymptotically stable. So, we can conclude that the system has
a forward bifurcation at R0 = 1. This fact is summarized in
the following theorem.

Theorem 3. System (1) exhibits a forward bifurcation atR0 =
1.

To illustrate the bifurcation phenomena, simulations have
been carried out with the parameters listed in Table 1. The
bifurcation diagram is presented in Figure 1, where the solid
and the dashed lines correspond to the stable and unstable
solutions, respectively. To numerically verify the existence of
EE, the phase portrait for the endemic equilibrium (EE) at
R0 = 1.5 is shown in Figure 2, where the nearby points (∙) of
the EE approach the EE (Q).

4. Optimal Control

Here, we present the sensitivity analysis of the basic repro-
ductive numberR0:

𝑆
𝛽
=

𝜕R0
𝜕𝛽

𝛽

R0
,

𝑆
𝛾
=

𝜕R0
𝜕𝛾

𝛾

R0
=

𝛾

𝜂 + 𝛾

,

0.55
0.6

0.65
0.7

0.75
0.8

0
0.1

0.2
0.3

0.4
0.1

0.15

0.2

0.25

S

O

H

Figure 2: The phase portrait for the endemic equilibrium of system
(1). For different initial points (∙), the solution trajectory approaches
the endemic equilibrium (Q) with the passage of time.

𝑆
𝜂
=

𝜕R0
𝜕𝜂

𝜂

R0
= −

𝛾

𝜂

2
(𝜂 + 𝛾)

,

𝑆
𝛿
=

𝜕R0
𝜕𝛿

𝛾

R0
= −

1
𝛿

2 .

(8)

Therefore, 𝑆
𝛽
= 1, 0 ≤ 𝑆

𝛾
≤ 1, 𝑆

𝜂
< 0 and 𝑆

𝛿
< 0.

So, among the sensitivity indices, 𝑆
𝛽
and 𝑆

𝛾
are positive,

implying that the value of R0 could be reduced by reducing
𝛽 and 𝛾. Therefore, we see that controlling 𝛽 and 𝛾 might
be a way to control the transmission of overweight and
obesity. To control the prevalence rate of overweight and
obesity, we expand our basic model (1), by adopting the
time-dependent controls 𝑢1(𝑡) and 𝑢2(𝑡) corresponding to 𝛽
and 𝛾, respectively. The control variables 1 ≥ 𝑢1(𝑡) ≥ 0
and 1 ≥ 𝑢2(𝑡) ≥ 0 represent the amount of intervention
at time 𝑡 to reduce social contact with the overweight and
obese population and the educational program/campaign
and warning about obesity that are used to promote activity
and less food consumption, respectively. In modified model
(9), we replace the social contact rate𝛽 by𝛽(1−𝑢1(𝑡)) and 𝛾 by
𝛾(1−𝑢2(𝑡)).The factor (1−𝑢1(𝑡)) reduces social contacts with
the overweight and obese population. The factor (1 − 𝑢2(𝑡))
reduces inactivity and food consumption. Now, the modified
model is a nonautonomous one and results in qualitatively
different output.

Our aim is to implement the intervention techniques to
effectively and economically control the epidemic by imple-
menting a healthy lifestyle that promotes exercise and less
food consumption. Taking into account the above assump-
tions, the modified model reduces to a nonautonomous
system, which is as follows:

𝑑𝑆 (𝑡)

𝑑𝑡

= 𝛿𝑂 (𝑡)

− [𝛽 (1−𝑢1 (𝑡)) 𝑆 (𝑡) (𝑂 (𝑡) +𝐻 (𝑡))] ,
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𝑑𝑂 (𝑡)

𝑑𝑡

= [𝛽 (1−𝑢1 (𝑡)) 𝑆 (𝑡) (𝑂 (𝑡) +𝐻 (𝑡))] − 𝛿𝑂 (𝑡)

+ 𝜂𝐻 (𝑡) − 𝛾 (1−𝑢2 (𝑡)) 𝑂 (𝑡) ,

𝑑𝐻 (𝑡)

𝑑𝑡

= 𝛾 (1−𝑢2 (𝑡)) 𝑂 (𝑡) − 𝜂𝐻 (𝑡) .

(9)

In the above system,R0 becomes time dependent and can be
written asR0(𝑡) = 𝛽(1 − 𝑢1(𝑡))(𝜂 + 𝛾(1 − 𝑢2(𝑡)))/𝛿𝜂.

In the optimal control problem for ordinary differential
equations, we used 𝑢(𝑡) for the control and 𝑥(𝑡) for the
state. The state variable satisfies a differential equation which
depends on the control variable:

𝑥


(𝑡) = 𝑔 (𝑡, 𝑥 (𝑡) , 𝑢 (𝑡)) . (10)

The optimal control problem consists of finding a piece-
wise continuous control 𝑢(𝑡) and the associated state variable
𝑥(𝑡) to maximize the given objective functional; that is,

max
𝑢

∫

𝑇

0
𝑓 (𝑡, 𝑥 (𝑡) , 𝑢 (𝑡)) 𝑑𝑡

subject to 𝑥


(𝑡) = 𝑔 (𝑡, 𝑥 (𝑡) , 𝑢 (𝑡))

𝑥 (0) = 𝑥0, 𝑥 (𝑇) free.

(11)

Such a maximizing control is called an optimal control [15].
Functions 𝑓 and 𝑔 will always be continuously differen-

tiable in all three arguments. Thus, as the control will always
be piecewise continuous, the associated states will always be
piecewise differentiable.

Theorem 4 (see [15]). If 𝑢∗(𝑡) and 𝑥∗(𝑡) are optimal for
problem (11), then there exists a piecewise differentiable adjoint
variable 𝜆(𝑡) such that

H (𝑡, 𝑥

∗
(𝑡) , 𝑢 (𝑡) , 𝜆 (𝑡)) ≤H (𝑡, 𝑥

∗
(𝑡) , 𝑢

∗
(𝑡) , 𝜆 (𝑡)) , (12)

for all controls 𝑢 at each time 𝑡, where the HamiltonianH is

H = 𝑓 (𝑡, 𝑥 (𝑡) , 𝑢 (𝑡)) + 𝜆 (𝑡) 𝑔 (𝑡, 𝑥 (𝑡) , 𝑢 (𝑡)) ,

𝜆


(𝑡) = −

𝜕H (𝑡, 𝑥

∗
(𝑡) , 𝑢

∗
(𝑡) , 𝜆 (𝑡))

𝜕𝑥

,

𝜆 (𝑇) = 0, transversality condition.

(13)

An optimal control problem with the objective cost
functional can be given as

𝐽 (𝑢1, 𝑢2)

= ∫

𝑇

0
[𝐴1𝑂 (𝑡) +𝐴2𝐻(𝑡) +

𝐵1
2
𝑢

2
1 (𝑡) +

𝐵2
2
𝑢

2
2 (𝑡)] 𝑑𝑡

(14)

subject to the state system given by (9).
Our goal is to show that it is possible to minimize over-

weight and obesity in adults and the cost of implementing
the control by using possible minimal control variables 𝑢

𝑖
for

𝑖 = 1, 2.

In the objective functional, the quantities 𝐴1 and 𝐴2
represent the weight constants of the overweight and obese
population, respectively. In the objective functional, the
weight coefficients 𝐵1 and𝐵2 are constants that represent cost
size. The terms (1/2)𝐵1𝑢

2
1 and (1/2)𝐵2𝑢

2
2 describe the costs

associated with the transmission by social contact rate with
the overweight and obese population and an educational pro-
gram/campaign and warning about obesity for minimization
of the obese population, respectively.

Our aim is to find the optimal control functions 𝑢∗1 and
𝑢

∗

2 . We need to find optimal control functions (𝑢∗1 , 𝑢
∗

2 ) such
that

𝐽 (𝑢

∗

1 , 𝑢
∗

2 ) = min {𝐽 (𝑢1, 𝑢2) | (𝑢1, 𝑢2) ∈U} (15)

subject to the state system given by (9), where the control set
is defined as

U = {(𝑢1, 𝑢2) | 𝑢𝑖 : [0, 𝑇]

→ [0, 1] , 𝑢𝑖
is Lebesgue measurable, 𝑖 = 1, 2} .

(16)

Let us go back to the optimal control problem (9), (14),
and (15).We note that the existence of an optimal control pair
can be proven.

Theorem 5. Consider control problem (14) associated with
system equation (9). Then, there exists a control u∗ =

(𝑢

∗

1 , 𝑢
∗

2 ) ∈ U such that

𝐽 (𝑢

∗

1 , 𝑢
∗

2 ) = min
(𝑢1 ,𝑢2)∈U

{𝐽 (𝑢1, 𝑢2)} (17)

with the initial conditions at 𝑡 = 0.

We seek the minimal value. To do this, we defined the
HamiltonianH for the control problem as follows:

H (X (𝑡) ,U (𝑡) ,Λ (𝑡)) = 𝐴1𝑂 (𝑡) +𝐴2𝐻(𝑡) +
𝐵1
2

⋅ 𝑢

2
1 (𝑡) +

𝐵2
2
𝑢

2
2 (𝑡) +Λ (𝑡) (

𝑑X (𝑡)
𝑑𝑡

)

𝑇

= 𝐴1𝑂 (𝑡)

+𝐴2𝐻(𝑡) +
𝐵1
2
𝑢

2
1 (𝑡) +

𝐵2
2
𝑢

2
2 (𝑡) + 𝜆1 (𝑡) [𝛿𝑂 (𝑡)

− 𝛽 (1−𝑢1 (𝑡)) 𝑆 (𝑡) (𝑂 (𝑡) +𝐻 (𝑡))] + 𝜆2 (𝑡)

⋅ [𝛽 (1−𝑢1 (𝑡)) 𝑆 (𝑡) (𝑂 (𝑡) +𝐻 (𝑡))

− 𝛿𝑂 (𝑡) + 𝜂𝐻 (𝑡) − 𝛾 (1−𝑢2 (𝑡)) 𝑂 (𝑡)] + 𝜆3 (𝑡)

⋅ [𝛾 (1−𝑢2 (𝑡)) 𝑂 (𝑡) − 𝜂𝐻 (𝑡)] ,

(18)

where the adjoint variable is defined by Λ(𝑡) =

(𝜆1(𝑡), 𝜆2(𝑡), 𝜆3(𝑡)) and the state variables for the population
dynamics are denoted by X(𝑡) = (𝑆(𝑡), 𝑂(𝑡),𝐻(𝑡)).

For the necessary condition of our control problem, we
state and prove the following theorem.

Theorem 6. Let 𝑆∗(𝑡), 𝑂∗(𝑡), and 𝐻∗(𝑡) be the optimal state
solutions with the associated optimal control variables 𝑢∗1 and
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𝑢

∗

2 for the optimal control problem (9) and (14). Then, there
exist adjoint variables 𝜆1(𝑡), 𝜆2(𝑡), and 𝜆3(𝑡) that satisfy

𝜆



1 (𝑡) = − (𝜆2 (𝑡) − 𝜆1 (𝑡)) 𝛽 (1−𝑢
∗

1 (𝑡))

⋅ (𝑂

∗
(𝑡) +𝐻

∗
(𝑡))

𝜆



2 (𝑡) = −𝐴1 (𝜆2 (𝑡) − 𝜆1 (𝑡)) 𝛽 (1−𝑢
∗

1 (𝑡)) 𝑆
∗
(𝑡)

⋅ (𝜆3 (𝑡) − 𝜆2 (𝑡)) 𝛾 (1−𝑢
∗

2 (𝑡)) + (𝜆2 (𝑡) − 𝜆1 (𝑡)) 𝛿

𝜆



3 (𝑡) = −𝐴2 − (𝜆2 (𝑡) − 𝜆1 (𝑡)) 𝛽 (1−𝑢
∗

1 (𝑡)) 𝑆
∗
(𝑡)

− (𝜆2 (𝑡) − 𝜆3 (𝑡)) 𝜂

(19)

with transversality conditions (or boundary conditions)

𝜆
𝑗
(𝑇) = 0, 𝑖 = 1, 2, 3. (20)

Furthermore, the optimal controls 𝑢∗1 and 𝑢
∗

2 are given by

𝑢

∗

1 (𝑡) = min{1,

max{0, 1
𝐵1
𝛽𝑆

∗
(𝑡) (𝑂

∗
(𝑡) + 𝐻

∗
(𝑡)) (𝜆2 (𝑡) − 𝜆1 (𝑡))}} ,

𝑢

∗

2 (𝑡) = min{1,max{0, 1
𝐵2
(𝜆3 (𝑡) − 𝜆2 (𝑡)) 𝛾𝑂

∗
(𝑡)}} .

(21)

Proof. To determine the adjoint equations and the transver-
sality conditions, we used the Hamiltonian (15). By Pontrya-
gin’s Maximum Principle, putting 𝑆(𝑡) = 𝑆∗(𝑡), 𝑂(𝑡) = 𝑂∗(𝑡),
and 𝐻(𝑡) = 𝐻∗(𝑡) and also differentiating the Hamiltonian
(15) with respect to 𝑆(𝑡), 𝑂(𝑡), and𝐻(𝑡), we obtain

𝜕H

𝜕𝑆

= (𝜆2 (𝑡) − 𝜆1 (𝑡)) 𝛽 (1−𝑢
∗

1 (𝑡)) (𝑂
∗
(𝑡) +𝐻

∗
(𝑡)) ,

𝜕H

𝜕𝑂

= 𝐴1 + (𝜆2 (𝑡) − 𝜆1 (𝑡)) 𝛽 (1−𝑢
∗

1 (𝑡)) 𝑆
∗
(𝑡)

+ (𝜆3 (𝑡) − 𝜆2 (𝑡)) 𝛾 (1−𝑢
∗

2 (𝑡))

− (𝜆2 (𝑡) − 𝜆1 (𝑡)) 𝛿,

𝜕H

𝜕𝐻

= 𝐴2 + (𝜆2 (𝑡) − 𝜆1 (𝑡)) 𝛽 (1−𝑢
∗

1 (𝑡)) 𝑆
∗
(𝑡)

+ (𝜆2 (𝑡) − 𝜆3 (𝑡)) 𝜂.

(22)

The costate equations are

𝜆



1 (𝑡) = −
𝜕H

𝜕𝑆

,

𝜆



2 (𝑡) = −
𝜕H

𝜕𝑂

,

𝜆



3 (𝑡) = −
𝜕H

𝜕𝐻

.

(23)

To obtain the optimality conditions (21), we also differenti-
ated the HamiltonianHwith respect to 𝑢1, 𝑢2 and set it equal
to zero:

0 = 𝜕H
𝜕𝑢

∗

1

= 𝐵1𝑢
∗

1 (𝑡)

+ (𝜆1 (𝑡) − 𝜆2 (𝑡)) 𝛽𝑆
∗
(𝑡) (𝑂

∗
(𝑡) +𝐻

∗
(𝑡)) ,

0 = 𝜕H
𝜕𝑢

∗

2
= 𝐵2𝑢

∗

2 (𝑡) + (𝜆2 (𝑡) − 𝜆3 (𝑡)) 𝛾𝑂
∗
(𝑡) .

(24)

Solving for the optimal controls, we obtain

𝑢

∗

1 (𝑡) =
1
𝐵1
𝛽𝑆

∗
(𝑡) (𝑂

∗
(𝑡) +𝐻

∗
(𝑡)) (𝜆2 (𝑡) − 𝜆1 (𝑡)) ,

𝑢

∗

2 (𝑡) =
1
𝐵2
(𝜆3 (𝑡) − 𝜆2 (𝑡)) 𝛾𝑂

∗
(𝑡) .

(25)

To determine an explicit expression for the optimal controls
for 0 ≤ 𝑢

∗

1 ≤ 1 and 0 ≤ 𝑢

∗

2 ≤ 1, we utilize a standard
optimality technique. We considered the following three
cases:

(i) On the set {𝑡 | 0<𝑢∗1 (𝑡) < 1} ,
𝜕H

𝜕𝑢

∗

1
= 0

𝑢

∗

1 (𝑡) =
1
𝐵1
𝛽𝑆

∗
(𝑡) (𝑂

∗
(𝑡) +𝐻

∗
(𝑡)) (𝜆2 (𝑡) − 𝜆1 (𝑡))

(ii) On the set {𝑡 | 𝑢∗1 (𝑡) = 0} ,
𝜕H

𝜕𝑢

∗

1
≥ 0

1
𝐵1
𝛽𝑆

∗
(𝑡) (𝑂 (𝑡) +𝐻

∗
(𝑡)) (𝜆2 (𝑡) − 𝜆1 (𝑡)) ≤ 0

= 𝑢

∗

1 (𝑡)

(iii) On the set {𝑡 | 𝑢∗1 (𝑡) = 1} ,
𝜕H

𝜕𝑢

∗

1
≤ 0

1
𝐵1
𝛽𝑆

∗
(𝑡) (𝑂

∗
(𝑡) +𝐻

∗
(𝑡)) (𝜆2 (𝑡) − 𝜆1 (𝑡)) ≥ 𝑢

∗

1 (𝑡)

= 1.

(26)
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Combining the three cases above, we found a characteri-
zation of 𝑢∗1 :

𝑢

∗

1 (𝑡) = min{1,

max{0, 1
𝐵1
𝛽𝑆

∗
(𝑡) (𝑂

∗
(𝑡) + 𝐻

∗
(𝑡)) (𝜆2 (𝑡) − 𝜆1 (𝑡))}} .

(27)

Using the same arguments, we also obtained the second
optimal control function

𝑢

∗

2 (𝑡)

= min{1,max{0, 1
𝐵2
(𝜆3 (𝑡) − 𝜆2 (𝑡)) 𝛾𝑂

∗
(𝑡)}} .

(28)

5. Numerical Results

Using Pontryagin’s Maximum Principle [16], the control sys-
tem is determined alongwith the necessary conditions for the
existence of an optimal control. Using the forward-backward
sweepmethod [17], we numerically solve the nonautonomous
optimality system. The optimal solutions are obtained by
the iterative method. The state system with the guessed
controls over the whole time is solved using the forward
scheme. Then, the adjoint system with the transversality
conditions is solved using the backward scheme.Theprevious
controls and the current state variables from the first step are
used in this step. The controls are updated using a convex
combination of the previous controls and control values from
the optimality equations obtained from the current state
and adjoint variables. This iteration is repeated until the
differences of the unknown values between the previous and
current iterations are sufficiently close.

In this section, intervention strategies on the spread of
overweight and obesity are used to propose various control
scenarios using optimal control theory.Theoptimality system
consists of three state equations (9) with initial conditions
at 𝑡 = 0, three adjoint equations (19) with the transversality
conditions (20), and optimality equations (21).

We simulated different scenarios for minimizing the
overweight and obese adults in the model. All parameter
values used in the numerical simulations were estimated
based on the article [9] as given in Table 1.

Since the controls could not be sufficiently effective and
depend on a person’s tolerance, the upper bounds of 𝑢∗1 and
𝑢

∗

2 were chosen to be 0.6. As an obese individual is more
deteriorating to society than an overweight individual, we
choose 𝐴1 = 1000 and 𝐴2 = 2000.

Figure 3 shows successful control of the obesity epidemic
with the initial condition 𝑆(0) = 0.8,𝑂(0) = 0.15, and𝐻(0) =
0.05, where 𝑂 and 𝐻 are remarkably less than those in the
without control case due to the implementation of 𝑢∗1 (𝑡) and
𝑢

∗

2 (𝑡). Besides, as an effect of the controls,R0 is reduced to as
low as 1.3548 in the beginning, and we name this as R0,min.
𝑢

∗

1 is implemented with full strength from the beginning for
a long time, whereas 𝑢∗2 (0) = 0.4452 and it decreases with

time. We name this maximum implementation of 𝑢∗1 and
𝑢

∗

2 as 𝑢1,max and 𝑢2,max, respectively, which gives us a brief
idea about the control scenario. As 𝑢∗1 and 𝑢∗2 decrease with
time R0 increases, but the fraction of overweight and obese
individuals remain satisfactorily low. Consider

𝑢1,max := max {𝑢∗1 (𝑡) : 0≤ 𝑡 ≤𝑇} ,

𝑢2,max := max {𝑢∗2 (𝑡) : 0≤ 𝑡 ≤𝑇} ,

R0,min := min {R0 (𝑡) : 0≤ 𝑡 ≤𝑇} .

(29)

However, the control scenario is not the same in all the
cases; it varies with the cost of the controls and even with the
initial conditions. The first two graphs in Figure 4 illustrate
the variation of 𝑢1,max and 𝑢2,max for a wide range of values
of the weights 𝐵1 and 𝐵2, respectively, and the last one plots
R0,min against 𝐵1 and 𝐵2. 𝑢1,max and 𝑢2,max fall with the
increase of 𝐵1 and 𝐵2, respectively. R0 is decreased to the
lowest when 𝐵1 and 𝐵2 are low; that is, 𝑢1,max and 𝑢2,max are
high and vice versa. It is conspicuous that 𝑢1 is implemented
more than 𝑢2, which agrees with sensitivity analysis as 𝑆

𝛽
>

𝑆
𝛾
. But it depends on the initial condition. At this point,

Figure 5 gives a clear picture. The obesity burden varies from
society to society depending on the socioeconomic status,
lifestyle, and food habit; for example, 70% of Mexican adults
are overweight [11]; Nauru, a small island in the South Pacific,
has overweight people as high as 71.1% [12]. The optimal
control scenarios for different obesity burdens are plotted
in Figure 5. For a low obesity burden, 𝑢1 is used as a more
effective control than 𝑢2. Implementation of both 𝑢1 and 𝑢2
is higher for a higher initial obesity burden. When obesity is
above 60%, the maximum 𝑢2 comes into effect. In the case of
very high obesity near 75%, the use of 𝑢2 exceeds that of 𝑢1.

6. Conclusion and Discussion

An autonomous system of ODE presenting obesity dynamics
is considered, which exhibits forward bifurcation at R0;
that is, obesity will not persist, if R0 < 1. However, for
R0 > 1 in any society, obesity will be sustained, through
reaching a stable state holding the burden of obesity. To
control obesity in such cases, we define a nonautonomous
system incorporating time-dependent control, and we set up
an optimal control problem, using Pontryagin’s Maximum
Principle. The time-dependent optimal control reduces the
number of overweight people along with the value ofR0 and
thus controls the obesity.

In this study, we used only two controls regarding reduc-
ing the contact rate and educational programs/campaigns.
Numerical results indicated the effects of the two controls
(prevention and education/campaigning) to be different. In
societies with lower obesity, the social contact rate with
the overweight and obese population plays a more promi-
nent role in spreading obesity than lack of educational
programs/campaigns. However, for societies with very high
obesity burden, education/campaigning proved to be highly
effective strategies.

Notwithstanding the efficacy and sophistication of the
mathematics, reducing the social contact rate can result in
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Figure 5: Optimal control scenario for wide range of initial obesity burden with 𝐵1 = 50 and 𝐵2 = 50.

other results such as a depression and an invasion of their
individual rights. Therefore, appropriate approach to obesity,
such as the road system facilitated for walking, is needed to
lower obesity. It is important to consider the program that
works best with diet and the other social systems.
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