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We study the oscillation behavior for some higher order integrodynamic equations on timescales. We establish some new sufficient
conditions guaranteeing that all solutions of theses equations are oscillatory. Some numerical examples in the continuous case are
given to validate the theoretical results.

1. Introduction

Integrodynamic equations on timescales are an important
topic with applications in many physical systems. For general
basic ideas and background, we refer to [1]. Oscillation results
of integral equations of Volterra type are scant and only few
results exist on this subject. Related studies can be found in
[2–6]. In this paper, we investigate the oscillatory behavior of
the solutions of some higher order integrodynamic equations
on timescale in the form

(𝑟𝑥Δ)
Δ
𝑛−1

(𝑡) = 𝑒 (𝑡) − ∫
𝑡

0

𝑎 (𝑡, 𝑠) 𝐹 (𝑠, 𝑥 (𝑠)) Δ𝑠. (1)

To the best of our knowledge, there appear to be no such
results on the oscillation of (1). Therefore, our main goal here
is to initiate such a study by establishing some new criteria for
the oscillation of (1) and other related equations.This work is
an extension to the analysis done in [7]. The nonoscillatory
behavior for some higher order integrodynamic equations
was studied recently in [8].

We take 𝑇 ⊆ 𝑅 to be an arbitrary timescale with 0 ∈ 𝑇
and Sup𝑇 = ∞.

Whenever we write 𝑡 ≥ 𝑠, we mean 𝑡 ∈ [𝑠,∞) ∩ 𝑇.
We assume throughout the following:

(I) 𝑒, 𝑟 : 𝑇 → 𝑅 and 𝑎 : 𝑇 × 𝑇 → 𝑅 are rd-continuous
functions, 𝑟(𝑡) > 0, and 𝑎(𝑡, 𝑠) ≥ 0 for 𝑡 ≥ 𝑠; and there

exist rd-continuous functions 𝑝, 𝑞 : 𝑇 → 𝑅+ such
that

𝑎 (𝑡, 𝑠) ≤ 𝑝 (𝑡) 𝑞 (𝑠) for 𝑡 ≥ 𝑠,

sup𝑝 (𝑡) := 𝑘1 < ∞,
(2)

sup
𝑡≥0

∫
𝑡

0

𝑞 (𝑠) Δ𝑠 := 𝑘2 < ∞; (3)

(II) 𝐹 : 𝑇 × 𝑅 → 𝑅 is continuous and assume that there
exist 𝑓

1
, 𝑓
2
: 𝑇 × 𝑅 → 𝑅 continuous functions

such that 𝐹(𝑡, 𝑥) = 𝑓
1
(𝑡, 𝑥) − 𝑓

2
(𝑡, 𝑥) for 𝑡 ≥ 0 and

𝑥𝑓
𝑖
(𝑡, 𝑥) > 0 for 𝑥 ̸= 0, 𝑡 ≥ 0, and 𝑖 = 1, 2;

(III) there exist constants 𝛽 and 𝛾 which are the ratios of
positive odd integers and 𝑝

𝑖
: 𝑇 → 𝑅+ = (0,∞),

𝑖 = 1, 2, such that

𝑓
1 (𝑡, 𝑥) ≥ 𝑝1 (𝑡) 𝑥

𝛽,

𝑓
2 (𝑡, 𝑥) ≤ 𝑝2 (𝑡) 𝑥

𝛾,

for 𝑥 > 0, 𝑡 ≥ 0,

𝑓
1 (𝑡, 𝑥) ≤ 𝑝1 (𝑡) 𝑥

𝛽,

𝑓
2 (𝑡, 𝑥) ≥ 𝑝2 (𝑡) 𝑥

𝛾,

for 𝑥 < 0, 𝑡 ≥ 0.

(4)
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By a solution of (1) we mean a Δ-differential function defined
on 𝑇 that is nontrivial in every neighborhood of infinity. A
solution 𝑥(𝑡) of (1) is said to be oscillatory if there exists {𝑡

𝑛
} ⊆

𝑇 such that 𝑥(𝑡
𝑛
) = 0 or 𝑥(𝑡)𝑥(𝜎(𝑡)) < 0; otherwise, it is called

nonoscillatory.

2. Auxiliary Results

We employ the following lemmas.

Lemma 1 (see [9]). If𝑋 and 𝑌 are nonnegative, then

𝑋𝜆 + (𝜆 − 1) 𝑌𝜆 − 𝜆𝑋𝑌𝜆−1 ≥ 0; 𝜆 > 1, (5)

𝑋𝜆 − (1 − 𝜆) 𝑌𝜆 − 𝜆𝑋𝑌𝜆−1 ≤ 0; 𝜆 < 1, (6)

where equality holds if and only if𝑋 = 𝑌.

Lemma 2 (Young’s inequality). Let𝑋,𝑌 ≥ 0, 𝑛 > 1, and 1/𝑛+
1/𝑚 = 1, then

𝑋𝑌 ≤ 1
𝑛
𝑋𝑛 + 1

𝑚
𝑌𝑚, (7)

and equality holds if and only if 𝑌 = 𝑋𝑛−1.

Lemma 3 (see [3, corollary 1]). Assume that 𝑛 ∈ 𝑁, 𝑠, 𝑡 ∈ 𝑇,
and 𝑓 : 𝑇 → 𝑅 is rd-continuous function, and then

∫
𝑡

𝑠

∫
𝑡

𝜂
𝑛

⋅ ⋅ ⋅ ∫
𝑡

𝜂
2

𝑓 (𝜂
1
) Δ𝜂
1
Δ𝜂
2
⋅ ⋅ ⋅ Δ𝜂

𝑛

= (−1)𝑛−1 ∫
𝑡

𝑠

ℎ
𝑛−1

(𝑠, 𝜎 (𝜂)) 𝑓 (𝜂) Δ𝜂.

(8)

In Lemma 3, ℎ
𝑛
stand for the Taylor monomials (see [1,

section 1.6]) which are defined recursively by

ℎ
0 (𝑡, 𝑠) = 1,

ℎ
𝑛+1 (𝑡, 𝑠) = ∫

𝑡

𝑠

ℎ
𝑛 (𝜏, 𝑠) Δ𝜏

for 𝑡, 𝑠 ∈ 𝑇, 𝑛 ∈ 𝑁.

(9)

It follows that ℎ
1
(𝑡, 𝑠) = 𝑡 − 𝑠 for any timescale, but simple

formulas, in general, do not hold for 𝑛 ≥ 2.
For 𝑡 ≥ 𝑠 ∈ 𝑇, we define

𝐻
𝑛−1 (𝑡, 𝑠) ≥ ℎ0 (𝑡, 𝑠) + ℎ1 (𝑡, 𝑠) + ⋅ ⋅ ⋅ + ℎ𝑛−1 (𝑡, 𝑠) ,

𝐻 (𝑡, 𝑡
0
) = ∫
𝑡

𝑡
0

1
𝑟 (𝑠)

𝐻
𝑛−1

(𝑠, 𝑡
0
) Δ𝑠 ∀𝑡

0
≥ 0.

(10)

3. Main Results

In this section we present the following main results.

Theorem 4. Let conditions (I) and (II) hold with 𝑓
2
= 0. If

lim sup
𝑡→∞

1
𝐻 (𝑡, 𝑡

0
)
∫
𝑡

𝑡
0

1
𝑟 (𝑢)

∫
𝑢

𝑡
0

ℎ
𝑛−2 (𝑢, 𝑠) 𝑒 (𝑠) Δ𝑠 Δ𝑢

= ∞,

lim inf
𝑡→∞

1
𝐻 (𝑡, 𝑡

0
)
∫
𝑡

𝑡
0

1
𝑟 (𝑢)

∫
𝑢

𝑡
0

ℎ
𝑛−2 (𝑢, 𝑠) 𝑒 (𝑠) Δ𝑠 Δ𝑢

= −∞,

(11)

for all 𝑡
0
≥ 0, then (1) is oscillatory.

Proof. Let 𝑥(𝑡) be a nonoscillatory solution of (1). Hence
either 𝑥(𝑡) is eventually positive or 𝑥(𝑡) is eventually negative.

First assume 𝑥(𝑡) is eventually positive. Fix 𝑡
0
≥ 0 and

suppose 𝑥(𝑡) > 0 for 𝑡 ≥ 𝑡
1
for some 𝑡

1
≥ 𝑡
0
. From (1), we see

that

(𝑟𝑥Δ)
Δ
𝑛−1

(𝑡) = 𝑒 (𝑡) − ∫
𝑡
1

0

𝑎 (𝑡, 𝑠) 𝐹 (𝑠, 𝑥 (𝑠)) Δ𝑠

− ∫
𝑡

𝑡
1

𝑎 (𝑡, 𝑠) 𝑓1 (𝑠, 𝑥 (𝑠)) Δ𝑠

≤ 𝑒 (𝑡) − ∫
𝑡
1

0

𝑎 (𝑡, 𝑠) 𝐹 (𝑠, 𝑥 (𝑠)) Δ𝑠,

for 𝑡 ≥ 𝑡
1
.

(12)

Let

𝑏 := max
0≤𝑡≤𝑡

1

|𝐹 (𝑡, 𝑥 (𝑡))| < ∞. (13)

By assumption (3), we have


− ∫
𝑡
1

0

𝑎 (𝑡, 𝑠) 𝐹 (𝑠, 𝑥 (𝑠)) Δ𝑠


≤ ∫
𝑡
1

0

𝑎 (𝑡, 𝑠) |𝐹 (𝑠, 𝑥 (𝑠))| Δ𝑠 ≤ 𝑏∫
𝑡
1

0

𝑝 (𝑡) 𝑞 (𝑠) Δ𝑠

≤ 𝑏𝑘
1
∫
𝑡
1

0

𝑞 (𝑠) Δ𝑠 ≤ 𝑏𝑘1𝑘2 := 𝑘.

(14)

Hence, from (12), we get

(𝑟𝑥Δ)
Δ
𝑛−1

(𝑡) ≤ 𝑒 (𝑡) + 𝑘, ∀𝑡 ≥ 𝑡
1
. (15)
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Integrating (15) (𝑛 − 1)-times from 𝑡
1
to 𝑡 and then using

Lemma 3, we obtain

(𝑟𝑥Δ) (𝑡) ≤ ℎ0 (𝑡, 𝑡1) (𝑟𝑥
Δ) (𝑡
1
)

+ ℎ
1
(𝑡, 𝑡
1
) (𝑟𝑥Δ)

Δ

(𝑡
1
) + ⋅ ⋅ ⋅

+ ℎ
𝑛−2

(𝑡, 𝑡
1
) (𝑟𝑥Δ)

Δ
𝑛−2

(𝑡
1
) + 𝑘ℎ

𝑛−1
(𝑡, 𝑡
1
)

+ ∫
𝑡

𝑡
1

∫
𝜉
𝑛−1

𝑡
1

⋅ ⋅ ⋅ ∫
𝜉
2

𝑡
1

𝑒 (𝜉
1
) Δ𝜉
1
Δ𝜉
2
⋅ ⋅ ⋅ Δ𝜉

𝑛−1

= 𝑘ℎ
𝑛−1

(𝑡, 𝑡
1
) +
𝑛−2

∑
𝑖=0

ℎ
𝑖
(𝑡, 𝑡
1
) (𝑟𝑥Δ)

Δ
𝑖

(𝑡
1
)

+ ∫
𝑡

𝑡
1

ℎ
𝑛−2 (𝑡, 𝜎 (𝑠)) 𝑒 (𝑠) Δ𝑠.

(16)

From the properties of the functions ℎ
𝑖
and the definition of

the function𝐻
𝑛−1
(𝑡, 𝑡
1
) for all 𝑡

1
≥ 0, we get

(𝑟𝑥Δ) (𝑡) ≤ 𝑐𝐻𝑛−1 (𝑡, 𝑡1) + ∫
𝑡

𝑡
1

ℎ
𝑛−2 (𝑡, 𝜎 (𝑠)) 𝑒 (𝑠) Δ𝑠, (17)

where

𝑐 := max{𝑘, max
0≤𝑖≤𝑛−2


(𝑟𝑥Δ)

Δ
𝑖

(𝑡
1
)

} . (18)

Dividing (17) by 𝑟(𝑡) and hence integrating from 𝑡
1
to 𝑡 we

obtain
𝑥 (𝑡) ≤ 𝑥 (𝑡1) + 𝑐𝐻 (𝑡, 𝑡

1
)

+ ∫
𝑡

𝑡
1

1
𝑟 (𝑢)

∫
𝑢

𝑡
1

ℎ
𝑛−2 (𝑢, 𝜎 (𝑠)) 𝑒 (𝑠) Δ𝑠 Δ𝑢

≤ 𝑥 (𝑡
1
) + 𝑐𝐻 (𝑡, 𝑡

0
)

+ ∫
𝑡

𝑡
0

1
𝑟 (𝑢)

∫
𝑢

𝑡
0

ℎ
𝑛−2 (𝑢, 𝜎 (𝑠)) 𝑒 (𝑠) Δ𝑠 Δ𝑢.

(19)

Dividing (19) by 𝐻(𝑡, 𝑡
0
) and taking lim inf of both sides of

(19) as 𝑡 → ∞, we obtain a contradiction to the fact that
𝑥(𝑡) > 0 for 𝑡 ≥ 𝑡

1
. The proof of the case when 𝑥(𝑡) is

eventually negative is similar. This completes the proof.

From the proof of Theorem 4, one can easily extract the
following result on the asymptotic behavior of the nonoscil-
latory solutions of (1).

Theorem 5. Let conditions (I) and (II) hold with 𝑓
2
= 0 and

suppose

lim sup
𝑡→∞

1
𝐻 (𝑡, 𝑡

0
)
∫
𝑡

𝑡
0

1
𝑟 (𝑢)

∫
𝑢

𝑡
0

𝑒 (𝑠) Δ𝑠 Δ𝑢 < ∞,

lim inf
𝑡→∞

1
𝐻 (𝑡, 𝑡

0
)
∫
𝑡

𝑡
0

1
𝑟 (𝑢)

∫
𝑢

𝑡
0

𝑒 (𝑠) Δ𝑠 Δ𝑢 > −∞
(20)

for all 𝑡
0
≥ 0. If 𝑥(𝑡) is nonoscillatory solution of (1), then

𝑥 (𝑡) = 𝑂 (𝐻 (𝑡, 𝑡
0
)) as 𝑡 → ∞. (21)

Next, we present the following result.

Theorem6. Let conditions (I) and (II) holdwith𝑓
1
= 0 and𝑓

2

is nondecreasing in the second variable. If conditions (11) hold
for every constant 𝑐 > 0,

lim
𝑡→∞

1
𝐻 (𝑡, 𝑡

0
)
∫
𝑡

𝑡
0

1
𝑟 (𝑢)

∫
𝑢

𝑡
0

ℎ
𝑛−2 (𝑢, 𝜎 (𝜏))

⋅ ∫
𝜏

𝑡
0

𝑎 (𝜏, 𝑠) 𝑓2 (𝑠, 𝑐)
 Δ𝑠 Δ𝜏Δ𝑢 < ∞,

(22)

for any 𝑡
0
≥ 0, then every bounded solution of (1) is oscillatory.

Proof. Let 𝑥(𝑡) be a bounded nonoscillatory solution of (1)
and assume that 𝑥(𝑡) is eventually positive. Fix 𝑡

0
≥ 0 and

suppose 𝑥(𝑡) > 0 for 𝑡 ≥ 𝑡
1
for some 𝑡

1
≥ 𝑡
0
and 𝑥(𝑡) ≤ 𝑐

1
for

some constant 𝑐
1
> 0. From (1), we have

(𝑟𝑥Δ)
Δ
𝑛−1

(𝑡) = 𝑒 (𝑡) − ∫
𝑡
1

0

𝑎 (𝑡, 𝑠) 𝐹 (𝑠, 𝑥 (𝑠)) Δ𝑠

+ ∫
𝑡

𝑡
1

𝑎 (𝑡, 𝑠) 𝑓2 (𝑠, 𝑥 (𝑠)) Δ𝑠.
(23)

Proceeding as in the proof of Theorem 4, we get (14). Thus,

(𝑟𝑥Δ)
Δ
𝑛−1

(𝑡) ≤ 𝑘 + 𝑒 (𝑡) + ∫
𝑡

𝑡
1

𝑎 (𝑡, 𝑠) 𝑓2 (𝑠, 𝑐1) Δ𝑠. (24)

The rest of the proof is similar to that ofTheorem 4 and hence
it is omitted.

Theorem 7. Let conditions (I) and (II) hold with 𝛽 > 1 and
𝛾 = 1 and suppose that conditions (11) hold and

lim
𝑡→∞

1
𝐻 (𝑡, 𝑡

0
)
∫
𝑡

𝑡
0

1
𝑟 (𝑢)

∫
𝑢

𝑡
0

ℎ
𝑛−2 (𝑢, 𝜎 (𝜏))

⋅ ∫
𝜏

𝑡
0

𝑎 (𝜏, 𝑠) 𝑝1/(𝛽−1)
1

(𝑠) 𝑝𝛽/(𝛽−1)
2

(𝑠) Δ𝑠 Δ𝜏Δ𝑢 < ∞
(25)

for all 𝑡
0
≥ 0. Then (1) is oscillatory.

Proof. Let 𝑥(𝑡) be a nonoscillatory solution of (1), Hence
either 𝑥(𝑡) is eventually positive or 𝑥(𝑡) is eventually negative.
First, assume𝑥(𝑡) is eventually positive. Fix 𝑡

0
≥ 0 and assume

𝑥(𝑡) > 0 for 𝑡 ≥ 𝑡
1
for some 𝑡

1
≥ 𝑡
0
.

Using conditions (I) and (II) with 𝛽 > 1 and 𝛾 = 1 in (1),
we have

(𝑟𝑥Δ)
Δ
𝑛−1

(𝑡)

≤ 𝑒 (𝑡) − ∫
𝑡
1

0

𝑎 (𝑡, 𝑠) 𝐹 (𝑠, 𝑥 (𝑠)) Δ𝑠

+ ∫
𝑡

𝑡
1

𝑎 (𝑡, 𝑠) [𝑝2 (𝑠) 𝑥 (𝑠) − 𝑝1 (𝑠) 𝑥
𝛽 (𝑠)] Δ𝑠

(26)
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for 𝑡 ≥ 𝑡
1
. Proceeding as in the proof of Theorem 4, we get

(14) and hence

(𝑟𝑥Δ)
Δ
𝑛−1

(𝑡)

≤ 𝑘 + 𝑒 (𝑡)

+ ∫
𝑡

𝑡
1

𝑎 (𝑡, 𝑠) [𝑝2 (𝑠) 𝑥 (𝑠) − 𝑝1 (𝑠) 𝑥
𝛽 (𝑠)] Δ𝑠,

for 𝑡 ≥ 𝑡
1
.

(27)

By applying (5) with

𝜆 = 𝛽,

𝑋 = 𝑝1/𝛽
1
(𝑡) 𝑥 (𝑡) ,

𝑌 = ( 1
𝛽
𝑝
2 (𝑡) 𝑝

−1/𝛽

1
(𝑡))
1/(𝛽−1)

,

(28)

we obtain

𝑝
2 (𝑡) 𝑥 (𝑡) − 𝑝1 (𝑡) 𝑥

𝛽 (𝑡)

≤ (𝛽 − 1) 𝛽𝛽/(1−𝛽)𝑝1/(1−𝛽)
1

(𝑡) 𝑝𝛽/(1−𝛽)
2

(𝑡) ,

for 𝑡 ≥ 𝑡
1
.

(29)

Using (29) in (26), we find

(𝑟𝑥Δ)
Δ
𝑛−1

(𝑡) ≤ 𝑘 + 𝑒 (𝑡) + 𝐺 (𝑡) , for 𝑡 ≥ 𝑡
1
, (30)

where

𝐺 (𝑡) = (𝛽 − 1)

⋅ 𝛽𝛽/(1−𝛽) ∫
𝑡

𝑡
1

𝑎 (𝑡, 𝑠) 𝑝1/(1−𝛽)
1

(𝑠) 𝑝𝛽/(1−𝛽)
2

(𝑠) Δ𝑠.
(31)

Integrating (30) 𝑛-times from 𝑡
1
to 𝑡 and then using Lemma 3,

we have

𝑥 (𝑡) ≤ 𝑥 (𝑡1) + 𝑐𝐻 (𝑡, 𝑡
1
)

+ ∫
𝑡

𝑡
1

1
𝑟 (𝑢)

∫
𝑢

𝑡
1

ℎ
𝑛−2 (𝑢, 𝜎 (𝑠)) 𝑒 (𝑠) Δ𝑠 Δ𝑢

+ ∫
𝑡

𝑡
1

1
𝑟 (𝑢)

∫
𝑢

𝑡
1

ℎ
𝑛−2 (𝑢, 𝜎 (𝑠)) 𝐺 (𝑠) Δ𝑠 Δ𝑢

≤ 𝑥 (𝑡
1
) + 𝑐𝐻 (𝑡, 𝑡

0
)

+ ∫
𝑡

𝑡
0

1
𝑟 (𝑢)

∫
𝑢

𝑡
1

ℎ
𝑛−2 (𝑢, 𝜎 (𝑠)) 𝑒 (𝑠) Δ𝑠 Δ𝑢

+ ∫
𝑡

𝑡
0

1
𝑟 (𝑢)

∫
𝑢

𝑡
0

ℎ
𝑛−2 (𝑢, 𝜎 (𝑠)) 𝐺 (𝑠) Δ𝑠 Δ𝑢,

(32)

where 𝑐 is given in (18). The rest of the proof is similar to that
of the proof of Theorem 4 and hence is omitted.

Theorem 8. Let conditions (I) and (II) hold with 𝛽 = 1 and
𝛾 < 1. If, in addition to conditions (11), we suppose

lim
𝑡→∞

1
𝐻 (𝑡, 𝑡

0
)
∫
𝑡

𝑡
0

1
𝑟 (𝑢)

∫
𝑢

𝑡
0

ℎ
𝑛−2 (𝑢, 𝜎 (𝜏))

⋅ ∫
𝜏

𝑡
0

𝑎 (𝜏, 𝑠) 𝑝𝛾/(𝛾−1)
1

(𝑠) 𝑝1/(𝛾−1)
2

(𝑠) Δ𝑠 Δ𝜏Δ𝑢 < ∞,
(33)

for any 𝑡
0
≥ 0, then (1) is oscillatory.

Proof. Let 𝑥(𝑡) be a nonoscillatory solution of (1). First,
assume 𝑥(𝑡) is eventually positive. Fix 𝑡

0
≥ 0 and suppose

𝑥(𝑡) > 0 for 𝑡 ≥ 𝑡
1
for some 𝑡

1
≥ 𝑡
0
. Using conditions (I) and

(II) with 𝛽 = 1 and 𝛾 < 1 in (1), we find

(𝑟𝑥Δ)
Δ
𝑛−1

(𝑡)

≤ 𝑒 (𝑡) − ∫
𝑡
1

0

𝑎 (𝑡, 𝑠) 𝐹 (𝑠, 𝑥 (𝑠)) Δ𝑠

+ ∫
𝑡

𝑡
1

𝑎 (𝑡, 𝑠) [𝑝2 (𝑠) 𝑥
𝛾 (𝑠) − 𝑝1 (𝑠) 𝑥 (𝑠)] Δ𝑠

(34)

for 𝑡 ≥ 𝑡
1
. Hence

(𝑟𝑥Δ)
Δ
𝑛−1

(𝑡)

≤ 𝑘 + 𝑒 (𝑡)

+ ∫
𝑡

𝑡
1

𝑎 (𝑡, 𝑠) [𝑝2 (𝑠) 𝑥
𝛾 (𝑠) − 𝑝1 (𝑠) 𝑥 (𝑠)] Δ𝑠,

for 𝑡 ≥ 𝑡
1
,

(35)

where 𝑘 is defined as in the proof of Theorem 4. By applying
(6) with

𝜆 = 𝛾,

𝑋 = 𝑝1/𝛾
2
(𝑡) 𝑥 (𝑡) ,

𝑌 = (1
𝛾
𝑝
1 (𝑡) 𝑝

−1/𝛾

2
(𝑡))
1/(𝛾−1)

,

(36)

we obtain

𝑝
2 (𝑡) 𝑥

𝛾 (𝑡) − 𝑝1 (𝑡) 𝑥 (𝑡)

≤ (1 − 𝛾) 𝛾𝛾/(𝛾−1)𝑝𝛾/(𝛾−1)
1

(𝑡) 𝑝1/(𝛾−1)
2

(𝑡) ,

for 𝑡 ≥ 𝑡
1
.

(37)

Using (37) in (35), we find

(𝑟𝑥Δ)
Δ
𝑛−1

(𝑡) ≤ 𝑘 + 𝑒 (𝑡) + (1 − 𝛾)

⋅ 𝛾𝛾/(1−𝛾) ∫
𝑡

𝑡
1

𝑎 (𝑡, 𝑠) 𝑝𝛾/(𝛾−1)
1

(𝑠) 𝑝1/(1−𝛾)
2

(𝑠) Δ𝑠.
(38)

The rest of the proof is similar to the proof of Theorem 4 and
hence is omitted.
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Next, we present the following result with different
nonlinearities, that is, with 𝛽 > 1 and 𝛾 < 1.

Theorem 9. Let conditions (I) and (II) hold with 𝛽 > 1 and
𝛾 < 1 and suppose that there exists a positive rd-continuous
function 𝑔 : 𝑇 → 𝑅+ such that

lim
𝑡→∞

1
𝐻 (𝑡, 𝑡

0
)
∫
𝑡

𝑡
0

1
𝑟 (𝑢)

∫
𝑢

𝑡
0

ℎ
𝑛−2 (𝑢, 𝜎 (𝜏)) ∫

𝜏

𝑡
0

𝑎 (𝜏, 𝑠)

⋅ [𝑐
1
𝑔𝛽/(𝛽−1) (𝑠) 𝑝1/(1−𝛽)

1
(𝑠)

+ 𝑐
2
𝑔𝛾/(𝛾−1) (𝑠) 𝑝1/(1−𝛾)

2
(𝑠)] Δ𝑠 Δ𝜏Δ𝑢 < ∞

(39)

for all 𝑡
0
≥ 0, where

𝑐
1
= (𝛽 − 1) 𝛽𝛽/(1−𝛽),

𝑐
2
= (1 − 𝛾) 𝛾𝛾/(1−𝛾).

(40)

If conditions (11) hold for all 𝑡
0
≥ 0, then (1) is oscillatory.

Proof. Let 𝑥(𝑡) be a nonoscillatory solution of (1). First,
assume 𝑥(𝑡) is eventually positive. Fix 𝑡

0
≥ 0 and suppose

𝑥(𝑡) > 0 for 𝑡 ≥ 𝑡
1
for some 𝑡

1
≥ 𝑡
0
. Using conditions (I) and

(II) in (1), we have

(𝑟𝑥Δ)
Δ
𝑛−1

(𝑡)

≤ 𝑒 (𝑡) − ∫
𝑡
1

0

𝑎 (𝑡, 𝑠) 𝐹 (𝑠, 𝑥 (𝑠)) Δ𝑠

+ ∫
𝑡

𝑡
1

𝑎 (𝑡, 𝑠) [𝑔 (𝑠) 𝑥 (𝑠) − 𝑝1 (𝑠) 𝑥
𝛽 (𝑠)] Δ𝑠

+ ∫
𝑡

𝑡
1

𝑎 (𝑡, 𝑠) [𝑝2 (𝑠) 𝑥
𝛾 (𝑠) − 𝑔 (𝑠) 𝑥 (𝑠)] Δ𝑠

(41)

for 𝑡 ≥ 𝑡
1
.

As in the proof of Theorems 7 and 8, one can easily find

(𝑟𝑥Δ)
Δ
𝑛−1

(𝑡) ≤ 𝑘 + 𝑒 (𝑡) + ∫
𝑡

𝑡
1

𝑎 (𝑡, 𝑠)

⋅ [(𝛽 − 1) 𝛽𝛽/(1−𝛽)𝑔𝛽/(𝛽−1) (𝑠) 𝑝1/(1−𝛽)
1

(𝑠)

+ (1 − 𝛾) 𝛾𝛾/(1−𝛾)𝑔𝛾/(𝛾−1) (𝑠) 𝑝1/(1−𝛾)
2

(𝑠)] Δ𝑠.

(42)

The rest of the proof is similar to that ofTheorem 4 and hence
is omitted.

For the cases when both functions𝑓
1
and𝑓
2
are superlin-

ear, that is, 𝛽 > 𝛾 > 1, or sublinear, that is, 1 > 𝛽 > 𝛾 > 0, we
present the following result.

Theorem 10. Let conditions (I) and (II) hold with 𝛽 > 𝛾. If, in
addition to conditions (11), we suppose

lim
𝑡→∞

1
𝐻 (𝑡, 𝑡

0
)
∫
𝑡

𝑡
0

1
𝑟 (𝑢)

∫
𝑢

𝑡
0

ℎ
𝑛−2 (𝑢, 𝜎 (𝜏))

⋅ ∫
𝜏

𝑡
0

𝑎 (𝜏, 𝑠) 𝑝𝛾/(𝛾−𝛽)
1

(𝑠) 𝑝𝛽/(𝛽−𝛾)
2

(𝑠) Δ𝑠 Δ𝜏Δ𝑢 < ∞,
(43)

for all 𝑡
0
≥ 0, then (1) is oscillatory.

Proof. Let 𝑥(𝑡) be a nonoscillatory solution of (1). First,
assume 𝑥(𝑡) is eventually positive. Fix 𝑡

0
≥ 0 and suppose

𝑥(𝑡) > 0 for 𝑡 ≥ 𝑡
1
for some 𝑡

1
≥ 𝑡
0
. Using conditions (I) and

(II) in (1) with 𝛾 < 1 and 𝛽 > 1, we have

(𝑟𝑥Δ)
Δ
𝑛−1

(𝑡)

≤ 𝑒 (𝑡) − ∫
𝑡
1

0

𝑎 (𝑡, 𝑠) 𝐹 (𝑠, 𝑥 (𝑠)) Δ𝑠

+ ∫
𝑡

𝑡
1

𝑎 (𝑡, 𝑠) [𝑝2 (𝑠) 𝑥
𝛾 (𝑠) − 𝑝1 (𝑠) 𝑥

𝛽 (𝑠)] Δ𝑠

(44)

for 𝑡 ≥ 𝑡
1
. By applying Lemma 2 with

𝑛 =
𝛽
𝛾
> 1,

𝑋 = 𝑥𝛾 (𝑠) ,

𝑌 =
𝛾
𝛽
𝑝
2 (𝑠)
𝑝
1 (𝑠)

,

𝑚 =
𝛽

𝛽 − 𝛾
,

(45)

we find

𝑝
2 (𝑠) 𝑥

𝛾 (𝑠) − 𝑝1 (𝑠) 𝑥
𝛽 (𝑠)

=
𝛽
𝛾
𝑝
1 (𝑠) [𝑥

𝛾 (𝑠) (
𝛾
𝛽
𝑝
2 (𝑠)
𝑝
1 (𝑠)

) −
𝛾
𝛽
(𝑥𝛾 (𝑠))𝛽/𝛾]

=
𝛽
𝛾
𝑝
1 (𝑠) [𝑋𝑌 −

1
𝑛
𝑋𝑛] ≤

𝛽
𝛾
𝑝
1 (𝑠) (

1
𝑚
𝑌𝑚)

= (
𝛽 − 𝛾
𝛾

) [
𝛾
𝛽
𝑝
2 (𝑠)]
𝛽/(𝛽−𝛾)

(𝑝
1 (𝑠))
𝛾/(𝛾−𝛽) .

(46)

Using (46) in (44), we have

(𝑟𝑥Δ)
Δ
𝑛−1

(𝑡) ≤ 𝑘 + 𝑒 (𝑡) + (
𝛽 − 𝛾
𝛾

)(
𝛾
𝛽
)
𝛽/(𝛽−𝛾)

⋅ ∫
𝑡

𝑡
1

𝑎 (𝑡, 𝑠) 𝑝𝛽/(𝛽−𝛾)
2

(𝑠) 𝑝𝛾/(𝛾−𝛽)
1

(𝑠) Δ𝑠,

(47)

for 𝑡 ≥ 𝑡
1
. The rest of the proof is similar to the proof of

Theorem 4 and hence is omitted.

Remark 11. The results of this section will remain the same if
we replace condition (3) of assumption (I) by

sup
𝑡≥𝑡
0

∫
𝑡
0

0

𝑎 (𝑡, 𝑠) Δ𝑠 := 𝑘 < ∞, ∀𝑡
0
≥ 0, (48)

with 𝑘 = 𝑘
1
𝑘
2
.

Remark 12. We note that we can obtain criteria on the
asymptotic behavior of the nonoscillatory solutions of (1)
similar to Theorem 5. The details are left to the reader.
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4. Further Oscillation Results

This section is devoted to the study of the oscillatory proper-
ties of (1) with 𝑓

1
= 0.

Theorem 13. Let conditions (I) and (II) hold with 𝑓
1
= 0 and

𝛾 < 1. Assume that there exists a rd-continuous function 𝑝 :
𝑇 → 𝑅+ such that

lim
𝑡→∞

1
𝑡
∫
𝑡

𝑡
0

1
𝑟 (𝑢)

∫
𝑢

𝑡
0

ℎ
𝑛−2 (𝑢, 𝜎 (𝜏))

⋅ ∫
𝜏

𝑡
0

𝑝𝛾/(𝛾−1) (𝑠) 𝑝1/(1−𝛾)
2

(𝑠) 𝑞1/(1−𝛾) (𝑠) Δ𝑠 Δ𝜏Δ𝑢

< ∞,

(49)

𝐻
𝑛−1

(𝑡, 𝑡
0
)

𝑟 (𝑡)
is bounded for 𝑡 ≥ 𝑡

0
,

lim
𝑡→∞

𝐻(𝑡, 𝑡
0
) < ∞,

(50)

∫
∞

𝑠𝑝 (𝑠) Δ𝑠 < ∞. (51)

If

lim
𝑡→∞

sup 1
𝑡
∫
𝑡

𝑡
0

1
𝑟 (𝑢)

∫
𝑢

𝑡
0

ℎ
𝑛−2 (𝑢, 𝜎 (𝑠)) 𝑒 (𝑠) Δ𝑠 Δ𝑢

< ∞,
(52)

lim
𝑡→∞

inf 1
𝑡
∫
𝑡

𝑡
0

1
𝑟 (𝑢)

∫
𝑢

𝑡
0

ℎ
𝑛−2 (𝑢, 𝜎 (𝑠)) 𝑒 (𝑠) Δ𝑠 Δ𝑢

> −∞,
(53)

for all 𝑡
0
≥ 0, then every nonoscillatory solution 𝑥(𝑡) of (1)

satisfies

lim
𝑡→∞

sup |𝑥 (𝑡)|
𝑡

< ∞. (54)

Proof. Let 𝑥(𝑡) be a nonoscillatory solution of (1). First,
assume 𝑥(𝑡) is eventually positive. Fix 𝑡

0
≥ 0 and suppose

𝑥(𝑡) > 0 for 𝑡 ≥ 𝑡
1
for some 𝑡

1
≥ 𝑡
0
. Using conditions (I) and

(II) in (1), we have

(𝑟𝑥Δ)
Δ
𝑛−1

(𝑡) ≤ 𝑒 (𝑡) + ∫
𝑡
1

0

𝑎 (𝑡, 𝑠) 𝐹 (𝑠, 𝑥 (𝑠)) Δ𝑠

+ ∫
𝑡

𝑡
1

𝑎 (𝑡, 𝑠) 𝑝2 (𝑠) 𝑥
𝛾 (𝑠) Δ𝑠,

for 𝑡 ≥ 𝑡
1
.

(55)

As in the proof of Theorem 4, we obtain (14) and hence (55)
becomes

(𝑟𝑥Δ)
Δ
𝑛−1

(𝑡)

≤ 𝑘 + 𝑒 (𝑡)

+ 𝑘
1
∫
𝑡

𝑡
1

[𝑝
2 (𝑠) 𝑞 (𝑠) 𝑥

𝛾 (𝑠) − 𝑝 (𝑠) 𝑥 (𝑠)] Δ𝑠

+ 𝑘
1
∫
𝑡

𝑡
1

𝑝 (𝑠) 𝑥 (𝑠) Δ𝑠, for 𝑡 ≥ 𝑡
1
.

(56)

By applying (6) with

𝜆 = 𝛾,

𝑋 = (𝑝
2
𝑞)1/𝛾 𝑥,

𝑌 = (1
𝛾
𝑝 (𝑝
2
𝑞)1/𝛾)

1/(𝛾−1)

,

(57)

we have

𝑝
2 (𝑡) 𝑞 (𝑡) 𝑥

𝛾 (𝑡) − 𝑝 (𝑡) 𝑥 (𝑡) ≤ ((1 − 𝛾) 𝛾𝛾/(1−𝛾))

⋅ 𝑝𝛾/(𝛾−1) (𝑡) 𝑝1/(1−𝛾)
2

(𝑡) 𝑞1/(1−𝛾) (𝑡) .
(58)

Using (58) in (56), we find

(𝑟𝑥Δ)
Δ
𝑛−1

(𝑡) ≤ 𝑘 + 𝑒 (𝑡) + 𝑘1 (1 − 𝛽)

⋅ 𝛽𝛽/(𝛽−1) ∫
𝑡

𝑡
1

𝑝𝛾/(𝛾−1) (𝑠) 𝑝1/(1−𝛾)
2

(𝑠) 𝑞1/(1−𝛾) (𝑠) Δ𝑠

+ 𝑘
1
∫
𝑡

𝑡
1

𝑝 (𝑠) 𝑥 (𝑠) Δ𝑠, ∀𝑡 ≥ 𝑡
1
.

(59)

Integrating this inequality (𝑛−1)-times from 𝑡
1
to 𝑡 and using

Lemma 3, we have

(𝑟𝑥Δ) (𝑡) ≤ 𝑘ℎ𝑛−1 (𝑡, 𝑡1) +
𝑛−2

∑
𝑖=0

ℎ
𝑖
(𝑡, 𝑡
1
) (𝑟𝑥Δ)

Δ
𝑖

(𝑡
1
)

+ ∫
𝑡

𝑡
1

ℎ
𝑛−2 (𝑡, 𝜎 (𝑠)) 𝑒 (𝑠) Δ𝑠 + 𝑘1 ∫

𝑡

𝑡
1

ℎ
𝑛−2 (𝑡, 𝜎 (𝑢))

⋅ ∫
𝑢

𝑡
1

𝑝 (𝑠) 𝑥 (𝑠) Δ𝑠 Δ𝑢 + (𝑘1 (1 − 𝛾) 𝛾
𝛾/(1−𝛾))

⋅ ∫
𝑡

𝑡
1

ℎ
𝑛−2 (𝑡, 𝜎 (𝑢))

⋅ ∫
𝑢

𝑡
1

𝑝𝛾/(𝛾−1) (𝑠) 𝑝1/(1−𝛾)
2

(𝑠) 𝑞1/(1−𝛾) (𝑠) Δ𝑠 Δ𝑢.

(60)
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As in the proof of Theorem 4, one can easily find

𝑥Δ (𝑡) ≤ 𝑐
𝑟 (𝑡)

𝐻
𝑛−1

(𝑡, 𝑡
1
) + 1

𝑟 (𝑡)

⋅ ∫
𝑡

𝑡
1

ℎ
𝑛−2 (𝑡, 𝜎 (𝑠)) 𝑒 (𝑠) Δ𝑠 + 𝑘1

𝑡ℎ
𝑛−2

(𝑡, 𝑡
1
)

𝑟 (𝑡)

⋅ ∫
𝑡

𝑡
1

𝑝 (𝑠) 𝑥 (𝑠) Δ𝑠 + (𝑘1 (1 − 𝛾) 𝛾
𝛾/(1−𝛾)) 1

𝑟 (𝑡)

⋅ ∫
𝑡

𝑡
1

ℎ
𝑛−2 (𝑡, 𝜎 (𝑢))

⋅ ∫
𝑢

𝑡
1

𝑝𝛾/(𝛾−1) (𝑠) 𝑝1/(1−𝛾)
2

(𝑠) 𝑞1/(1−𝛾) (𝑠) Δ𝑠 Δ𝑢,

(61)

where 𝑐 is given by (18). Using condition (50), we see that
𝑡ℎ
𝑛−2
(𝑡, 𝑡
1
)/𝑟(𝑡) is bounded for 𝑡 ≥ 𝑡

1
; say by 𝑘

3
> 0, and we

see that

𝑥Δ (𝑡) ≤ 𝑐
𝑟 (𝑡)

𝐻
𝑛−1

(𝑡, 𝑡
1
) + 1

𝑟 (𝑡)

⋅ ∫
𝑡

𝑡
1

ℎ
𝑛−2 (𝑡, 𝜎 (𝑠)) 𝑒 (𝑠) Δ𝑠 + 𝑘1𝑘3 ∫

𝑡

𝑡
1

𝑝 (𝑠) 𝑥 (𝑠) Δ𝑠

+ (𝑘
1
(1 − 𝛾) 𝛾𝛾/(1−𝛾)) 1

𝑟 (𝑡)
∫
𝑡

𝑡
1

ℎ
𝑛−2 (𝑡, 𝜎 (𝑢))

⋅ ∫
𝑢

𝑡
1

𝑝𝛾/(𝛾−1) (𝑠) 𝑝1/(1−𝛾)
2

(𝑠) 𝑞1/(1−𝛾) (𝑠) Δ𝑠 Δ𝑢.

(62)

Integrating this inequality from 𝑡
1
to 𝑡 and employing Lemma

3 in [10] to interchange the order of integration we obtain

𝑥 (𝑡) ≤ 𝑥 (𝑡1) + 𝑐𝐻 (𝑡, 𝑡
1
) + ∫
𝑡

𝑡
1

1
𝑟 (𝑢)

⋅ ∫
𝑢

𝑡
1

ℎ
𝑛−2 (𝑢, 𝜎 (𝑠)) 𝑒 (𝑠) Δ𝑠 Δ𝑢

+ 𝑘
1
𝑘
3
𝑡 ∫
𝑡

𝑡
1

𝑝 (𝑠) 𝑥 (𝑠) Δ𝑠 + (𝑘1 (1 − 𝛾) 𝛾
𝛾/(1−𝛾))

⋅ ∫
𝑡

𝑡
1

1
𝑟 (𝑢)

∫
𝑢

𝑡
1

ℎ
𝑛−2 (𝑡, 𝜎 (𝜏))

⋅ ∫
𝜏

𝑡
1

𝑝𝛾/(𝛾−1) (𝑠) 𝑝1/(1−𝛾)
2

(𝑠) 𝑞1/(1−𝛾) (𝑠) Δ𝑠 Δ𝜏Δ𝑢.

(63)

Using conditions (49), (50), and (53), there exist positive
constants 𝑐 and 𝑐 such that

𝑥 (𝑡)
𝑡

≤ 𝑐 + 𝑐∫
𝑡

𝑡
1

𝑠𝑝 (𝑠) (𝑥 (𝑠)
𝑠
) Δ𝑠. (64)

ApplyingGronwall’s inequality [1, Corollary 6.7] to inequality
(64) and then using condition (51), we have

lim
𝑡→∞

sup 𝑥 (𝑡)
𝑡

< ∞. (65)

If 𝑥(𝑡) is eventually negative, we set 𝑦(𝑡) = −𝑥(𝑡) to see that
𝑦(𝑡) satisfies (1) with 𝑒(𝑡) replaced by −𝑒(𝑡) and 𝑓

1
(𝑡, 𝑥) by

𝑓
1
(𝑡, −𝑦).
It follows in a similar manner that

lim
𝑡→∞

sup −𝑥 (𝑡)
𝑡

< ∞. (66)

We conclude from (65) and (66) that (54) holds.
Next by employingTheorem 13, we present the following

oscillation result for (1) with 𝑓
2
= 0.

Theorem 14. Let conditions (I) and (II) hold with 𝑓
1
= 0 and

𝛾 < 1. Suppose that conditions (50), (52), and (53) hold. If

lim
𝑡→∞

sup 𝑡 ∫
𝑡

𝑡
0

𝑠𝑝 (𝑠) Δ𝑠 < ∞, (67)

lim
𝑡→∞

∫
𝑡

𝑡
0

1
𝑟 (𝑢)

∫
𝑢

𝑡
0

ℎ
𝑛−2 (𝑢, 𝜎 (𝜏))

⋅ ∫
𝜏

𝑡
0

𝑝𝛾/(𝛾−1) (𝑠) 𝑝1/(1−𝛾)
2

(𝑠) 𝑞1/(1−𝛾) (𝑠) Δ𝑠 Δ𝜏Δ𝑢

< ∞,

(68)

lim
𝑡→∞

sup∫
𝑡

𝑡
0

1
𝑟 (𝑢)

∫
𝑢

𝑡
0

ℎ
𝑛−2 (𝑢, 𝜎 (𝜏)) 𝑒 (𝑠) Δ𝑠 Δ𝑢

= +∞,
(69)

lim
𝑡→∞

inf ∫
𝑡

𝑡
0

1
𝑟 (𝑢)

∫
𝑢

𝑡
0

ℎ
𝑛−2 (𝑢, 𝜎 (𝑠)) 𝑒 (𝑠) Δ𝑠 Δ𝑢 = −∞, (70)

for all 𝑡
0
≥ 0, then (1) is oscillatory.

Proof. Let 𝑥(𝑡) be a nonoscillatory solution of (1). First,
assume 𝑥(𝑡) is eventually positive. Fix 𝑡

0
≥ 0 and suppose

𝑥(𝑡) > 0 for 𝑡 ≥ 𝑡
1
for some 𝑡

1
≥ 𝑡
0
. The proof when 𝑥(𝑡) is

eventually negative is similar.
Proceeding as in the proof of Theorem 13, we arrive at

(58). Therefore

𝑥 (𝑡) ≤ 𝑥 (𝑡1) + 𝑐𝐻 (𝑡, 𝑡
1
) + 𝑘
1
𝑘
3
𝑡 ∫
𝑡

𝑡
1

𝑠𝑝 (𝑠) (𝑥 (𝑠)
𝑠
) Δ𝑠

+ ∫
𝑡

𝑡
1

1
𝑟 (𝑢)

∫
𝑢

𝑡
1

ℎ
𝑛−2 (𝑢, 𝜎 (𝑠)) 𝑒 (𝑠) Δ𝑠 Δ𝑢

+ (𝑘
1
(1 − 𝛾) 𝛾𝛾/(1−𝛾))∫

𝑡

𝑡
1

1
𝑟 (𝑢)

∫
𝑢

𝑡
1

ℎ
𝑛−2 (𝑡, 𝜎 (𝜏))

⋅ ∫
𝜏

𝑡
1

𝑝𝛾/(𝛾−1) (𝑠) 𝑝1/(1−𝛾)
2

(𝑠) 𝑞1/(1−𝛾) (𝑠) Δ𝑠 Δ𝜏Δ𝑢.

(71)

Conditions (67) and (68) imply conditions (50) and (49),
respectively, and so the conclusion ofTheorem 13 holds. This
together with condition (50) and (68) shows that the second
term and last integral are bounded.

Taking lim inf for both sides of (71) as 𝑡 → ∞ and using
(67) and (70) result in a contradiction with the fact that 𝑥(𝑡)
is eventually positive.
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Similar to the sublinear case one can easily prove the
following theorems for the integrodynamic equation (1)when
𝛾 = 1.

Theorem 15. Let conditions (I) and (II) hold with 𝑓
1
= 0 and

𝛾 = 1. Moreover, assume

∫
∞

𝑠𝑝
2 (𝑠) Δ𝑠 < ∞ (72)

and conditions (50), (52), and (53) hold for any 𝑡
0
≥ 0. Then

every nonoscillatory solution of (1) satisfies (54).

Theorem 16. Let conditions (I) and (II) hold with 𝑓
1
= 0 and

𝛾 = 1. In addition, suppose conditions (50), (52), (53), (69),
and (70) hold. If

lim
𝑡→∞

sup 𝑡 ∫
𝑡

𝑡
0

𝑠𝑝
2 (𝑠) Δ𝑠 < ∞, (73)

for all 𝑡
0
≥ 0, then (1) is oscillatory.

Similar to the above results, one can easily prove the
following theorems for the integrodynamic equation (1) with
𝑓
2
= 0.

Theorem 17. Let conditions (I) and (II) hold with 𝑓
2
= 0 and

𝛽 > 1. Assume that there exists a rd-continuous function 𝑝 :
𝑇 → 𝑅+ such that

lim
𝑡→∞

1
𝑡
∫
𝑡

𝑡
0

1
𝑟 (𝑢)

∫
𝑢

𝑡
0

ℎ
𝑛−2 (𝑢, 𝜎 (𝜏))

⋅ ∫
𝜏

𝑡
0

𝑝1/(1−𝛽) (𝑠) 𝑝𝛽/(𝛽−1)
1

(𝑠) 𝑞𝛽/(𝛽−1) (𝑠) Δ𝑠 Δ𝜏Δ𝑢

< ∞.

(74)

If conditions (50)–(53) hold for all 𝑡
0

≥ 0, then every
nonoscillatory solution of (1) satisfies (54).

Theorem 18. Let conditions (I) and (II) hold with 𝑓
2
= 0 and

𝛽 > 1. Assume that there exists a rd-continuous function 𝑝 :
𝑇 → 𝑅+ such that

lim
𝑡→∞

∫
𝑡

𝑡
0

1
𝑟 (𝑢)

∫
𝑢

𝑡
0

ℎ
𝑛−2 (𝑢, 𝜎 (𝜏))

⋅ ∫
𝜏

𝑡
0

𝑝1/(1−𝛽) (𝑠) 𝑝𝛽/(𝛽−1)
1

(𝑠) 𝑞𝛽/(𝛽−1) (𝑠) Δ𝑠 Δ𝜏Δ𝑢

< ∞,

lim
𝑡→∞

sup 𝑡 ∫
𝑡

𝑡
0

𝑠𝑝 (𝑠) Δ𝑠 < ∞.

(75)

If conditions (50), (52), (53), (68), and (69) hold for all 𝑡
0
≥ 0,

then (1) is oscillatory.

5. Illustrative Examples

As we already mentioned, the results of the present paper are
new for the cases when 𝑇 = 𝑅, that is, the continuous case,

or when 𝑇 = 𝑍, that is, the discrete case. As a numerical
illustration of our results in Section 3 with𝑇 = 𝑅, we consider
the following equation:

((1 + 𝑡)3 𝑥 (𝑡))


+ ∫
𝑡

0

𝑥𝛽 (𝑠)
(1 + 𝑡2) (1 + 𝑠2)

𝑑𝑠 = 𝑡𝑝 sin (𝑡) (76)

with initial conditions 𝑥(𝑡
0
) = 𝑥
0
and 𝑥(𝑡

0
) = 𝑥
0
. Compare

(76) with (1) to get that 𝑟(𝑡) = (1 + 𝑡)3, 𝑛 = 2, 𝑎(𝑡, 𝑠) = 1/(1 +
𝑡2)(1 + 𝑠2), 𝐹(𝑡, 𝑠) = 𝑥𝛽(𝑠), and 𝑒(𝑡) = 𝑡𝑝sin(𝑡). We can easily
show that conditions (I) and (II) are satisfied. Conditions (11)
are satisfied only for 𝑝 ≥ 3.

Equation (76) can be converted to two simultaneous first-
order ODEs by substituting (1+ 𝑡)3𝑥(𝑡) = 𝑦. This will lead to
the following system:

𝑥 (𝑡) =
𝑦 (𝑡)
(1 + 𝑡)3

; 𝑥 (0) = 𝑥0,

𝑦 (𝑡) = 𝑡𝑝sin (𝑡) − ∫
𝑡

0

𝑥𝛽 (𝑠)
(1 + 𝑡2) (1 + 𝑠2)

𝑑𝑠;

𝑦 (0) = 𝑥
0
.

(77)

Many numerical techniques can be used to solve (77). In
the current work, the second-order accurate modified Euler
technique is considered. The time interval [𝑡

0
, 𝑇
𝑓
] will be

divided into𝑀 equal subdivisionswithΔ𝑡width for each one.
The prediction and correction steps of the modified Euler
technique will be

𝑥
𝑖+1
= 𝑥
𝑖
+ Δ𝑡𝑔 (𝑡

𝑖
, 𝑥
𝑖
, 𝑦
𝑖
) ,

𝑦
𝑖+1
= 𝑦
𝑖
+ Δ𝑡ℎ (𝑡

𝑖
, 𝑥
𝑖
, 𝑦
𝑖
) ,

𝑥
𝑖+1
= 𝑥
𝑖
+ 0.5Δ𝑡 [𝑔 (𝑡

𝑖
, 𝑥
𝑖
, 𝑦
𝑖
) + 𝑔 (𝑡

𝑖+1
, 𝑥
𝑖+1
, 𝑦
𝑖+1
)] ,

𝑦
𝑖+1
= 𝑦
𝑖
+ 0.5Δ𝑡 [ℎ (𝑡

𝑖
, 𝑥
𝑖
, 𝑦
𝑖
) + ℎ (𝑡

𝑖+1
, 𝑥
𝑖+1
, 𝑦
𝑖+1
)] ,

(78)

where

𝑔 (𝑡, 𝑥, 𝑦) =
𝑦 (𝑡)
(1 + 𝑡)3

,

ℎ (𝑡, 𝑥, 𝑦) = 𝑡𝑝 sin (𝑡) − ∫
𝑡

0

𝑥𝛽 (𝑠)
(1 + 𝑡2) (1 + 𝑠2)

𝑑𝑠.
(79)

The integral in (79) can be approximated numerically at each
time instant 𝑡

𝑖
using the trapezoidal rule which has accuracy

of 𝑂(Δ𝑡)2. Solving (76) with 𝑝 = 1, 2, 3, and 4 and 𝛽 = 1/3
with initial conditions 𝑥(0) = 0.1 and 𝑥(0) = 0.0, to get
Figures 1 and 2. In Figure 1, 𝑝 = 1, 2, the solution is not
oscillatory as conditions (11) are not satisfied. In Figure 2,
𝑝 = 3, 4, we get oscillatory solution and this example validates
numericallyTheorem 4. Similar results are obtained for 𝛽 = 1
and 𝛽 = 3.

As another example, consider the following equation:

((1 + 𝑡)4 𝑥 (𝑡))


+ ∫
𝑡

0

𝑥𝛾 (𝑠) − 𝑥𝛽 (𝑠)
(1 + 𝑡2) (1 + 𝑠2)

𝑑𝑠 = 𝑡𝑝 sin (𝑡) (80)
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Figure 1: Solution 𝑥(𝑡) of (76) for 𝛽 = 1/3 and 𝑝 = 1, 2.
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Figure 2: Solution 𝑥(𝑡) of (76) for 𝛽 = 1/3 and 𝑝 = 3, 4.

with initial conditions 𝑥(𝑡
0
) = 𝑥
0
, 𝑥(𝑡
0
) = 𝑥
0
, and 𝑥(𝑡

0
) =

𝑥
0
. Follow the same procedure above and substitute (1 +

𝑡)4𝑥(𝑡) = 𝑦 to get the following system:

𝑥 (𝑡) =
𝑦

(1 + 𝑡)4
; 𝑥 (𝑡

0
) = 𝑥
0
,

𝑦 (𝑡) = 𝑧; 𝑦 (𝑡
0
) = (1 + 𝑡

0
)4 𝑥 (𝑡

0
) ,

𝑧 (𝑡) = 𝑡𝑝 sin (𝑡) − ∫
𝑡

0

𝑥𝛾 (𝑠) − 𝑥𝛽 (𝑠)
(1 + 𝑡2) (1 + 𝑠2)

𝑑𝑠;

𝑧 (𝑡
0
) = 𝑦 (𝑡

0
) = (1 + 𝑡

0
)4 𝑥 (𝑡

0
) + 4 (1 + 𝑡

0
)3 𝑥 (𝑡

0
) .

(81)
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Figure 3: Solution 𝑥(𝑡) of (80) for 𝛾 = 1 and 𝛽 = 5/3 and 𝑝 = 6.

The prediction and correction steps of the modified Euler
technique will be

𝑥
𝑖+1
= 𝑥
𝑖
+ Δ𝑡𝑓 (𝑡

𝑖
, 𝑥
𝑖
, 𝑦
𝑖
, 𝑧
𝑖
) ,

𝑦
𝑖+1
= 𝑦
𝑖
+ Δ𝑡𝑔 (𝑡

𝑖
, 𝑥
𝑖
, 𝑦
𝑖
, 𝑧
𝑖
) ,

𝑧
𝑖+1
= 𝑧
𝑖
+ Δ𝑡ℎ (𝑡

𝑖
, 𝑥
𝑖
, 𝑦
𝑖
, 𝑧
𝑖
) ,

𝑥
𝑖+1
= 𝑥
𝑖
+ 0.5Δ𝑡 [𝑓 (𝑡

𝑖
, 𝑥
𝑖
, 𝑦
𝑖
, 𝑧
𝑖
)

+ 𝑓 (𝑡
𝑖+1
, 𝑥
𝑖+1
, 𝑦
𝑖+1
, 𝑧
𝑖+1
)] ,

𝑦
𝑖+1
= 𝑦
𝑖
+ 0.5Δ𝑡 [𝑔 (𝑡

𝑖
, 𝑥
𝑖
, 𝑦
𝑖
, 𝑧
𝑖
)

+ 𝑔 (𝑡
𝑖+1
, 𝑥
𝑖+1
, 𝑦
𝑖+1
, 𝑧
𝑖+1
)] ,

𝑧
𝑖+1
= 𝑧
𝑖
+ 0.5Δ𝑡 [ℎ (𝑡

𝑖
, 𝑥
𝑖
, 𝑦
𝑖
, 𝑧
𝑖
)

+ ℎ (𝑡
𝑖+1
, 𝑥
𝑖+1
, 𝑦
𝑖+1
, 𝑧
𝑖+1
)] ,

(82)

where

𝑓 (𝑡, 𝑥, 𝑦, 𝑧) =
𝑦

(1 + 𝑡)4
,

𝑔 (𝑡, 𝑥, 𝑦, 𝑧) = 𝑧,

ℎ (𝑡, 𝑥, 𝑦, 𝑧) = 𝑡𝑝 sin (𝑡) − ∫
𝑡

0

𝑥𝛾 (𝑠) − 𝑥𝛽 (𝑠)
(1 + 𝑡2) (1 + 𝑠2)

𝑑𝑠.

(83)

We will consider the numerical solution of (80) with 𝑝 = 6
and with the initial conditions: 𝑥(0) = 𝑥(0) = 𝑥(0) = 0.

For 𝛾 = 1 and 𝛽 = 5/3, the oscillatory solution in Figure 3
is obtained and this validates Theorem 7. Similar results are
obtained to validateTheorem 8 (with 𝛽 = 1 and 𝛾 = 1/3) and
Theorems 9 and 10 (with 𝛽 = 5/3 and 𝛾 = 1/3). Theorems
13–18 can be validated in a similar way.

General Remarks

(1) The results presented in this paper are new for 𝑇 = 𝑅
and 𝑇 = 𝑍.

(2) The results of this paper are presented in a formwhich
is essentially new for (1) with different nonlinearities.
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(3) The techniques offered in this paper can be employed
to Volterra integral equations on timescales of the
form

𝑥 (𝑡) + ∫
𝑡

0

𝑎 (𝑡, 𝑠) 𝐹 (𝑠, 𝑥 (𝑠)) Δ𝑠 = 𝑒 (𝑡) . (84)

The formulation of our results to the above equation
is left to the reader.

(4) The results of this paper can be extended easily to
delay integrodynamic equations of the form

(𝑟𝑥Δ)
Δ
𝑛−1

(𝑡) = 𝑒 (𝑡) − ∫
𝑡

0

𝑎 (𝑡, 𝑠) 𝐹 (𝑠, 𝑥 (𝑔 (𝑠))) Δ𝑠, (85)

where 𝑔 : 𝑇 → 𝑇 is rd-continuous such that 𝑔(𝑡) ≤ 𝑡
and 𝑔Δ(𝑡) ≥ 0 for 𝑡 ≥ 0 and lim

𝑡→∞
𝑔(𝑡) = ∞. The

formulation of the results is left to the reader.
(5) We note that we can formulate the obtained results

for the timescales𝑇 = 𝑅 (the continuous case), 𝑇 = 𝑍
(the discrete case), 𝑇 = 𝑞𝑁0 with 𝑞 > 1 (the quantum
calculus case), 𝑇 = ℎ𝑍 with ℎ > 0, 𝑇 = 𝑁2

0
, and so

forth. The details are left to the reader.
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