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We consider the problem of the numerical evaluation of singular oscillatory Fourier transforms ∫𝑏
𝑎
(𝑥 − 𝑎)𝛼(𝑏 − 𝑥)𝛽𝑓(𝑥)𝑒𝑖𝜔𝑥𝑑𝑥,

where 𝛼 > −1 and 𝛽 > −1. Based on substituting the original interval of integration by the paths of steepest descent, if f is analytic
in the complex region G containing [a, b], the computation of integrals can be transformed into the problems of integrating two
integrals on [0, ∞) with the integrand that does not oscillate and decays exponentially fast, which can be efficiently computed
by using the generalized Gauss Laguerre quadrature rule. The efficiency and the validity of the method are demonstrated by both
numerical experiments and theoretical results. More importantly, the presented method in this paper is also a great improvement
of a Filon-type method and a Clenshaw-Curtis-Filon-type method shown in Kang and Xiang (2011) and the Chebyshev expansions
method proposed in Kang et al. (2013), for computing the above integrals.

1. Introduction

In many areas of science and engineering one often encoun-
ters the problem of computing rapidly oscillatory integrals
due to their frequent occurrences in wide fields ranging from
quantum chemistry, image analysis, electrodynamics, and
computerized tomography to fluidmechanics.The numerical
evaluation can be difficult when the parameter 𝜔 is large,
because in that case the integrand is highly oscillatory. A
prohibitively large number of quadrature points are needed
if one uses a classic rule such as Gaussian quadrature or
any quadrature method based on (piecewise) polynomial
interpolation of the integrand. In most of the cases, such
integrals cannot be calculated analytically and one has to
resort to numericalmethods. In the past nearly hundred years
ago, greatmanymethods have been developed for generalized
Fourier transformation∫𝑏

𝑎
𝑓(𝑥)𝑒𝑖𝜔𝑔(𝑥)𝑑𝑥, such as the Filon [1–

4], Clenshaw-Curtis-type [5, 6], Filon-type [7, 8], asymptotic
[7], Levin [9, 10], generalized quadrature rule [11, 12], Levin-
type [13], and complex integration methods [14–18].

In the present paper, based on special contours and
the generalized Gauss Laguerre quadrature rule, we will

be concerned with the computation for oscillatory Fourier
transform of the form

𝐼 [𝑓] = ∫
𝑏

𝑎

(𝑥 − 𝑎)𝛼(𝑏 − 𝑥)𝛽𝑓 (𝑥) 𝑒𝑖𝜔𝑥𝑑𝑥, (1)

where 𝑓(𝑥) is a sufficiently smooth function in [𝑎, 𝑏], 𝜔 is
a large parameter, 𝑎 and 𝑏 are real and finite, and 𝛼 > −1,
𝛽 > −1. In (1), if 𝛼 ≥ 0, −1 < 𝛽 < 0, or 𝛽 ≥ 0, −1 < 𝛼 < 0,
the integrand has a singularity of a simple type at one sided
endpoint 𝑏 or 𝑎; if −1 < 𝛼 < 0, −1 < 𝛽 < 0, the integrand
has singularities of a complicated type at both endpoints of
the interval; if, in particular, 𝛼, 𝛽 ≥ 0, the integrand has no
singularity and zero points or stationary points. When the
integrand containing algebraic singularities becomes highly
oscillatory, it presents more serious difficulties in obtaining
numerical convergence of the integration than the computa-
tion of (1) whose integrand does not involve singularity. Such
integrals (1) with the weak singularities are applied to the
numerical approximations of solutions to Volterra integral
equations of the first kind [19, 20]. In addition, it is well-
known that the Radon transform, which is an important role
in the CT, PET, and SPECT technology of medical sciences
andwidely applicable to tomography, the creation of an image
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from the scattering data associated to cross-sectional scans
of an object, is also closely related to this form of oscillatory
singular integrals [21, 22]. These singularities are also called
singularities of the Radon transform in medical tomography.
Further, the numerical integration of such integrals (1) is
used to the solution of the singular integral equation for
classical crack problems in plane and antiplane elasticity [23].
Moreover, they can be taken as model integrals of those
appearing in solving integral equations, such as, in high-
frequency acoustic scattering, for example, high-frequency
Helmholtz equation in two dimensions, where those kernels
have algebraic or logarithmic singularities ([24, 25] and
references therein), which is also our main target application.
Because of such a wide range of applications, it is of great
importance for the study of the numerical integration of
such integrals. In fact, the integral (1) has gained popularity
in literatures. In 1955, Erdélyi [26] established asymptotic
expansions using neutralizer functions by van der Corput
and general integration by parts. One year later, this sort
of asymptotic expansions was listed in the treatise [15] by
Erdélyi. Three years later, a similar asymptotic result was
reestablished by Lighthill in [27], by generalized function
theory. In 1971, in the case where 𝑓(𝑥) is analytic in a region
containing [𝑎, 𝑏], a straightforward proof based on contour
integration was published by Lyness in [28]. In 2008 and
2009, Lyness [29, 30] presented asymptotic expansions by
theory involving inverse functions. For details one can refer
to [29, 30]. In 2011, the authors of [31] presented a Filon-
type method and a Clenshaw-Curtis-Filon-type method for
computing the integral (1), the error of which satisfies
𝑂(𝜔−𝑠−𝑟−2), where 𝑠 is the highest multiplicity of the Hermite
interpolation at the endpoints and 𝑟 = min{𝛼, 𝛽}. In 2013,
the recent literature [32] gave a widely used Chebyshev
expansions method depending on the frequency 𝜔 for com-
puting many types of singular oscillatory integrals, one of
which is such integral (1). Based on these relevant back-
ground literatures above, in Section 2 of this paper, thanks
to analytic continuation, special contours, and generalized
Gauss-Laguerre quadrature rule, we devise efficient method
to compute the class of integrals (1). Its asymptotic order,
𝑂((𝑛!Γ(𝑛 + 𝑟2 + 1)/(2𝑛)!)(1/𝜔2𝑛+𝑟1+1)), 𝑟1 = min{𝛼, 𝛽}, and
𝑟2 = max{𝛼, 𝛽}, is nearly twice as high as that of the Filon-
type method and the Clenshaw-Curtis-Filon-type method
[31, 33] outlined above, while using the same number of
function evaluations under the given conditions. The results
differ from those in previous research in the sense that the
constructed rules are asymptotically optimal; that is, among
all known methods for oscillatory integrals they deliver the
highest possible asymptotic order of convergence, relative to
the required number of evaluations of the integrand. It can
combine a fixed computational cost and very high asymptotic
order with numerical convergence. Of course, the presented
method is also much more efficient than the Chebyshev
expansions method proposed in [32].

An outline of this paper is as illustrated below. In the next
section, we will illustrate some of themain ideas with the the-
oretical analysis by choosing a special path and demonstrate
a decomposition of the integral (1) in details. Meanwhile,
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Figure 1: Illustration of the integration paths for the integrand (𝑥 −
𝑎)𝛼(𝑏 − 𝑥)𝛽𝑓(𝑥)𝑒𝑖𝜔𝑥.

the construction and error of a quadrature rule will be also
established by the generalized Gauss-Laguerre quadrature
rule. In Section 3, some vigorous and robust numerical
results will show the accuracy and efficiency of the proposed
approach.

2. Main Results

2.1. A Decomposition of the Integral (1). In this subsection, we
will study the problem of computing the integral (1) in depth.
Here, we provide the illustration of the special integration
paths for the integrand (𝑥−𝑎)𝛼(𝑏−𝑥)𝛽𝑓(𝑥)𝑒𝑖𝜔𝑥 (see Figure 1).
Here, let 𝐺, 𝐺1, and 𝐺2 denote the regions 𝐺 = {𝑧 ∈ C | 𝑎 ≤
R(𝑧) ≤ 𝑏, 0 ≤ I(𝑧) ≤ 𝐿},𝐺1 = {|𝑧−𝑎| ≤ 𝜀, 0 ≤ arg(𝑧) ≤ 𝜋/2},
and 𝐺2 = {|𝑧 − 𝑏| ≤ 𝜀, 𝜋/2 ≤ arg(𝑧) ≤ 𝜋}, respectively, where
𝐿 is a large number and the positive 𝜀 is small enough such
that 𝐺 contains 𝐺1 and 𝐺2.

Theorem 1. Suppose that 𝑓 is an analytic function in the
region 𝐺 = {𝑧 ∈ C | 𝑎 ≤ R(𝑧) ≤ 𝑏,I(𝑧) ≥ 0}; then

𝐼 [𝑓] = ∫
𝑏

𝑎

(𝑥 − 𝑎)𝛼(𝑏 − 𝑥)𝛽𝑓 (𝑥) 𝑒𝑖𝜔𝑥𝑑𝑥

=
𝑖𝛼+1𝑒𝑖𝜔𝑎

𝜔𝛼+1
∫
∞

0

(𝑏 − 𝑎 − 𝑖
𝑝
𝜔
)
𝛽

𝑓(𝑎 + 𝑖
𝑝
𝜔
)𝑝𝛼𝑒−𝑝𝑑𝑝

− (−1)𝛽+1𝑖𝛽+1𝑒𝑖𝜔𝑏

𝜔𝛽+1

× ∫
∞

0

(𝑏 − 𝑎 + 𝑖
𝑝
𝜔
)
𝛼

𝑓(𝑏 + 𝑖
𝑝
𝜔
)𝑝𝛽𝑒−𝑝𝑑𝑝.

(2)

Proof. Since 𝑓(𝑧) is analytic within the complex region 𝐺,
then the integrand (𝑧 − 𝑎)𝛼(𝑏 − 𝑧)𝛽𝑓(𝑧)𝑒𝑖𝜔𝑧 is also analytic
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(has no singularity) in the region 𝐺 except 𝐺1 and 𝐺2 (𝑧 ∈
𝐺 \ (𝐺1 + 𝐺2)), enclosed by Γ𝑗, 𝑗 = 1, 2, . . . , 6, defined by the
following parametric forms Γ1: ℎ1(ℓ) = 𝑥, 𝑎 + 𝜀 ≤ 𝑥 ≤ 𝑏 − 𝜀,
Γ2 : ℎ2(ℓ) = 𝑏 + 𝜀𝑒𝑖𝜃1 , Γ3 : ℎ3(ℓ) = 𝑏 + 𝑖ℓ, Γ4 : ℎ4(ℓ) = 𝑥 + 𝑖𝐿,
𝑥 ∈ [𝑎, 𝑏], Γ5 : ℎ5(ℓ) = 𝑎 + 𝑖ℓ, and Γ6 : ℎ6(ℓ) = 𝑎 + 𝜀𝑒𝑖𝜃2 ,
where ℓ ∈ [𝜀, 𝐿], 𝜃1 ∈ [𝜋/2, 𝜋], 𝜃2 ∈ [0, 𝜋/2], and an arbitrary
𝜀 > 0. Moreover, (𝑧 − 𝑎)𝛼(𝑏 − 𝑧)𝛽𝑓(𝑧)𝑒𝑖𝜔𝑧 is continuous on all
contours containing Γ𝑗, 𝑗 = 1, 2, . . . , 6 (see Figure 1). By the
Cauchy theorem [34], we obtain

∫
Γ
1
+Γ
2
+Γ
3
+Γ
4
+Γ
5
+Γ
6

(𝑧 − 𝑎)𝛼(𝑏 − 𝑧)𝛽𝑓 (𝑧) 𝑒𝑖𝜔𝑧𝑑𝑧 = 0, (3)

where all the contours choose the counterclockwise direction
as positive direction. In the sequel, we parameterize each of
these integrals in a specific way.

First, there exists𝑀 ≥ 0, such that
󵄨󵄨󵄨󵄨𝑓 (𝑧)

󵄨󵄨󵄨󵄨 ≤ 𝑀, 𝑧 ∈ 𝐺. (4)

Since

0 ≤
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Γ
2

(𝑧 − 𝑎)𝛼(𝑏 − 𝑧)𝛽𝑓 (𝑧) 𝑒𝑖𝜔𝑧𝑑𝑧
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝜀𝛽+1 ∫
𝜋

𝜋/2

󵄨󵄨󵄨󵄨󵄨󵄨(𝑏 − 𝑎 + 𝜀𝑒
𝑖𝜃
1)
𝛼󵄨󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨𝑓 (𝑏 + 𝜀𝑒

𝑖𝜃
1)
󵄨󵄨󵄨󵄨󵄨 𝑑𝜃1

≤ 𝜀𝛽+1𝑀∫
𝜋

𝜋/2

󵄨󵄨󵄨󵄨󵄨󵄨(𝑏 − 𝑎 + 𝜀𝑒
𝑖𝜃
1)
𝛼󵄨󵄨󵄨󵄨󵄨󵄨 𝑑𝜃1 󳨀→ 0, as 𝜀 󳨀→ 0,

(5)

then

lim
𝜀→0

∫
Γ
2

(𝑧 − 𝑎)𝛼(𝑏 − 𝑧)𝛽𝑓 (𝑧) 𝑒𝑖𝜔𝑧𝑑𝑧 = 0. (6)

Similarly, it is easy to get

lim
𝜀→0

∫
Γ
6

(𝑧 − 𝑎)𝛼(𝑏 − 𝑧)𝛽𝑓 (𝑧) 𝑒𝑖𝜔𝑧𝑑𝑧 = 0. (7)

Since the integrand (𝑧 − 𝑎)𝛼(𝑏 − 𝑧)𝛽𝑓(𝑧) is analytic in the
region 𝐺 except 𝐺1 and 𝐺2, then (𝑧 − 𝑎)

𝛼(𝑏 − 𝑧)𝛽𝑓(𝑧)𝑒𝑖𝜔𝑧 is
also analytic in the region 𝐺 except 𝐺1 and 𝐺2. So there must
exist a nonnegative number 𝑀̃ such that

󵄨󵄨󵄨󵄨󵄨(𝑧 − 𝑎)
𝛼(𝑏 − 𝑧)𝛽𝑓 (𝑧)

󵄨󵄨󵄨󵄨󵄨 ≤ 𝑀̃, 𝑧 ∈ 𝐺 \ (𝐺1 + 𝐺2) . (8)

Therefore,

0 ≤
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Γ
4

(𝑧 − 𝑎)𝛼(𝑏 − 𝑧)𝛽𝑓 (𝑧) 𝑒𝑖𝜔𝑧𝑑𝑧
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑒−𝐿𝜔 ∫
𝑏

𝑎

󵄨󵄨󵄨󵄨󵄨(𝑥 − 𝑎 + 𝑖𝐿)
𝛼(𝑏 − 𝑥 − 𝑖𝐿)𝛽𝑓 (𝑥 + 𝑖𝐿)

󵄨󵄨󵄨󵄨󵄨 𝑑𝑥

≤ (𝑏 − 𝑎) 𝑀̃𝑒−𝐿𝜔 󳨀→ 0, as 𝐿 󳨀→ ∞;

(9)

namely,

lim
𝐿→∞

∫
Γ
4

(𝑧 − 𝑎)𝛼(𝑏 − 𝑧)𝛽𝑓 (𝑧) 𝑒𝑖𝜔𝑧𝑑𝑧 = 0. (10)

Since the Gamma function Γ(𝑧) and the incomplete
Gamma function Γ(𝑠, 𝑧) [35] are defined by

Γ (𝑧) = ∫
∞

0

𝑡𝑧−1𝑒−𝑡𝑑𝑡, Γ (𝑠, 𝑧) = ∫
∞

𝑠

𝑡𝑧−1𝑒−𝑡𝑑𝑡, (11)

which hold for the equality

Γ (𝛼 + 1) = Γ (𝛼 + 1, 0) , (12)

then

∫
𝜀

0

ℓ𝛼𝑒−𝜔ℓ𝑑ℓ

=
1

𝜔𝛼+1
∫
𝜔𝜀

0

𝑡𝛼𝑒−𝑡𝑑𝑡

=
1

𝜔𝛼+1
[∫
∞

0

𝑡𝛼+1−1𝑒−𝑡𝑑𝑡 − ∫
∞

𝜔𝜀

𝑡𝛼+1−1𝑒−𝑡𝑑𝑡]

=
1

𝜔𝛼+1
[Γ (𝛼 + 1) − Γ (𝛼 + 1, 𝜔𝜀)] 󳨀→ 0, as 𝜀 󳨀→ 0.

(13)

Therefore,

0 ≤
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝜀

0

(𝑏 − 𝑎 − 𝑖ℓ)𝛽ℓ𝛼𝑓 (𝑎 + 𝑖ℓ) 𝑒−𝜔ℓ𝑑ℓ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑀 ⋅ 𝑀1
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝜀

0

ℓ𝛼𝑒−𝜔ℓ𝑑ℓ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
󳨀→ 0, as 𝜀 󳨀→ 0,

(14)

where there must exist a nonnegative𝑀1 such that
󵄨󵄨󵄨󵄨󵄨(𝑏 − 𝑎 − 𝑖ℓ)

𝛽󵄨󵄨󵄨󵄨󵄨 ≤ 𝑀1, ℓ ∈ [0, 𝜀] . (15)

Thus, using (14),

lim
𝜀→0

∫
Γ
5

(𝑧 − 𝑎)𝛼(𝑏 − 𝑧)𝛽𝑓 (𝑧) 𝑒𝑖𝜔𝑧𝑑𝑧

= lim
𝜀→0

(−𝑖𝛼+1𝑒𝑖𝜔𝑎)

× ∫
𝐿

𝜀

(𝑏 − 𝑎 − 𝑖ℓ)𝛽ℓ𝛼𝑓 (𝑎 + 𝑖ℓ) 𝑒−𝜔ℓ𝑑ℓ

= lim
𝜀→0

(−𝑖𝛼+1𝑒𝑖𝜔𝑎)

× [∫
𝐿

0

(𝑏 − 𝑎 − 𝑖ℓ)𝛽ℓ𝛼𝑓 (𝑎 + 𝑖ℓ) 𝑒−𝜔ℓ𝑑ℓ

−∫
𝜀

0

(𝑏 − 𝑎 − 𝑖ℓ)𝛽ℓ𝛼𝑓 (𝑎 + 𝑖ℓ) 𝑒−𝜔ℓ𝑑ℓ]

= −𝑖𝛼+1𝑒𝑖𝜔𝑎 ∫
𝐿

0

(𝑏 − 𝑎 − 𝑖ℓ)𝛽ℓ𝛼𝑓 (𝑎 + 𝑖ℓ) 𝑒−𝜔ℓ𝑑ℓ

= −
𝑖𝛼+1𝑒𝑖𝜔𝑎

𝜔𝛼+1

× ∫
𝜔𝐿

0

(𝑏 − 𝑎 − 𝑖
𝑝
𝜔
)
𝛼

𝑝𝛼𝑓(𝑎 + 𝑖
𝑝
𝜔
) 𝑒−𝑝𝑑𝑝.

(16)
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In the same way, we have

lim
𝜀→0

∫
Γ
3

(𝑧 − 𝑎)𝛼(𝑏 − 𝑧)𝛽𝑓 (𝑧) 𝑒𝑖𝜔𝑧𝑑𝑧

= (−1)𝛽+1𝑖𝛽+1𝑒𝑖𝜔𝑏

𝜔𝛽+1

× ∫
𝜔𝐿

0

(𝑏 − 𝑎 + 𝑖
𝑝
𝜔
)
𝛼

𝑓(𝑏 + 𝑖
𝑝
𝜔
)𝑝𝛽𝑒−𝑝𝑑𝑝.

(17)

Therefore, combining (3), (6), (9), (10), (16), and (17), we
gain

∫
𝑏

𝑎

(𝑥 − 𝑎)𝛼(𝑏 − 𝑥)𝛽𝑓 (𝑥) 𝑒𝑖𝜔𝑥𝑑𝑥

= lim
𝜀→0

∫
Γ
1

(𝑧 − 𝑎)𝛼(𝑏 − 𝑧)𝛽𝑓 (𝑧) 𝑒𝑖𝜔𝑧𝑑𝑧

= − lim
𝜀→0

[ lim
𝐿→∞

∫
Γ
2
+Γ
3
+Γ
4
+Γ
5
+Γ
6

(𝑧 − 𝑎)𝛼(𝑏 − 𝑧)𝛽

× 𝑓 (𝑧) 𝑒𝑖𝜔𝑧𝑑𝑧]

=
𝑖𝛼+1𝑒𝑖𝜔𝑎

𝜔𝛼+1
∫
∞

0

(𝑏 − 𝑎 − 𝑖
𝑝
𝜔
)
𝛽

𝑓(𝑎 + 𝑖
𝑝
𝜔
)𝑝𝛼𝑒−𝑝𝑑𝑝

− (−1)𝛽+1𝑖𝛽+1𝑒𝑖𝜔𝑏

𝜔𝛽+1

× ∫
∞

0

(𝑏 − 𝑎 + 𝑖
𝑝
𝜔
)
𝛼

𝑓(𝑏 + 𝑖
𝑝
𝜔
)𝑝𝛽𝑒−𝑝𝑑𝑝.

(18)

This completes the proof.

The succeeding part is to consider the efficient evaluation
of the nethermost formulas of (2).

2.2. Calculation of 𝐼[𝑓] by the Generalized Gauss Laguerre
Quadrature Rule. The key point in the interpolatory rule for
the infinite interval [0,∞) is, of course, the rule of Gauss-
type:

∫
∞

0

𝑤 (𝑥) 𝑆 (𝑥) 𝑑𝑥 ≈
𝑛

∑
𝑘=1

𝑤𝑘𝑆 (𝑥𝑘) , (19)

where the 𝑥𝑘 and 𝑤𝑘 have been determined so that the
formula is exact for a polynomial 𝑆(𝑥) up to degree 2𝑛 −
1. But the most widely employed efficient approach for the
infinite integrals is the Gauss-Laguerre quadrature rule or
generalized Gauss Laguerre quadrature rule.

Generalized Laguerre polynomials are orthogonal with
respect to the more general weight function 𝑥𝜆𝑒−𝑥, 𝜆 > −1.
From [1], the generalized Gauss Laguerre quadrature rule is
given, as follows:

∫
∞

0

𝑆 (𝑥) 𝑥𝜆𝑒−𝑥𝑑𝑥 =
𝑛

∑
𝑘=1

𝑤(𝜆)
𝑘
𝑆 (𝑥(𝜆)
𝑘
)

+
𝑛!Γ (𝑛 + 𝜆 + 1)

(2𝑛)!
𝑆(2𝑛) (𝜉) ,

0 < 𝜉 < ∞,

(20)

where the nodes 𝑥(𝜆)
𝑘

are the zeros of the generalized or
associated Laguerre polynomial 𝐿(𝜆)

𝑛
(𝑥) [1] and

𝑤(𝜆)
𝑘

=
Γ (𝑛 + 𝜆 + 1) 𝑥(𝜆)

𝑘

𝑛![𝐿(𝜆)
𝑛+1

(𝑥(𝜆)
𝑘
)]
2
. (21)

In (2), the integrands have a singularity of the form 𝑝𝛼

or 𝑝𝛽, as 𝑝 → 0. Fortunately, this type of singularity
can be handled efficiently by the generalized Gauss-Laguerre
quadrature rule.

2.2.1. Calculation of 𝐼[𝑓] by the Generalized Gauss Laguerre
Quadrature Rule. The generalized Gauss-Laguerre formula
(20) with 𝑛 points 𝑥(𝜆)

𝑘
andweights𝑤(𝜆)

𝑘
is applied to (2).Then

we can easily obtain the following 𝑛-point approximation
formula to (1):

𝑄𝑛 [𝑓] =
𝑖𝛼+1𝑒𝑖𝜔𝑎

𝜔𝛼+1

×
𝑛

∑
𝑘=1

𝑤(𝛼)
𝑘
(𝑏 − 𝑎 − 𝑖

𝑥(𝛼)
𝑘

𝜔
)
𝛽

𝑓(𝑎 + 𝑖
𝑥(𝛼)
𝑘

𝜔
)

− (−1)𝛽+1𝑖𝛽+1𝑒𝑖𝜔𝑏

𝜔𝛽+1

×
𝑛

∑
𝑘=1

𝑤(𝛽)
𝑘
(𝑏 − 𝑎 + 𝑖

𝑥(𝛽)
𝑘

𝜔
)
𝛼

𝑓(𝑏 + 𝑖
𝑥(𝛽)
𝑘

𝜔
) ,

(22)

where 𝑥(𝛼)
𝑘

and 𝑥(𝛽)
𝑘

are the zeros of the generalized or asso-
ciated Laguerre polynomials 𝐿(𝛼)

𝑛
(𝑥) and 𝐿(𝛽)

𝑛
(𝑥), respectively.

And,𝑤(𝛼)
𝑘

and𝑤(𝛽)
𝑘

are given by choosing “𝜆 = 𝛼” and “𝜆 = 𝛽”
in (21), respectively.

Theorem 2. If𝑓 holds for the conditions ofTheorem 1, then we
have

𝐼 [𝑓] − 𝑄𝑛 [𝑓] ∼ 𝑂(
𝑛!Γ (𝑛 + 𝑟2 + 1)

(2𝑛)!
1

𝜔2𝑛+𝑟1+1
) ,

as 𝜔 󳨀→ ∞,

(23)

where 𝑟1 = min{𝛼, 𝛽} and 𝑟2 = max{𝛼, 𝛽}.

Proof. For 𝑟1 = min{𝛼, 𝛽} and 𝑟2 = max{𝛼, 𝛽}, since

𝜔2𝑛+𝑟1+1 = 𝜔2𝑛+𝛼+1, 𝜔2𝑛+𝑟1+1 < 𝜔2𝑛+𝛽+1,

Γ (𝑛 + 𝑟2 + 1) = Γ (𝑛 + 𝛽 + 1) ,

Γ (𝑛 + 𝑟2 + 1) > Γ (𝑛 + 𝛼 + 1) , (𝛼 ≤ 𝛽) ;

(24)

or

𝜔2𝑛+𝑟1+1 = 𝜔2𝑛+𝛽+1, 𝜔2𝑛+𝑟1+1 < 𝜔2𝑛+𝛼+1,

Γ (𝑛 + 𝑟2 + 1) = Γ (𝑛 + 𝛼 + 1) ,

Γ (𝑛 + 𝑟2 + 1) > Γ (𝑛 + 𝛽 + 1) , (𝛼 > 𝛽)

(25)
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together with (2), (20), and (22), we have

𝐼 [𝑓] − 𝑄𝑛 [𝑓]

=
𝑛!Γ (𝑛 + 𝜆 + 1)

(2𝑛)!
𝑆(2𝑛) (𝜉)

=
𝑖𝛼+1𝑒𝑖𝜔𝑎

𝜔𝛼+1
𝑛!Γ (𝑛 + 𝛼 + 1)

(2𝑛)!

×
𝑑 [(𝑏 − 𝑎 − 𝑖 (𝑞/𝜔))𝛽𝑓 (𝑎 + 𝑖 (𝑞/𝜔))]

𝑑𝑞2𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑞=𝜉

− (−1)𝛽+1𝑖𝛽+1𝑒𝑖𝜔𝑏

𝜔𝛽+1
𝑛!Γ (𝑛 + 𝛽 + 1)

(2𝑛)!

×
𝑑 [(𝑏 − 𝑎 + 𝑖 (𝑞/𝜔))𝛼𝑓 (𝑏 + 𝑖 (𝑞/𝜔))]

𝑑𝑞2𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑞=𝜉

∼ 𝑂(
𝑛!Γ (𝑛 + 𝛼 + 1)

(2𝑛)!
𝜔−2𝑛−𝛼−1)

− 𝑂(
𝑛!Γ (𝑛 + 𝛽 + 1)

(2𝑛)!
𝜔−2𝑛−𝛽−1)

∼ 𝑂(
𝑛!Γ (𝑛 + 𝑟2 + 1)

(2𝑛)!
1

𝜔2𝑛+𝑟1+1
) , as 𝜔 󳨀→ ∞.

(26)

This completes this proof.

From the error formula (23) it can be seen that more
accurate approximations can be obtained for the case of the
fixed number of nodes and increasing frequency 𝜔, and for
the case of the fixed frequency 𝜔 and increasing the number
of nodes. In this case, the integral (1) depends asymptotically
on the behavior of the integrand near the endpoints 𝑎 and 𝑏.

In the subsequent section, we will make use of numerical
examples to illustrate the absolute error and approximate
values.

3. Numerical Examples

In this section, we present the results of numerical experi-
ments obtained by using the proposed method. Our algo-
rithm is compared with the Clenshaw-Curtis-Filon-type
method presented in [31]. The nodes 𝑥(𝜆)

𝑘
and weights 𝑤(𝜆)

𝑘

of the generalized Gauss-Laguerre quadrature rule are given
in [35]. In order to conduct the experiments, we require the
knowledge on the exact values of the integrals of the form
(1).The values that we assume to be accurate are computed in
Maple 13.02 using the 32 decimal digits precision arithmetic.
The compared algorithms (the Clenshaw-Curtis-Filon-type
method and the presented one) are implemented in Mat-
lab 7.0.1, taking advantage of its fast vectorised arithmetic
operations. The experiments are performed on the desktop
computer with AMDAthlon(tm) 64 X2 Dual Core Processor
4000 + (2100Mhz) and 1GB of RAM.

Table 1: (a) Absolute errors in 𝑛-point approximations by the
proposed method to the integral ∫1

0
𝑥−(1/2)(𝑥 − 1)−(1/2) cos 𝑥𝑒𝑖𝜔𝑥𝑑𝑥.

(b) Absolute errors in 𝑛-point approximations by the Clenshaw-
Curtis-Filon-type method [31] to the integral ∫

1

0
𝑥−(1/2)(𝑥 −

1)−(1/2) cos 𝑥𝑒𝑖𝜔𝑥𝑑𝑥.

(a)

𝜔 \ 𝑛 2 3 4

10 2.7 × 10−5 1.0 × 10−6 3.9 × 10−8

20 1.1 × 10−6 9.9 × 10−9 2.2 × 10−10

40 6.3 × 10−8 2.4 × 10−10 1.6 × 10−12

80 1.1 × 10−9 1.3 × 10−12 6.3 × 10−15

(b)

𝜔 \ 𝑛 2 3 4

10 8.6 × 10−1 7.8 × 10−1 6.9 × 10−1

20 7.6 × 10−1 5.1 × 10−1 3.4 × 10−1

40 6.3 × 10−1 4.6 × 10−1 3.0 × 10−1

80 5.9 × 10−1 4.4 × 10−1 2.2 × 10−1

Tables 1, 2, 3, 4, 5, and 6 demonstrate the absolute errors
and approximate values in 𝑛-point approximations by the
proposed method to the above integrals. Furthermore, they
exhibit the fast convergence of the approximations as 𝑛
increases. Meanwhile, all these tables above show that more
and more accurate approximations can be obtained as 𝜔
increases and 𝑛 is fixed. Conversely, as 𝑛 increases and 𝜔
is fixed, higher accuracy can be also achieved. Moreover,
they exhibit that the approach requires very small number
of function evaluations to produce approximations in higher
accuracy, where we only choose several nodes, 𝑛 = 2, 3, 4,
and so forth. Also, for sufficiently large 𝜔 and some 𝑛, it
is very easy to reach machine precision in Matlab. For the
case of low or moderate frequency 𝜔, by adding the number
of the node points 𝑛, we can get very accurate approxi-
mations. Moreover, Tables 1(a), 1(b), 2(a), and 2(b) show the
efficiency and accuracy of the proposed method, compared
to the Clenshaw-Curtis-Filon-type method [31]. In [32], the
Chebyshev expansions method depends on 𝜔; for example,

𝑁1 (𝜔) = ⌊1.05𝜔 + 57.5⌋ , (27)

where𝑁1(𝜔) is the number of the required truncated terms.
For the case of moderate and high frequency 𝜔, the Cheby-
shev expansions method requires longer time consuming
in attaining high precision [32]. For details one can refer
to [32]. Furthermore, both numerical analysis in Theorem 2
and numerical experiments above show that the presented
method in this paper shares the advantageous property that
its accuracy improves greatly when 𝜔 increases. Therefore, it
is obvious that the presented method in this paper is much
more efficient than the Chebyshev expansions method for
computing the integral (1).
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Table 2: (a) Approximate values in 2-point approximations by the proposed method to the integral ∫1
0
𝑥−(1/2)(𝑥 − 1)−(1/2) cos 𝑥𝑒𝑖𝜔𝑥𝑑𝑥,

comparedwith exact values. (b) Approximate values in 2-point approximations by the Clenshaw-Curtis-Filon-typemethod [31] to the integral
∫
1

0
𝑥−(1/2)(𝑥 − 1)−(1/2) cos 𝑥𝑒𝑖𝜔𝑥𝑑𝑥, compared with exact values.

(a)

𝜔 1000 2000
Exact values 0.06937869322675 + 0.04527657820424𝑖 0.03655011452354 + 0.04767073962282𝑖
Approximate values 0.06937869322672 + 0.04527657820423𝑖 0.03655011452354 + 0.04767073962281𝑖
𝜔 3000 5000
Exact values 0.01353266279337 + 0.03766001599991𝑖 0.00974123171200 + 0.00678449969265𝑖
Approximate values 0.01353266279337 + 0.03766001599991𝑖 0.00974123171200 + 0.00678449969265𝑖

(b)

𝜔 1000 2000
Exact values 0.06937869322675 + 0.04527657820424𝑖 0.03655011452354 + 0.04767073962282𝑖
Approximate values 0.06937879634322 + 0.04527685643561𝑖 0.03655017563845 + 0.0476703845971𝑖
𝜔 3000 5000
Exact values 0.01353266279337 + 0.03766001599991𝑖 0.00974123171200 + 0.00678449969265𝑖
Approximate values 0.01353266884523 + 0.03766001457824𝑖 0.00974123131452 + 0.00678449989714𝑖

Table 3: Absolute errors in 𝑛-point approximations by the proposed method to the integral ∫3
2
(𝑥 − 2)−(1/2)(3 − 𝑥)−(1/2) sin𝑥𝑒𝑖𝜔𝑥𝑑𝑥.

𝜔 \ 𝑛 2 3 4
8 4.5 × 10−5 2.8 × 10−6 3.0 × 10−7

16 2.4 × 10−6 5.2 × 10−8 1.8 × 10−9

32 1.1 × 10−7 6.2 × 10−10 6.7 × 10−12

64 5.2 × 10−9 7.7 × 10−12 2.5 × 10−14

Table 4: Approximate values in 2-point approximations by the proposed method to the integral ∫3
2
(𝑥 − 2)−(1/2)(3 − 𝑥)−(1/2) sin𝑥𝑒𝑖𝜔𝑥𝑑𝑥,

compared with exact values.

𝜔 1000 2000
Exact values −0.05096624886110 + 0.02697237461921𝑖 0.00069025638199 − 0.04128898797276𝑖
Approximate values −0.05096624886109 + 0.02697237461920𝑖 0.00069025638199 − 0.04128898797276𝑖
𝜔 3000 5000
Exact values 0.02715481058125 + 0.01444143741392𝑖 −0.00930648155343 − 0.01691388809588𝑖
Approximate values 0.02715481058125 + 0.01444143741392𝑖 −0.00930648155343 − 0.01691388809588𝑖

Table 5: Absolute errors in 𝑛-point approximations by the proposed method to the integral ∫1
−1
(𝑥 + 1)−(1/2)(1 − 𝑥)−(1/2)𝑒𝑥𝑒𝑖𝜔𝑥𝑑𝑥.

𝜔 \ 𝑛 2 3 4
5 1.1 × 10−4 3.5 × 10−6 2.0 × 10−7

10 7.3 × 10−6 5.0 × 10−8 1.0 × 10−9

20 3.4 × 10−7 7.2 × 10−10 4.2 × 10−12

40 1.5 × 10−9 5.3 × 10−12 9.5 × 10−15

Table 6: Approximate values in 2-point approximations by the proposedmethod to the integral ∫1
−1
(𝑥+1)−(1/2)(1−𝑥)−(1/2)𝑒𝑥𝑒𝑖𝜔𝑥𝑑𝑥, compared

with exact values.

𝜔 500 1000
Exact values −0.16534892514854 + 0.03862546212408𝑖 0.12015044233980 + 0.01747126126322𝑖
Approximate values −0.16534892514837 + 0.03862546212408𝑖 0.12015044233979 + 0.01747126126322𝑖
𝜔 3000 5000
Exact values −0.03778034068446 + 0.04543591233617𝑖 −0.03222911938840 − 0.03366226121525𝑖
Approximate values −0.03778034068446 + 0.04543591233617𝑖 −0.03222911938840 − 0.03366226121525𝑖
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4. Concluding Remark

In this paper, for an analytic and not increasing fast 𝑓 in
𝐺 = {𝑧 ∈ C | 𝑎 ≤ R(𝑧) ≤ 𝑏,I(𝑧) ≥ 0}, we
present an efficient method for handling the integral (1)
based on analytical continuation and special contours. For
the case of moderate, high, and even low frequency 𝜔, this
approach is easy to implement by using the generalized
Gauss-Laguerre quadrature rule without using high precision
arithmetic and gives very accurate results. Moreover, the
proposed method requires shorter time consuming in high
precision in Matlab and its convergence is much faster than
that of those methods presented in [31, 32]. In other words, it
can combine lower computational cost and higher asymptotic
order with numerical convergence than that of the methods
proposed in [31, 32]. Of course, there is no denying that the
methods proposed in [31, 32] have their advantages, for which
one can refer to [31, 32].
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