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As one of the most promising renewable resources in electricity generation, wind energy is acknowledged for its significant
environmental contributions and economic competitiveness. Because wind fluctuates with strong variation, it is quite difficult
to describe the characteristics of wind or to estimate the power output that will be injected into the grid. In particular, short-
term wind speed forecasting, an essential support for the regulatory actions and short-term load dispatching planning during
the operation of wind farms, is currently regarded as one of the most difficult problems to be solved. This paper contributes to
short-term wind speed forecasting by developing two three-stage hybrid approaches; both are combinations of the five-three-
Hanning (53H) weighted average smoothing method, ensemble empirical mode decomposition (EEMD) algorithm, and nonlinear
autoregressive (NAR) neural networks.The chosen datasets are ten-minute wind speed observations, including twelve samples, and
our simulation indicates that the proposed methods perform much better than the traditional ones when addressing short-term
wind speed forecasting problems.

1. Introduction

Renewable energy is considered to be the most promising
alternative energy resource and plays a significant role in
securing a long-term sustainable energy supply while reduc-
ing global atmospheric emissions [1]. Renewable energies
are highly expected to develop as clean, alternative energy
resources. As the most active member of this group, wind
power demonstrates considerable benefits and good poten-
tial. Because the development of wind power generation
requires accurate information regarding wind resources,
especially regional wind speeds, wind-related forecasting
techniques have become a focal point for many studies. The
literature shows that the error prediction costs can reach as
high as 10% of a wind farm’s annual total income from selling
energy [2]. On the other hand, advanced estimates of wind
speeds can provide useful information for the dispatching
sector of a wind-power-connected system. Such a capacity

may be able to influence the wind power connection and
enhance grid stability. Due to these improvements, the pen-
etration of wind power could be increased, and the existing
energy structures would be greatly changed in the future.

In its actual generation, the main obstacle to the devel-
opment of a wind-based industry is the variability of the
turbines’ output power, which seriously limits wind power
penetration and threatens grid security. As one of the most
important factors in estimating the output of wind turbines,
wind speeds can easily be influenced by other meteorological
factors, such as air temperature and air pressure, as well
as obstacles and terrain. The uncertainty of wind speed
forecasting results not only from the forecasting models but
also from measurement errors in the meteorological fac-
tors. These measurement errors cannot be eliminated due
to systematic errors of the instruments and methods of
observation. As a result, wind speed forecasting is not easy
to address; moreover, wind speed modeling now has become
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one of the most difficult problems to tackle [3, 4]. Thus, this
paper focuses on this meaningful area of research.

Researchers have put great effort into wind speed mod-
eling and forecasting. Various wind speed forecasting meth-
ods have been proposed in the literature to predict wind
speeds at different time horizons. Particularly for short-term
wind speed forecasting, which is important for schedul-
ing, controlling, and dispatching energy conversion systems
[5], these methods can be classified into two categories:
physical methods and statistical methods. Physical methods
are often referred to as meteorological predictions of wind
speed, involving the numerical approximation of models
that describe the state of atmosphere [6] and including the
WRF model. These models always use physical data, such
as temperature, pressure, and topography information, to
predict future wind speed [7, 8]. Unlike physical models,
statistical methods make forecasts by uncovering the rela-
tionships within the observed wind speed time series. They
use historical wind speed data and sometimes other variables
(e.g., wind direction or temperature) to build the statistical
structures from which the forecasts are derived. The data
used are recorded at the observation site or at other nearby
locations where data are available. In the literature, many
statistical methods have been applied to this topic, such
as the autoregressive integrated moving average (ARIMA)
model, Kalman filters, the generalized autoregressive condi-
tional heteroscedasticity (GARCH) model, and more. These
statistical models can be used at any stage in the modeling
and often combine various methods into one. Currently, grey
models (GM) [9, 10] and some other new methods based
on artificial intelligence (AI) techniques have been developed
to address these problems. Examples include artificial neural
networks (ANNs) of multilayer perceptrons (MLP) [11, 12],
radial basis function (RBF) [13], recurrent neural networks
(RNNs) [14, 15], and fuzzy logic [16, 17]. In fact, forecasting
methods are conventionally not even classified as physical or
statistical, as most modern methods include both.

Because each category of the abovementioned methods
has its own strengths and weaknesses, complexmodeling and
forecasting problems cannot be well addressed by any single
one. The combination of different methods has been shown,
both by theoretical and empirical findings, to be an efficient
and effective way of improving model performances [18–21].
Some early works provide many useful hybrid forecasting
models that combine strengths from different models to
enhance their forecasting performance. When considering
the wind speed forecasting problem, it is difficult to obtain
a high accuracy level with a single forecasting technique,
mainly due to the strong and random fluctuations of wind
speed series. In particular, if the focus falls on short-term
wind speeds, data series always show irregular variations on a
short time scale, increasing the complexity ofmodeling short-
termwind speeds. Currently, combining different models has
become a popular trend in wind speed estimations, and the
following paper also adopts this concept to address short-
term wind speed modeling and forecasting.

The main contribution of this paper is its development
of two hybrid methods, consisting of abnormal value detec-
tion and modification, decomposition and reconstruction

processes, and AI-based training and forecasting. The pro-
posed approaches utilize a novel mixture of three technical
tools, including the medians of five-three-Hanning (53H)
weighted average smoothingmethod, the ensemble empirical
mode decomposition (EEMD) method, and the nonlin-
ear autoregressive (NAR) neural networks. The developed
approaches are able to provide more accurate forecasting
results than traditional techniques to address the tough but
significant problem of short-term wind speed forecasting on
wind farms.

It is well known that short-term wind speed series are
difficult to model or predict, mainly due to their strong and
random variation within a short time scale. For this reason,
data processing is necessary to filter the abnormal values,
which greatly impact themodel’s performance, and to extract
valid information from the rawdataset forwind speedmodel-
ing and forecasting. In this paper, the 53Hmethod is adopted
as the first step of a hybrid wind speed modeling procedure
and used to detect and remove abnormal values from the
original raw series.Thus, amodified series can be obtained for
use as the input data for the next modeling stage. After that,
a decomposition and reconstruction process will be pursued
according to the EEMD method to remove the noisy infor-
mation contained in the data series because noise can impose
a number of pseudo-variation requirements on models and
may affect the correct understanding of data variations [22].
As an adaptive decompositionmethod, EEMD is based on the
local characteristic time scale of the data series. This method
constitutes a powerful enhancement of the original empirical
model decomposition (EMD) by considering white noise
along with the idea of an ensemble mean. This strategy is
applicable to nonlinear and nonstationary processes, such as
short-termwind speed series.Themajor advantage of EEMD
may be that it automatically identifies the intrinsic time
scales of the data without any assumptions regarding signal
stationarity. After decomposition by the EEMD method,
the local narrow band components, called the intrinsic
model functions (IMFs), can be obtained. Each IMF has its
own physical meaning and statistical characteristics. Thus,
the denoising procedure can be easily accomplished by
removing subcomponents with high frequencies and then
by reconstructing the data series. In combination with the
EEMD decomposition and reconstruction, a modeling and
forecasting procedure based on neural networks is developed.
As artificial intelligence becomes increasingly important in
the technology industry, the interest in neural networks has
grown to be substantial.These systems have a strong ability to
mimic natural intelligence and are able to learn from exam-
ples due to their construction of an input-output mapping
without any explicit derivation of the model equation. Their
greatest strength is that no knowledge of the internal system
parameters is required [23] to offer an acceptable solution.
Neural networks fall into different categories, but the one
selected for this paper is the NAR neural network, a type
of RNNs with feedback arrangement based on a nonlinear
autoregressive model.

This paper combines these three methodologies in two
ways. Employing the 53Hmethod in the first stage, amodified
series removing abnormal values will be obtained and used
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for the decomposition process. After addressing the decom-
posed IMFs by removing the subcomponents with high
frequencies, the first goal of the hybrid method is to model
and forecast each IMF using a NAR neural network. Then,
the forecasted signal is reconstructed as the final result. The
secondmethod is to reconstruct the signal first by adding the
noise-filtered IMFs, followed by themodeling and forecasting
of the reconstructed signal with a NAR neural network to
obtain the final forecasting result. Both approaches to model
combination enhance the model’s performance significantly
with respect to short-term wind speed forecasting, although
the second combination performs better in most cases. The
major highlight of this paper is its novel mixture of abnormal
detection, signal decomposition, and AI-based training and
forecasting processes. As the first hybrid stage approaches, the
53H method contributes to the detection and modification
of the abnormal values in the raw datasets; this strategy is
quite effective when considering greatly fluctuating series,
such as short-term wind speed observations. In addition, the
use of two combined approaches to the decomposition and
forecasting sectors enables the proposed hybrid methods to
ably capture the complex characteristics of the original wind
speed series, thus promoting their applicability to different
datasets. The data sampled in this paper represent wind
speed observations at ten-minute intervals thatwere collected
from three stations in western China. For each station,
observations in January, April, July, and October were chosen
as the representations ofwinter, spring, summer, and autumn,
respectively.The simulated results indicate that the developed
hybrid models have a strong capacity for successful short-
term wind speed modeling and forecasting, vastly outper-
forming the methods chosen for comparison.

The rest of this paper is organized as follows. Section 2
introduces the related works, and two proposed hybrid
models. A case study and model discussion are provided in
Section 3 in detail. Then, Section 4 reaches the conclusions.

2. Methods

This section reviews the methodologies and works related to
the proposed hybrid models in the following text.

2.1.Medians of Five-Three-HanningWeightedAverage Smooth-
ing. The medians of five-three-Hanning weighted average
smoothing, presented by Tukey [24, 25], are a statistical
method of abnormal value removing. It is also termed the
53H method, where “5” is a method for a median of five
smoothing, “3” is for a median of three smoothing, and “H”
denotesHanning smoothing.Thismethodholds the principle
that the median is a robust estimator of the mean to produce
a smooth time sequence that can be extracted from the raw
signal.

Let the raw time sequence be 𝑥
𝑖
, 𝑖 = 1, 2, . . . , 𝑛, where

𝑛 is the total number of points in the signal. Then, the 53H
method can be expressed as the following steps.

(i) Five-point moving average smoothing: construct a
sequence 𝑦(1)

𝑖
from the median of five original data

points from 𝑥
𝑖−2

to 𝑥
𝑖+2
, 𝑖 = 3, 4, . . . , 𝑛 − 3, 𝑛 − 2. For

a five-point smooth,

𝑦
(1)

𝑖
=

1

9

(𝑥
𝑖−2
+ 2𝑥
𝑖−1
+ 3𝑥
𝑖
+ 2𝑥
𝑖+1
+ 𝑥
𝑖+2
) . (1)

(ii) Three-point moving average smoothing: construct a
sequence 𝑦(2)

𝑖
from the median of five original data

points from 𝑦(1)
𝑖−1

to 𝑦(1)
𝑖+1

, 𝑖 = 4, 5, . . . , 𝑛−4, 𝑛−3. It can
be defined as

𝑦
(2)

𝑖
=

1

3

(𝑦
(1)

𝑖−1
+ 𝑦
(1)

𝑖
+ 𝑦
(1)

𝑖+1
) . (2)

(iii) Hanning moving average smoothing: take Hanning
filter to obtain the final smoothed signal, as

𝑦
(3)

𝑖
=

1

4

(𝑦
(2)

𝑖−1
+ 2𝑦
(2)

𝑖
+ 𝑦
(2)

𝑖+1
) ,

𝑖 = 5, 6, . . . , 𝑛 − 5, 𝑛 − 4.

(3)

(iv) Construct the sequence 𝑧
𝑖
= |𝑥

𝑖
− 𝑦
(3)

𝑖
|, 𝑖 =

5, 6, . . . , 𝑛 − 5, 𝑛 − 4, and reject the point if 𝑧
𝑖
> 𝑘𝜎,

where 𝑘 is a predetermined threshold and 𝜎 is the
standard deviation of 𝑥

𝑖
; replace the abnormal values

in the raw time sequence by 𝑦(3)
𝑖
.

2.2. Empirical Mode Decomposition (EMD). In the EMD
process, the raw signal can be decomposed into locally
narrow band components called intrinsic model functions
(IMFs), which can be regarded as hidden oscillation models
embedded in the original data series [26].

Given a raw data series 𝑥(𝑡), the procedure of EMD
method can be expressed as follows.

(i) Identify all the local extrema and determine the upper
and lower envelops. Their mean is denoted as 𝑚

1
(𝑡),

and the first component is defined as

ℎ
1 (
𝑡) = 𝑥 (𝑡) − 𝑚1 (

𝑡) . (4)

(ii) Ideally, ℎ
1
(𝑡) should satisfy the definition of an IMF.

However, that is usually not the case. Therefore, it is
necessary to repeat the above sifting [27]. Treat ℎ

1
(𝑡)

as a proto-IMF and define

ℎ
11 (
𝑡) = ℎ1 (

𝑡) − 𝑚11 (
𝑡) . (5)

(iii) The above sifting process will be repeated 𝑘 times, as

ℎ
1𝑘 (
𝑡) = ℎ1(𝑘−1) (

𝑡) − 𝑚1𝑘 (
𝑡) . (6)

Until ℎ
1𝑘
(𝑡) satisfies the stoppage criterion, let 𝑐

1
(𝑡) =

ℎ
1𝑘
(𝑡). The stoppage criterion is determined by

Cauchy type of convergence test, defined as

SD
𝑘
=

𝑇

∑

𝑡=0

󵄨
󵄨
󵄨
󵄨
ℎ
1(𝑘−1)
(𝑡) − ℎ

1𝑘
(𝑡)
󵄨
󵄨
󵄨
󵄨

2

ℎ
2

1(𝑘−1)
(𝑡)

. (7)

Separate 𝑐
1
(𝑡) from the rest of the data by

𝑟
1 (
𝑡) = 𝑥 (𝑡) − 𝑐1 (

𝑡) . (8)
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Figure 1: The structure of NAR neural networks.

(iv) Repeat the above process with all the subsequences,
as

𝑟
𝑖 (
𝑡) = 𝑟𝑖−1 (

𝑡) − 𝑐𝑖 (
𝑡) , 𝑖 = 2, 3, . . . , 𝑛. (9)

The process should be stopped when the residue 𝑟
𝑛
(𝑡)

becomes a monotonic function from which no more
IMF can be extracted.

(v) Reconstruct the original signal as

𝑥 (𝑡) =

𝑛

∑

𝑖=1

𝑐
𝑖 (
𝑡) + 𝑟𝑛 (
𝑡) . (10)

When using an EMD method, it does not require any a
priori known basis [26, 28]; this indicates that EMD method
is completely adaptive to the signal itself.

2.3. Ensemble EMD (EEMD). The EEMDmethod is a noise-
assisted enhancement of the EMD method proposed by
Huang et al. [26, 29], since the EMD method has several
known difficulties. The first major weakness of the original
EMD is the frequent occurrence of model mixing, which
is defined as a single IMF [26, 30]. IMFs can also consist
of widely disparate scales or can consist of a similar signal
residing in different IMF components. Model mixing is often
a consequence of an intermittent signal, which can not only
cause serious aliasing in the frequency distribution but can
also make the physical meaning of individual IMFs seriously
unclear. To overcome the scale separation issuewithout intro-
ducing a subjective intermittence test, the ensemble EMD
method was presented [30–33] as a powerful modification of
the original EMD method with the idea of ensemble mean.
The EEMD method adds white noise to the original dataset,
as

𝑋
𝑖 (
𝑡) = 𝑥 (𝑡) + 𝑤𝑖 (

𝑡) . (11)

The noise is treated as possible random noise that would be
encountered in the measurement process. Then, decompose

the dataset with added white noise by using the EMD proce-
dure, and obtain the ensemble means of the corresponding
IMFs of the decompositions as the final result.

The main effect of decomposition using EEMD is that
the added white noise series cancel each other in the final
mean of the corresponding IMFs. This means that the IMFs
stay within the natural dyadic filter windows and thus
significantly reduce the chance of mode mixing and preserve
the dyadic property.

2.4. Nonlinear Autoregressive (NAR) Neural Network. Arti-
ficial neural network (ANN), a widely used category of
neural networks, is considered an intelligent system that has
strong ability to recognize time series patterns and nonlinear
characteristics [34, 35]. ANN combines artificial neurons to
process information; simple neurons are connected by weight
links and this sets up a network. Each input is multiplied
by those weights computed by a mathematical function
which defines the activation of the neuron. There also is
another activation function, which computes the output of
the artificial neural; it depends on a certain threshold.

The output of a neuron can be written as

𝑦 = 𝑓(𝑏 +∑

𝑖

𝑤
𝑖
𝑥
𝑖
) , (12)

where 𝑏 is the bias for the neuron.The bias input to a neuron
can be regarded as an offset value. It helps the signal to exceed
the threshold of activation function, where the activation
function is denoted as 𝑓. 𝑦 represents the output; 𝑥

𝑖
and 𝑤

𝑖

are the inputs and weights, respectively.
Neural networks can be classified into dynamic and static

categories. Static networks have no feedback elements and
contain no delays; the output is calculated directly from
the input through feedforward connections. Relatively in
dynamic networks, the output depends not only on the
current input to the network, but also on the current or pre-
vious inputs, outputs, or states of the network. Among them,
recurrent neural network (RNN) is an essential class where
connections between units form a directed cycle (Figure 1).
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It allows exhibiting dynamic temporal behavior by creating
an internal state of the network. The NAR neural network
is a type of recurrent network with feedback arrangement
based on a nonlinear autoregressive model. Thus, in a NAR
network, there is a feedback of the true output instead of
the estimated one in the input. This allows using only static
backpropagation when training the network and also makes
the feedforward architecture more accurate.

Currently, it is commonly used in multistep ahead time
series forecasting. The forecasting value is determined by the
following equation:

𝑦 (𝑡) = 𝑓 (𝑦 (𝑡 − 1) + 𝑦 (𝑡 − 2) + ⋅ ⋅ ⋅ + 𝑦 (𝑡 − 𝑑)) , (13)

where 𝑓 is a nonlinear function. Specifically, the function
values depend only on regressed 𝑑 previous values of the
output signal.

2.5. Proposed Models. This section develops two hybrid
methods for short-term wind speed modeling and forecast-
ing. The proposed methods consist of three stages: abnormal
value removing and modification, signal decomposition and
denoising, and signal reconstruction and NAR-based fore-
casting. Figure 2 introduces the workflow of the proposed
approaches, briefly showing the three stages as follows.

Stage 1: Abnormal Value Removal and Modification. The
accurate forecasting of the short-term wind speeds heavily
depends on the reliability of the observed data series. Thus,
in the first stage, the 53H method is chosen as a detector to
find and remove abnormal values from the raw observation
series. This stage is composed of a 53H-modified series.

Stage 2: Signal Decomposition and Denoising. During the
actual operations of wind farms and power systems, several
uncertain factors may influence the data acquisition process,
including measurement, recording, conversion, and trans-
mission. Most of these are beyond control, and any of these
factors can introduce noises and uncertainties into the wind
speed series, leading to poor generalization and undesirable
forecasting performances. Thus, wind speed modeling and
forecasting is a difficult proposition. To address this problem,
the EEMD-based signal filtering method is applied as a
denoising process. This stage decomposes the 53H-modified
signal into IMFs using the EEMD method and removes the
subcomponents with high frequencies.

Stage 3: Signal Reconstruction and NAR-Based Prediction.
After addressing the decomposed IMFs by removing the
subcomponentswith high frequencies, there are twomodeled
concepts. The first involves the modeling and forecasting of
each IMFby theNARneural network, afterwhich the forecast
signal is reconstructed as the final result.Thismodel is named
HEN1 (short for the hybridmodel 1 combined 53H detection,
EEMD filter, and NAR networks). The second involves an
initial reconstruction of the signal by adding the noise-
filtered IMFs, followed by themodeling and forecasting of the
reconstructed signal with a NAR neural network, obtaining
the final forecast result. Similarly, this model is denoted as

HEN2 (the hybrid model 2 combined 53H detection, EEMD
filter, and NAR networks).

3. Case Study

3.1. Collection of Data. The wind speed data used for the
model construction and performance testing in this paper
includes observations at ten-minute time intervals that were
collected from three sites in the Hexi Corridor of western
China. For each station, observations in January, April,
July, and October were selected to represent winter, spring,
summer, and autumn, respectively, in order to evaluate the
applicability of the proposed models. The wind speeds from
the different seasons have their own ranges of values and
variation; generally, wind speeds in April have larger mean
values. The datasets used are displayed in Figure 3; the first
755 points are used for model construction and then the
following 144 points are chosen as a testing set. For each sta-
tion, the figure consists of four parts, mainly included in the
information on the selected data series and site descriptions.
Basic statistics show that wind speed observations collected
from the different sites have their own ranges of variation and
statistical characteristics. Generally, the wind speeds from
April, the representation of spring, have larger values, while
winter always contains lower wind speeds.

3.2. Criteria for Evaluating Forecasting Performance. The
experiments in this paper adopt three error criteria, which
are commonly used to evaluate the forecasting performances
of different models. They are the root mean square error
(RMSE), mean absolute error (MAE), and mean absolute
percentage error (MAPE). Let 𝑥

𝑖
, 𝑖 = 1, 2, . . . , 𝑛, be the

observation series with the corresponding forecast 𝑥
𝑖
. These

criteria are defined as follows:

RMSE = √ 1
𝑛

𝑛

∑

𝑖=1

(𝑥
𝑖
− 𝑥
𝑖
)
2
,

MAE = 1
𝑛

𝑛

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
− 𝑥
𝑖

󵄨
󵄨
󵄨
󵄨
,

MAPE = 1
𝑛

𝑛

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑥
𝑖
− 𝑥
𝑖

𝑥
𝑖

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

× 100%.

(14)

3.3. Simulation Process of Hybrid 53H-EEMD-NAR Method.
As described in Section 3, this paper develops two hybrid
models for short-term wind speed modeling and forecasting.
The guiding concept of hybrid approaches is to construct
a mixed procedure, combining an abnormal detection, a
modification method, a signal filter method, and NAR-
based neural network forecasting. Both of the hybrid models
are three-stage procedures, as introduced in Figure 2. This
section aims to show the simulation process for each stage
and then to provide the forecasting results.

3.3.1. AbnormalValue Removing andModification. In the first
stage of the hybrid approaches, the 53H method is employed
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Figure 2: The flowchart of the proposed models.

to remove and modify the abnormal values in the raw data
series. This step is necessarily the first stage of the following
model construction and estimation because short-term wind
speeds always show strong and random variations within
a short time interval. Great fluctuations heavily impact the
model performance, resulting in poor forecasting accuracy
and even model invalidation. As a result, data detection
and smoothing modification methods are adopted here to

help the hybrid approaches overcome the interference from
abnormal and strong variations.

Figure 4 provides the results obtained from the 53H
method, using the wind speed series at Station 1 collected
in July 2011 as an example. These data encompass not only
the results of the whole dataset but also three enlargements,
which are the detection and modification of the strong-
variation data segments chosen from the whole set. It is
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Figure 3: Continued.
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Figure 3: (a) Selected datasets from Station 1: Tianshuijing. (b) Selected datasets from Station 2: Qiaowan. (c) Selected datasets from Station
3: Shengdiwan.

apparent that the points modified by the 53H method are
centralized into several segments and marked by the dashed
rectangular boxes. A detailed version of these special seg-
ments is provided by three enlargements, which demonstrate
the clear view that the raw observations in these segments
always have strong variations. Furthermore, the modified
data series effectively avoid the disordered fluctuations,
instead containing major information on the trends and
changes. Figure 4 also illustrates the differences in the basic
statistics between the raw data series and the 53H-modified
series. The mean values of the 53H-modified series are found
to be nearly equal to the mean values of the raw data, all
of them located within the narrow interval of ±0.01m/s.
When considering the difference in the standard deviations
of the two groups, the 53H method helps to cut down
the standard deviations from the raw series to the eleven
chosen samples, with their varying degrees of reduction.
All of these contribute to the enhanced performance of the
hybrid models and to the development of hybrid forecasting
accuracy. Consequently, it is of great importance that the
53H-modified series will be used as the input of the EEMD
filter in the following stages for the hybrid approaches.

3.3.2. Decomposition and Noise Filter. Moving on to the
second stage of the proposed hybrid approaches, the EEMD

method is applied as a signal filter for data denoising. Figure 5
displays this noise reduction process for the data collected at
Station 1 in July 2011. Decomposition for the selected sample
generates nine IMFs and one residual series. The extracted
IMFs represent a range of frequencies, from high to low. The
IMFs with higher frequencies represent the pattern of shorter
periods, whereas the IMFs with lower frequencies represent
the pattern of longer periods.That is, as IMF1 has the highest
frequency, it most likely also has the noise information;
IMF9 can thus be regarded as the trend term. Generally, if
an IMF represents a very short-term pattern, it should be
discarded to achieve denoising for the original data series.
From Figure 5, it is clear that IMF1 and IMF2 are subsignals
with high frequencies, and the patterns corresponding to
these two IMFs are of a very short period. Considering the
short-term wind speed forecasting problem studied in this
paper, the first two IMFs can be extracted to represent very
short-termpatterns. Figure 5 also displays the removed signal
information and the denoised data series, indicating that
EEMD-based decomposition and signal filtering are quite
effective in removing the interference from noisy signals.

For the other examples used in this paper, Figure 6
provides a simple view of the EEMD-based decomposition
and signal filter results. For each sample, the input of
EEMD-based decomposition is the 53H-modified data series,
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(e) Basic statistics between the raw series and
53H-modified series

Notice: “Variation” means the range and trend of variations
compared with the raw datasets.
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Figure 4: Data detection and modification by the 53H method, selected from July 2011 at Station 1.

as introduced in Section 3.3.1. “Noise signals” in Figure 6
represent the sum of all of the removed subsignals, while
“denoised data series” stand for the filtered series that have
discarded the noise information. Obviously, the denoised
series is much smoother and is able to contain the major
information in the original data series.This step is significant
within the proposed hybrid approaches because the EEMD
method helps in overcoming the interference from a noisy
signal. In the next stage, the denoised data series will be
treated as the inputs of the NAR-based procedures.

3.3.3. Reconstruction and Prediction. As introduced above,
two methods of combination were designed at this stage to
mix the EEMD-filtered signal series and NAR-based training
and forecasting procedures.

The first method (denoted as HEN1) was intended to
model and forecast each IMF using its respective NAR neural
network; the forecast signal would then be reconstructed
as the final result. The second method (denoted as HEN2)
was intended to reconstruct the signal first by summing
the noise-filtered IMFs, followed by the model from the
NAR neural network, in order to obtain the final forecast-
ing result. These constructed approaches are employed for
one-day-ahead predictions; for each adopted NAR neural
network, the number of hidden neurons is determined by
an optimal selection process using the training dataset. The

adjustment of data training was performed according to the
Levenberg-Marquardt algorithm, which is commonly used
to solve nonlinear least squares problems [36]. Additionally,
the performance was evaluated by error criteria chosen as
MSE for this paper. Figure 7 shows the forecasting results of
both proposed models, and data displayed was sampled from
Station 1 in July 2011.

Obviously, the forecasting results from the two proposed
models perform similarly and approach the original data
series. This can be observed in the correlation plots of the
predicted wind speeds versus the actual wind speed, which
are also displayed in Figure 7. In the correlation plots, the
dashed straight line indicates that the predicted wind speed
is equal to the actual observation; meanwhile, the farther
the points get away from the straight line, the larger the
forecasting error is introduced into the hybrid approaches.
It is clear that most points are located in a narrow range
near to the straight line. As indicated, the proposed hybrid
approaches perform well when faced with short-term wind
speed forecasting. The frequency distributions also suggest
that the forecasting errors concentrate around the zero point;
the distributions from the two hybrid approaches seem
similar to each other.

The results obtained from the two proposed models were
similar; however, each model also demonstrated distinct
characteristics and benefits for hybrid forecasting procedures.
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Figure 5: The decomposed signals by EEMDmethod.

Themajor benefit from the EEMD-based data decomposition
model was its capacity to break down the original data
series into several subsignals, called IMFs, to satisfy the two
requirements introduced in [26]. Therefore, while an IMF
does represent a simple oscillatory mode as a counterpart
to simple harmonic function, it is also much more general.
Instead of the constant amplitude and frequency of a simple
harmonic component, an IMF can have variable amplitude
and frequency along the time axis. As a result, its modeling
and forecasting for each IMF provides more satisfactory
results and better accuracy. In another respect, the number
of decomposed IMFs cannot be controlled; when the number
is comparatively large, the HEN1 model may also generate a
large forecasting error because the modeling and forecasting
for each IMF introduces model error into the entire hybrid
procedure. Just as in the problem discussed in this paper,
wind speed series with ten-minute time intervals show
a complex mixture of nonlinearity, volatility, and strong
randomness. As shown in Figure 5, nine IMFs were extracted

from the original data series using EEMD-based decompo-
sition. Applying the HEN1 model, NAR-based forecasting
introduces a large model error in stage 3, especially in several
partitions. This is shown in Figure 7; as at several specific
points, the HEN1 model has comparatively large forecasting
errors. In this setting, the HEN2model is always able to show
its strength by summing the filtered signal series together as
the input of a NAR neural network. By removing the noisy
signals, the power of the HEN2model is mainly derived from
the smoother nature of the denoisy series, which retains the
major information from the original data series. Thus, the
following NAR-based forecasting procedure provides a final
result.

Figure 8 then provides a brief overview of the predicted
results from the two hybrid approaches for all twelve samples
used in this paper. Correlation plots indicate that the dis-
tances between the hybrid predictions and the actual wind
speed are quite close for both of the proposed approaches.
Meanwhile, wind speed series with large variations can also
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Figure 6: Continued.
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Figure 6: (a) Results of EEMD-based decomposition and denoising at Station 1. (b) Results of EEMD-based decomposition and denoising
at Station 2. (c) Results of EEMD-based decomposition and denoising at Station 3.

be found, such as the data collected inApril at Station 1; in that
month, both of the hybrid methods had comparatively large
errors. Despite of this, the hybrid approaches maintained the
trend of variation, retaining the major information of actual
wind speed in this sample. In the corresponding correlation
plot, all of the points were concentrated around the given
dashed straight line, which indicates that the methods are
effective and performed stably for this strongly fluctuating
data series. In the following section, the model comparison
and performance analysis will be introduced. It will be shown
that the proposed hybrid methods performmuch better than
the other selected models, mainly due to their combination
of the strengths from different approaches.

3.4. Analysis and Performance Comparison. To evaluate the
forecasting performance of the proposed hybrid approaches,
several methods are chosen for model comparisons, includ-
ing single forecasting methods, hybrid approaches, and
commonly used benchmarks. According to the proposed
methods in this paper, the single NAR-based neural network,
hybrid 53H-NAR method, and hybrid EEMD-NAR method
were compared.The generally widely used time series model,
called the ARIMA process, was also chosen, as well as the
persistent model that is commonly considered a benchmark
for short-term forecasting problems.

Figure 9 displays the forecasting results of the different
chosenmethods, including the two proposed approaches and
five selected methods; each method is shown as applied to
the data collected at Station 1 from July 2011. The proposed
approaches performmuch better than the others, particularly
in the segments with complex variation and strong fluctua-
tions. Here, three segments are selected for a more detailed
explanation, as marked by the dashed rectangular boxes in
Figure 9. Segment 1 is representative of data with complex
variation; the wind speed in this period has large variance.
The single NAR-based neural network reveals an apparently
weaker ability with an abnormal final result. This is mainly
due to the inferences from both the abnormal values and
the noise-signals within the raw data series. This result also
indicates that it is difficult to obtain reliable and stable fore-
casting results using a single method (despite the AI-based
forecasting tool chosen here), especially when considering
any complex processes similar to short-term wind speed
series. The marked Segment 2 follows a downward trend of
the wind speed series immediately after a sharp increase; this
situation is common in actual observations and is important
in an accurate forecasting of short-term wind speeds. The
two proposed approaches hold well and follow the changing
trends of the actual series. While the single NAR-based
neural network and 53H-NAR provide fluctuating results,
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Figure 7: The forecasting results from both proposed hybrid models, exemplified by data from July 2011 at Station 1.

the persistent and ARIMA models show apparently delayed
trends. Next, Segment 3 was selected because the actual series
experienced a rapid decline here before sharply trending
upward. The NAR and 53H-NAR methods enlarge the range
of ups and downs within the actual series, mainly due to the
abnormal values and noisy signals contained in the original
series.TheEEMD-NARmethod performswell in the first half
of the decreasing section, but then it moves far away from
the trend of the actual observations. Comparing these data to
the results of the proposed HEN1 model, which performed
much better in this segment, the contribution of the 53H-
based modification is obvious. Generally speaking, the two
proposed hybrid approaches can provide more reliable and
stable results regarding short-term wind speed forecasting
problems.

Table 1 and Figure 10 show the performance comparisons
among different models for all twelve samples addressed
in this paper. Three error criteria are considered, including
the RMSE, MAE, and MAPE, introduced in Section 3.2.
After that, Table 2 provides the performance comparisons
according to data collected from different seasons and from
different stations.On thewhole, the proposed two approaches
provide the final results with minimal statistical error; the
HEN2 model performed best in most cases. Analyzing the
examinations at Station 1, the two proposed approaches

perform similarly; the values of all three error criteria grow
quite close between the two hybrid models. While at Station
3, the HEN2 model shows a stronger ability to forecast
short-term wind speeds, compared with the HEN1 model.
This may result from difference in the series information
between the observations of these two stations. As such,
a model’s performance may become distinct by inputting
different datasets. The average MAPE of the HEN2 model
is 8.71%, which is the lowest MAPE among the considered
approaches as calculated for the twelve simulated samples.
This outcome leads to reductions of 38.25%, 36.57%, and
13.73%, according toMAPE, respectively, when it is compared
with the NAR, 53H-NAR, and EEMD-NAR results. This
indicates the strong capacity of the proposed HEN2 method
to forecast short-term wind speeds, suggesting the benefits
of combining these three statistical tools. More specifically,
although the HEN2 model maintains the lowest MAPE, its
forecasting errors range from 3.63% to 17.20% for different
samples. This implies that the model’s performance is heavily
based on the original input dataset, mainly regarding its
internal information and the statistical characteristics of the
historical observations. Moreover, this persistent method
is always taken as a benchmark in short-term forecasting
problems, as in this paper. In Table 1, the forecasting errors
from the NAR and ARIMA models get close to the errors
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from the benchmark, demonstrating that a single method
cannot meet the need for accurate short-term wind speed
forecasting.

Table 2 provides a clear comparison among different
seasons and stations. Clearly, each model performs simi-
larly across different stations, with slightly higher errors at

Station 2. However, there is a large gap in the forecasting
errors when the results are considered according to different
seasons, as shown in the table. The data from January and
April includes significantly greater forecasting errors higher
than that from July and October. This situation is identical
in all three chosen stations, with the exception of Station 1.
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Combining the data description (as Figure 3 shows) into
analysis, if the input datasets perform with stronger variation
and more complex changing trends, the forecasting results
will always be accompanied by higher statistical errors.

4. Conclusions

Short-term wind speed forecasting, an essential support
to the regulatory actions and short-term load dispatching
planning during the operation of wind farms, is currently
regarded as one of the most difficult problems to be solved.
This paper contributes to the goal of short-term wind speed
forecasting by developing two three-stage hybrid approaches
(named HEN1 and HEN2, resp.). Both are three-stage mod-
els, with an abnormal value detection and modification pro-
cess based on the 53H method, a signal decomposition and
noise filtering sector dealt with by the EEMDalgorithm, and a
training and forecasting stage handled by NAR-based neural
networks. The chosen datasets were ten-minute wind speed
observations from three stations in western China, including
twelve samples. Both the simulation and the comparison
indicate a strong capacity for the proposed methods to
address short-term wind speed forecasting problems.

(i) The HEN2 model performs best in most cases.
The average MAPE of the HEN2 model is 8.71%,
which is the lowest MAPE out of all the considered
approaches, based on the twelve samples simulated.
This approach results in reductions of 38.25%, 36.57%,
and 13.73% according to MAPE compared with the
NAR, 53H-NAR, and EEMD-NAR, respectively.

(ii) The HEN2 performs better than the HEN1 in most
cases. This may results from both the different model
structures of them and the particularity of data in
different stations.When the number of IMFs obtained
from EEMD is relatively large, the HEN2 performs
better.The reasonmay be that each IMF can introduce
extra uncertainty into the final forecast, during the
HEN1 process.

(iii) According to comparisons of different seasons and
stations, each model was shown to perform similarly
across different stations, although a large gap of
forecasting errors was found when considering the
results according to different seasons. This indicates
thatmodel performance is heavily reliant on the inner
information of an input data series, even though
the proposed hybrid approaches maintain the lowest
forecasting error in all twelve samples.

In summary, the developed methods, especially the
HEN2 method, can provide a significant enhancement of the
model’s performance in short-term wind speed forecasting.
This is of great significance in the actual regulation of active
decision making and short-term load dispatching planning
during the operation of wind farms.
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advancedmodel for short-term forecasting of mean wind speed
andwind electric power,”Control and Intelligent Systems, vol. 32,
no. 1, pp. 21–26, 2004.

[4] A. Sfetsos, “A novel approach for the forecasting of mean hourly
wind speed time series,” Renewable Energy, vol. 27, no. 2, pp.
163–174, 2002.

[5] A. Sfetsos, “A comparison of various forecasting techniques
applied to mean hourly wind speed time series,” Renewable
Energy, vol. 21, no. 1, pp. 23–35, 2000.

[6] M. Lange andU. Focken, Physical Approach to Short-TermWind
Power Prediction, Springer, New York, NY, USA, 2009.

[7] L. Landberg, “Short-term prediction of the power production
from wind farms,” Journal of Wind Engineering and Industrial
Aerodynamics, vol. 80, no. 1-2, pp. 207–220, 1999.

[8] M. Negnevitsky and C. W. Potter, “Innovative short-term wind
generation prediction techniques,” in Proceedings of the IEEE
PES Power Systems Conference and Exposition (PSCE '06), pp.
60–65, Atlanta, Ga, USA, October-November 2006.

[9] S. J. Wu and S. L. Lin, “Intelligent web-based fuzzy and grey
models for hourly wind speed forecast,” International Journal
of Computers, vol. 4, pp. 235–242, 2010.

[10] J. F. Li, B. H. Zhang, G. L. Xie, Y. Li, and C. X. Mao, “Grey
predictor models for wind speed-wind power prediction,”
Power System Protection and Control, vol. 38, no. 19, pp. 151–159,
2010.

[11] L. Lin, J. T. Eriksson, H. Vihriala, and L. Soderlund, “Predicting
wind behavior with neural networks,” in Proceedings the Euro-
pean Wind Energy Conference, pp. 655–658, 1996.

[12] M. C. Alexiadis, P. S. Dokopoulos, H. S. Sahsamanoglou, and
I. M. Manousaridis, “Short-term forecasting of wind speed and
related electrical power,” Solar Energy, vol. 63, no. 1, pp. 61–68,
1998.

[13] H. G. Beyer, T. Degner, J. Haussmann, M. Hoffman, and P.
Rujan, “Short term forecast of wind speed and power output of
a wind turbine with neural networks,” in Proceedings of the 2nd
EuropeanCongress on Intelligent Techniques and SoftComputing,
pp. 349–352, 1994.

[14] G. Kariniotakis, G. S. Stavrakakis, and E. F. Nogaret, “Wind
power forecasting using advanced neural network models,”
IEEE Transactions on Energy Conversion, vol. 11, no. 4, pp. 762–
767, 1996.

[15] A. More and M. C. Deo, “Forecasting wind with neural net-
works,”Marine Structures, vol. 16, no. 1, pp. 35–49, 2003.



Abstract and Applied Analysis 21

[16] G. Kariniotakis, G. S. Stavrakakis, and E. F. Nogaret, “A fuzzy
logic and neural network based wind powermodel,” in Proceed-
ings of the EuropeanWind Energy Conference, pp. 596–599, 1996.

[17] X. Wang, G. Sideratos, N. Hatziargyriou, and L. H. Tsoukalas,
“Wind speed forecasting for power system operational plan-
ning,” in Proceedings of the International Conference on Prob-
abilistic Methods Applied to Power Systems, pp. 470–474, Ames,
Iowa, USA, September 2004.

[18] S. Makridakis, “Why combining works?” International Journal
of Forecasting, vol. 5, no. 4, pp. 601–603, 1989.

[19] F. C. Palm and A. Zellner, “To combine or not to combine?
Issues of combining forecasts,” International Journal of Forecast-
ing, vol. 11, no. 8, pp. 687–701, 1992.

[20] R. L. Winkler, “Combining forecasts: a philosophical basis and
some current issues,” International Journal of Forecasting, vol. 5,
no. 4, pp. 605–609, 1989.

[21] P. Newbold and C. W. J. Granger, “Experience with forecasting
univariate time series and the combination of forecasts,” Journal
of the Royal Statistical Society, vol. 137, no. 2, pp. 131–165, 1974.

[22] N. An, W. Zhao, J. Wang, D. Shang, and E. Zhao, “Using
multi-output feedforward neural network with empirical mode
decomposition based signal filtering for electricity demand
forecasting,” Energy, vol. 49, pp. 279–288, 2013.

[23] Y. Huang, “Advances in artificial neural networks—methodo-
logical development and application,” Algorithms, vol. 2, no. 3,
pp. 973–1007, 2009.

[24] J. W. Tukey, Exploratory Data Analysis, Addison-Wesley, Read-
ing, Mass, USA, 1977.

[25] P. A. Tukey and J. W. Tukey, “Graphic display of data sets
in 3 or more dimensions,” in Interpreting Multivariate Data,
Wadsworth, Belmont, Calif, USA, 1981.

[26] N. E. Huang, Z. Shen, S. R. Long et al., “The empirical mode
decomposition and the Hilbert spectrum for nonlinear and
nonstationary time series analysis,” Proceedings of the Royal
Society A: Mathematical, Physical & Engineering Sciences, vol.
454, no. 1971, pp. 903–995, 1998.

[27] Y.-C. Wei, C.-J. Lee, W.-Y. Hung, and H.-T. Chen, “Application
of Hilbert-Huang transform to characterize soil liquefaction
and quaywall seismic responsesmodeled in centrifuge shaking-
table tests,” Soil Dynamics and Earthquake Engineering, vol. 30,
no. 7, pp. 614–629, 2010.

[28] S. Kizhner, K. Blank, T. Flatley, N. E. Huang, D. Petrick, and P.
Hestnes, “On certain theoretical developments underlying the
Hilbert-Huang transform,” in Proceedings of the IEEE Aerospace
Conference, Big Sky, Mont, USA, 2006.

[29] Z. Wu and N. E. Huang, “Ensemble empirical mode decom-
position: a noise-assisted data analysis method,” Advances in
Adaptive Data Analysis, vol. 1, no. 1, pp. 1–41, 2009.

[30] Z. Wu and N. E. Huang, “Ensemble empirical mode decom-
position: a noise-assisted data analysis method,” Advances in
Adaptive Data Analysis, vol. 1, no. 1, pp. 1–41, 2009.

[31] J.-R. Yeh, J.-S. Shieh, andN. E.Huang, “Complementary ensem-
ble empiricalmode decomposition: a novel noise enhanced data
analysismethod,”Advances in Adaptive DataAnalysis, vol. 2, no.
2, pp. 135–156, 2010.

[32] P.H. Tsui, C. C. Chang, C. C. Chang,N. E.Huang, andM.C.Ho,
“An adaptive threshold filter for ultrasound signal rejection,”
Ultrasonics, vol. 49, no. 4-5, pp. 413–418, 2009.

[33] P. H. Tsui, C. C. Chang, and N. E. Huang, “Noise-modulated
empirical mode decomposition,” Advances in Adaptive Data
Analysis, vol. 2, no. 1, pp. 25–37, 2010.

[34] S. Haykin, Neural Networks: A Comprehensive Foundation,
Prentice Hall, New York, NY, USA, 2nd edition, 1998.

[35] L. Ljung, System Identification:Theory for the User, PrenticeHall
PTR, 2nd edition, 1998.

[36] K. Levenberg, “A method for the solution of certain problems
in least squares,” Quarterly of Applied Mathematics, vol. 2, pp.
164–168, 1944.


