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One of the most important optimality conditions to aid in solving a vector optimization problem is the first-order necessary
optimality condition that generalizes the Karush-Kuhn-Tucker condition. However, to obtain the sufficient optimality conditions,
it is necessary to impose additional assumptions on the objective functions and on the constraint set.The present work is concerned
with the constrained vector quadratic fractional optimization problem. It shows that sufficient Pareto optimality conditions and the
main duality theorems can be establishedwithout the assumption of generalized convexity in the objective functions, by considering
some assumptions on a linear combination of Hessian matrices instead. The main aspect of this contribution is the development
of Pareto optimality conditions based on a similar second-order sufficient condition for problems with convex constraints, without
convexity assumptions on the objective functions. These conditions might be useful to determine termination criteria in the
development of algorithms.

1. Introduction

There are many contributions, concepts, and definitions that
characterize and give the Pareto optimality conditions for
solutions of a vector optimization problem (see, for instance,
[1, 2]). One of the most important condition is the first-
order necessary optimality condition that generalizes the
Karush-Kuhn-Tucker (KKT) condition. However, to obtain
the sufficient optimality conditions, it is necessary to impose
additional assumptions (like convexity and its generaliza-
tions) on the objective functions and on the constraint set.

In this paper, we deal with a particular case of vector
optimization problem (VOP), where each objective function
consists of a ratio of two quadratic functions. Without
generalized convexity assumptions on the objective func-
tions, but by imposing some additional assumptions on a
linear combination of Hessian matrices, Pareto optimality
conditions are obtained and duality theorems are established.

Let us consider the following vector quadratic fractional
optimization problem (VQFP):

Minimize
𝑓 (𝑥)

𝑔 (𝑥)
= (

𝑓
1
(𝑥)

𝑔
1
(𝑥)

, . . . ,
𝑓
𝑚

(𝑥)

𝑔
𝑚

(𝑥)
)

subject to ℎ
𝑗
(𝑥) ≦ 0 𝑗 ∈ 𝐽, 𝑥 ∈ Ω,

(VQFP)

where Ω ⊆ R𝑛 is an open set, 𝑓
𝑖
, 𝑔
𝑖
, 𝑖 ∈ 𝐼 ≡ {1, . . . , 𝑚}, and

ℎ
𝑗
, 𝑗 ∈ 𝐽 ≡ {1, . . . , ℓ}, are continuously differentiable real-

valued functions defined on Ω. In addition, we assume that
𝑓
𝑖
, 𝑔
𝑖
, 𝑖 ∈ 𝐼, are quadratic functions and 𝑔

𝑖
(𝑥) > 0 for 𝑥 ∈ Ω

and 𝑖 ∈ 𝐼. We denote by 𝑆 the feasible set of elements 𝑥 ∈ Ω

satisfying ℎ
𝑗
(𝑥) ≦ 0. We say that 𝑥 is a feasible point if 𝑥 ∈ 𝑆.

The value𝑓
𝑖
(𝑥)/𝑔
𝑖
(𝑥) is the result of the 𝑖th objective function

if the decision maker chooses the action 𝑥 ∈ 𝑆.
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Fractional optimization problems arise frequently in
decision making applications, including science manage-
ment, portfolio selection, cutting and stock, and game the-
ory, in the optimization of the ratio performance/cost, or
profit/investment, or cost/time.

There are many contributions dealing with the scalar
(single-objective) fractional optimization problem (FP) and
vector fractional optimization problem (VFP). In most of
them, using convexity or generalized convexity, optimality
conditions in the KKT sense and the main duality theorems
for optimal points are obtained. With a parametric approach,
which transforms the original problem in a simpler associated
problem, Dinkelbach [3], Jagannathan [4], and Antczak [5]
established optimality conditions, presented algorithms, and
applied their approaches in an example (FP) consisting of
quadratic functions. Using some known generalized convex-
ity, Antczak [5], Khan andHanson [6], Reddy andMukherjee
[7], Jeyakumar [8], and Liang et al. [9] established optimality
conditions and theorems that relate the pair primal-dual of
problem (FP). In Craven [10] and Weir [11], other results for
the scalar optimization (FP) can be found.

Further, Liang et al. [12] extended their approach to the
vector optimization case (VFP) considering the type duals
of Mond and Weir [13], Schaible [14], and Bector [15].
Considering the parametric approach of Dinkelbach [3],
Jagannathan [4], and Bector et al. [16] and two classes of
generalized convexity, Osuna-Gómez et al. [17] established
weak Pareto optimality conditions and the main duality the-
orems for the differentiable vector optimization case (VFP).
Santos et al. [18] deepened these results to the more general
nondifferentiable case (VFP). Jeyakumar andMond [19] used
generalized convexity to study the problem (VFP).

Few studies are found involving quadratic functions at
both the numerator and denominator of the ratio objective
function. Most of them involve the mixing of linear and
quadratic functions. The most similar approaches to the
scalar quadratic fractional optimization problem (QFP) were
considered in [20–24]. On the other hand, Benson [25] con-
sidered a pure (QFP) consisting of convex functions, where
some theoretical properties and optimality conditions are
developed, and an algorithm and its convergence properties
are presented.

The closest approaches to the vector optimization case
(VQFP) were considered in [26–33]. Using an iterative
computational test, Beato et al. [27, 28] characterized the
Pareto optimal point for the problem (VQFP), consisting of
linear and quadratic functions, and some theoretical results
were obtained by using the function linearization technique
of Bector et al. [16]. Arévalo and Zapata [26], Konno and
Inori [29], and Rhode and Weber [33] analyzed the port-
folio selection problem. Kornbluth and Steuer [32] used an
adapted Simplex method in the problem (VFP) consisting
of linear functions. Korhonen and Yu [30, 31] proposed
an iterative computational method for solving the problem
(VQFP), consisting of linear and quadratic functions, based
on search directions and weighted sums.

The approach taken in this work is different from the
previous ones. The main aspect of this contribution is the
development of Pareto optimality conditions for a particular

vector optimization problem based on a similar second-order
sufficient condition for Pareto optimality for problems with
convex constraints without the hypothesis of convexity on
the objective functions. These conditions might be useful
to determine termination criteria in the development of
algorithms, and new extensions can be established from
these, where more general vector optimization problems in
which algorithms are based on quadratic approximations are
used locally.

This paper is organized as follows. We start by defin-
ing some notations and basic properties in Section 2. In
Section 3, the sufficient Pareto optimality conditions are
established. In Section 4, the relationship among the asso-
ciated problems is presented and duality theorems are
established. Finally, comments and concluding remarks are
presented in Section 5.

2. Preliminaries

Let R
+
denote the nonnegative real numbers and let 𝑥𝑇

denote the transpose of the vector 𝑥 ∈ R𝑛. Furthermore, we
will adopt the following conventions for inequalities among
vectors. If 𝑥 = (𝑥

1
, . . . , 𝑥

𝑚
)
𝑇

∈ R𝑚 and 𝑦 = (𝑦
1
, . . . , 𝑦

𝑚
)
𝑇

∈

R𝑚, then

𝑥 = 𝑦 if and only if 𝑥
𝑖
= 𝑦
𝑖
, ∀𝑖 ∈ 𝐼;

𝑥 < 𝑦 if and only if 𝑥
𝑖
< 𝑦
𝑖
, ∀𝑖 ∈ 𝐼;

𝑥 ≦ 𝑦 if and only if 𝑥
𝑖
≦ 𝑦
𝑖
, ∀𝑖 ∈ 𝐼;

𝑥 ≤ 𝑦 if and only if 𝑥 ≦ 𝑦 and 𝑥 ̸= 𝑦.

Similarly we consider the equivalent convention for inequal-
ities >, ≧, and ≥.

Different optimality definitions for the problem (VQFP)
are referred to as Pareto optimal solutions [34], two of which
are defined as follows.

Definition 1. Feasible point 𝑥∗ is said to be a Pareto optimal
solution of (VQFP), if there does not exist another 𝑥 ∈ 𝑆 such
that 𝑓(𝑥)/𝑔(𝑥) ≤ 𝑓(𝑥

∗)/𝑔(𝑥∗).

Definition 2. Feasible point 𝑥∗ is said to be a weakly Pareto
optimal solution of (VQFP), if there does not exist another
𝑥 ∈ 𝑆 such that 𝑓(𝑥)/𝑔(𝑥) < 𝑓(𝑥

∗)/𝑔(𝑥∗).

Hypotheses of convexity or generalized convexity on the
objective functions will be avoided in this work, but we will
use such hypotheses on the constraint set. We recall the
definition of convexity, where ∇𝑓(𝑥) denotes the gradient of
the function 𝑓 : R𝑛 → R at the point 𝑥.

Definition 3. Let 𝑓 : Ω ⊆ R𝑛 → R be a function defined on
an open convex setΩ and differentiable at 𝑥∗ ∈ Ω. 𝑓 is called
convex at 𝑥∗ if, for all 𝑥 ∈ Ω,𝑓(𝑥)−𝑓(𝑥∗) ≧ ∇𝑓(𝑥∗)

𝑇
(𝑥−𝑥∗).

When𝑓 is convex on the setΩ, we simply say that𝑓 is convex.
Maeda [35] used the generalized Guignard constraint

qualification (GGCQ) [36], to derive the following necessary
Pareto optimality conditions for the problem (VOP) in the
KKT sense. Assuming differentiability of the objective and
the constraint functions, Maeda guarantees the existence of
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Lagrange multipliers, all strictly positive, associated with the
objective functions.
Lemma 4 (Maeda [35]). Let 𝑥∗ be a Pareto optimal solution
of (VQFP). Suppose that (GGCQ) holds at 𝑥∗; then there exist
vectors 𝜏 ∈ R𝑚, 𝜆 ∈ Rℓ such that

𝑚

∑
𝑖=1

𝜏
𝑖
∇
𝑓
𝑖
(𝑥∗)

𝑔
𝑖
(𝑥∗)

+

ℓ

∑
𝑗=1

𝜆
𝑗
∇ℎ
𝑗
(𝑥
∗
) = 0,

ℓ

∑
𝑗=1

𝜆
𝑗
ℎ
𝑗
(𝑥
∗
) = 0,

𝜏 > 0, 𝜆 ≧ 0.

(1)

For each 𝑖 ∈ 𝐼 and 𝑥 ∈ R𝑛, we consider the objective
functions defined as 𝑓

𝑖
(𝑥) = 𝑥𝑇𝐴

𝑖
𝑥 + 𝑎𝑇
𝑖
𝑥 + 𝑎
𝑖
and 𝑔

𝑖
(𝑥) =

𝑥𝑇𝐵
𝑖
𝑥 + 𝑏𝑇
𝑖
𝑥 + 𝑏
𝑖
, where 𝐴

𝑖
, 𝐵
𝑖
∈ R𝑛×𝑛, 𝐴

𝑖
is symmetric, 𝐵

𝑖
is

symmetric and positive semidefinite, and 𝑎
𝑖
, 𝑏
𝑖
∈ R𝑛 and 𝑎

𝑖
,

𝑏
𝑖
∈ R, with 𝑏

𝑖
> −(𝑤𝑖

𝑇

𝐵
𝑖
𝑤𝑖 + 𝑏𝑇

𝑖
𝑤𝑖), where 𝑤𝑖 is the solution

of the system 2𝐵
𝑖
𝑥+𝑏
𝑖
= 0; that is,𝑤𝑖 is the point in which the

function 𝑥𝑇𝐵
𝑖
𝑥 + 𝑏𝑇
𝑖
𝑥 reaches its minimum and this ensures

that 𝑔
𝑖
(𝑥) > 0, ∀𝑥 ∈ R𝑛. We cannot consider the cases where

2𝐵
𝑖
𝑥 + 𝑏
𝑖
= 0 has no solution.

3. Sufficient Optimality Conditions

Without assumptions of generalized convexity, but imposing
some additional assumptions on a linear combination of
Hessian matrices of the objective functions 𝑓

𝑖
and 𝑔

𝑖
, 𝑖 ∈

𝐼, we provide in the next theorem a sufficient condition
that guarantees that a feasible point of (VQFP) is Pareto
optimal point. Similar to a second-order sufficient condition
for Pareto optimality, this condition explores the intrinsic
characteristics of the problem (VQFP).

We assume, unlike the objective functions, that each ℎ
𝑗
is

convex. Also, given 𝑥∗ ∈ 𝑆, for each 𝑖 ∈ 𝐼, we define the scalar
functions 𝑢

𝑖
: 𝑆 × 𝑆 → R

+
\ {0} and 𝑠

𝑖
: 𝑆 × 𝑆 → R by

𝑢
𝑖
(𝑥, 𝑥
∗
)

≡
𝑔
𝑖
(𝑥∗)

𝑔
𝑖
(𝑥)

,

𝑠
𝑖
(𝑥, 𝑥
∗
)

≡
1

𝑔
𝑖
(𝑥)

{(𝑥 − 𝑥
∗
)
𝑇

[𝐴
𝑖
−

𝑓
𝑖
(𝑥∗)

𝑔
𝑖
(𝑥∗)

𝐵
𝑖
] (𝑥 − 𝑥

∗
)} .

(2)

Theorem 5. Let 𝑥∗ be a feasible point of (VQFP). Suppose that
the constraint function ℎ

𝑗
is convex for each 𝑗 ∈ 𝐽 and there

exist vectors 𝜏 ∈ R𝑚, 𝜆 ∈ Rℓ, such that
𝑚

∑
𝑖=1

𝜏
𝑖
∇
𝑓
𝑖
(𝑥∗)

𝑔
𝑖
(𝑥∗)

+

ℓ

∑
𝑗=1

𝜆
𝑗
∇ℎ
𝑗
(𝑥
∗
) = 0, (3)

ℓ

∑
𝑗=1

𝜆
𝑗
ℎ
𝑗
(𝑥
∗
) = 0, (4)

𝜏 > 0, 𝜆 ≧ 0. (5)

If, for any 𝑥 ∈ 𝑆, we obtain
𝑚

∑
𝑖=1

𝜏
𝑖

𝑠
𝑖
(𝑥, 𝑥∗)

𝑢
𝑖
(𝑥, 𝑥∗)

≧ 0, (6)

then 𝑥∗ is a Pareto optimal solution for (VQFP).

Proof. Given 𝑥 ∈ 𝑆, we obtain for each 𝑖 ∈ 𝐼

𝑓
𝑖
(𝑥) − 𝑓

𝑖
(𝑥
∗
)

= (𝑥 − 𝑥
∗
)
𝑇

𝐴
𝑖
(𝑥 − 𝑥

∗
) + ∇𝑓

𝑖
(𝑥
∗
)
𝑇

(𝑥 − 𝑥
∗
) ,

𝑔
𝑖
(𝑥) − 𝑔

𝑖
(𝑥
∗
)

= (𝑥 − 𝑥
∗
)
𝑇

𝐵
𝑖
(𝑥 − 𝑥

∗
) + ∇𝑔

𝑖
(𝑥
∗
)
𝑇

(𝑥 − 𝑥
∗
) ,

𝑓
𝑖
(𝑥)

𝑔
𝑖
(𝑥)

−
𝑓
𝑖
(𝑥∗)

𝑔
𝑖
(𝑥∗)

=
𝑓
𝑖
(𝑥) 𝑔
𝑖
(𝑥∗) − 𝑔

𝑖
(𝑥) 𝑓
𝑖
(𝑥∗)

𝑔
𝑖
(𝑥) 𝑔
𝑖
(𝑥∗)

= (𝑓
𝑖
(𝑥) 𝑔
𝑖
(𝑥
∗
) − 𝑓
𝑖
(𝑥
∗
) 𝑔
𝑖
(𝑥
∗
) + 𝑓
𝑖
(𝑥
∗
) 𝑔
𝑖
(𝑥
∗
)

− 𝑔
𝑖
(𝑥) 𝑓
𝑖
(𝑥
∗
))

⋅ (𝑔
𝑖
(𝑥) 𝑔
𝑖
(𝑥
∗
))
−1

=
𝑔
𝑖
(𝑥∗) {𝑓

𝑖
(𝑥) − 𝑓

𝑖
(𝑥∗)} − 𝑓

𝑖
(𝑥∗) {𝑔

𝑖
(𝑥) − 𝑔

𝑖
(𝑥∗)}

𝑔
𝑖
(𝑥) 𝑔
𝑖
(𝑥∗)

=
1

𝑔
𝑖
(𝑥)

{(𝑥 − 𝑥
∗
)
𝑇

𝐴
𝑖
(𝑥 − 𝑥

∗
) + ∇𝑓

𝑖
(𝑥
∗
)
𝑇

(𝑥 − 𝑥
∗
)}

−
𝑓
𝑖
(𝑥∗)

𝑔
𝑖
(𝑥) 𝑔
𝑖
(𝑥∗)

⋅ {(𝑥 − 𝑥
∗
)
𝑇

𝐵
𝑖
(𝑥 − 𝑥

∗
) + ∇𝑔

𝑖
(𝑥
∗
)
𝑇

(𝑥 − 𝑥
∗
)}

=
1

𝑔
𝑖
(𝑥)

{(𝑥 − 𝑥
∗
)
𝑇

𝐴
𝑖
(𝑥 − 𝑥

∗
)}

−
𝑓
𝑖
(𝑥∗)

𝑔
𝑖
(𝑥) 𝑔
𝑖
(𝑥∗)

{(𝑥 − 𝑥
∗
)
𝑇

𝐵
𝑖
(𝑥 − 𝑥

∗
)}

+
1

𝑔
𝑖
(𝑥)

{∇𝑓
𝑖
(𝑥
∗
)
𝑇

(𝑥 − 𝑥
∗
)}

−
𝑓
𝑖
(𝑥∗)

𝑔
𝑖
(𝑥) 𝑔
𝑖
(𝑥∗)

{∇𝑔
𝑖
(𝑥
∗
)
𝑇

(𝑥 − 𝑥
∗
)}

=
1

𝑔
𝑖
(𝑥)

{(𝑥 − 𝑥
∗
)
𝑇

[𝐴
𝑖
−

𝑓
𝑖
(𝑥∗)

𝑔
𝑖
(𝑥∗)

𝐵
𝑖
] (𝑥 − 𝑥

∗
)}

+
𝑔
𝑖
(𝑥∗)

𝑔
𝑖
(𝑥)

⋅
{

{

{

[
∇𝑓
𝑖
(𝑥∗) 𝑔

𝑖
(𝑥∗) − ∇𝑔

𝑖
(𝑥∗) 𝑓

𝑖
(𝑥∗)

[𝑔
𝑖
(𝑥∗)]
2

]

𝑇

(𝑥 − 𝑥
∗
)
}

}

}
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=
1

𝑔
𝑖
(𝑥)

{(𝑥 − 𝑥
∗
)
𝑇

[𝐴
𝑖
−

𝑓
𝑖
(𝑥∗)

𝑔
𝑖
(𝑥∗)

𝐵
𝑖
] (𝑥 − 𝑥

∗
)}

+
𝑔
𝑖
(𝑥
∗
)

𝑔
𝑖
(𝑥)

{[∇
𝑓
𝑖
(𝑥
∗
)

𝑔
𝑖
(𝑥∗)

]

𝑇

(𝑥 − 𝑥
∗
)} .

(7)

Thus, each function 𝑓
𝑖
/𝑔
𝑖
satisfies

𝑓
𝑖
(𝑥)

𝑔
𝑖
(𝑥)

−
𝑓
𝑖
(𝑥∗)

𝑔
𝑖
(𝑥∗)

= 𝑢
𝑖
(𝑥, 𝑥
∗
) [∇

𝑓
𝑖
(𝑥∗)

𝑔
𝑖
(𝑥∗)

]

𝑇

(𝑥 − 𝑥
∗
)

+ 𝑠
𝑖
(𝑥, 𝑥
∗
) , ∀𝑥 ∈ 𝑆.

(8)

Suppose that 𝑥∗ is not a Pareto optimal solution of (VQFP).
Then there exists another point 𝑥 ∈ 𝑆 such that

𝑓 (𝑥)

𝑔 (𝑥)
≤

𝑓 (𝑥
∗)

𝑔 (𝑥∗)
. (9)

Since 𝑢
𝑖
(𝑥, 𝑥∗) > 0, 𝑖 ∈ 𝐼, from (8) we obtain

1

𝑢
𝑖
(𝑥, 𝑥∗)

(
𝑓
𝑖
(𝑥)

𝑔
𝑖
(𝑥)

−
𝑓
𝑖
(𝑥∗)

𝑔
𝑖
(𝑥∗)

)

= [∇
𝑓
𝑖
(𝑥∗)

𝑔
𝑖
(𝑥∗)

]

𝑇

(𝑥 − 𝑥
∗
) +

𝑠
𝑖
(𝑥, 𝑥∗)

𝑢
𝑖
(𝑥, 𝑥∗)

, 𝑖 ∈ 𝐼.

(10)

From (9), we have

𝑓 (𝑥)

𝑔 (𝑥)
−

𝑓 (𝑥∗)

𝑔 (𝑥∗)
≤ 0, (11)

and we obtain 𝑚 inequalities

[∇
𝑓
𝑖
(𝑥∗)

𝑔
𝑖
(𝑥∗)

]

𝑇

(𝑥 − 𝑥
∗
) +

𝑠
𝑖
(𝑥, 𝑥∗)

𝑢
𝑖
(𝑥, 𝑥∗)

≦ 0, 𝑖 ∈ 𝐼, (12)

with at least one strict inequality. Multiplying the 𝑚 inequal-
ities above by their respective 𝜏

𝑖
> 0, 𝑖 ∈ 𝐼, and summing all

the products, we obtain

𝑚

∑
𝑖=1

𝜏
𝑖
[∇

𝑓
𝑖
(𝑥∗)

𝑔
𝑖
(𝑥∗)

]

𝑇

(𝑥 − 𝑥
∗
) +

𝑚

∑
𝑖=1

𝜏
𝑖

𝑠
𝑖
(𝑥, 𝑥∗)

𝑢
𝑖
(𝑥, 𝑥∗)

< 0. (13)

Then, we have

[

𝑚

∑
𝑖=1

𝜏
𝑖
∇
𝑓
𝑖
(𝑥∗)

𝑔
𝑖
(𝑥∗)

]

𝑇

(𝑥 − 𝑥
∗
) +

𝑚

∑
𝑖=1

𝜏
𝑖

𝑠
𝑖
(𝑥, 𝑥∗)

𝑢
𝑖
(𝑥, 𝑥∗)

< 0. (14)

Substituting (3) into (14), we get

[

[

−

ℓ

∑
𝑗=1

𝜆
𝑗
∇ℎ
𝑗
(𝑥
∗
)]

]

𝑇

(𝑥 − 𝑥
∗
) +

𝑚

∑
𝑖=1

𝜏
𝑖

𝑠
𝑖
(𝑥, 𝑥∗)

𝑢
𝑖
(𝑥, 𝑥∗)

< 0. (15)

Using (6) and (15), we obtain

0 ≦

𝑚

∑
𝑖=1

𝜏
𝑖

𝑠
𝑖
(𝑥, 𝑥∗)

𝑢
𝑖
(𝑥, 𝑥∗)

< [

[

ℓ

∑
𝑗=1

𝜆
𝑗
∇ℎ
𝑗
(𝑥
∗
)]

]

𝑇

(𝑥 − 𝑥
∗
) . (16)

That is,

[

[

ℓ

∑
𝑗=1

𝜆
𝑗
∇ℎ
𝑗
(𝑥
∗
)]

]

𝑇

(𝑥 − 𝑥
∗
) > 0. (17)

On the other hand, by convexity of ℎ
𝑗
, we have, for each 𝑗 ∈ 𝐽,

ℎ
𝑗
(𝑥) − ℎ

𝑗
(𝑥
∗
) ≧ ∇ℎ

𝑗
(𝑥
∗
)
𝑇

(𝑥 − 𝑥
∗
) . (18)

Since 𝜆
𝑗
≧ 0, 𝑗 ∈ 𝐽, we have

ℓ

∑
𝑗=1

𝜆
𝑗
(ℎ
𝑗
(𝑥) − ℎ

𝑗
(𝑥
∗
)) ≧

ℓ

∑
𝑗=1

𝜆
𝑗
∇ℎ
𝑗
(𝑥
∗
)
𝑇

(𝑥 − 𝑥
∗
)

= [

[

ℓ

∑
𝑗=1

𝜆
𝑗
∇ℎ
𝑗
(𝑥
∗
)]

]

𝑇

(𝑥 − 𝑥
∗
) .

(19)

However, since 𝑥 is feasible point, condition (4) and 𝜆
𝑗
≧ 0,

𝑗 ∈ 𝐽, imply that

ℓ

∑
𝑗=1

𝜆
𝑗
(ℎ
𝑗
(𝑥) − ℎ

𝑗
(𝑥
∗
)) ≦ 0. (20)

We conclude that

[

[

ℓ

∑
𝑗=1

𝜆
𝑗
∇ℎ
𝑗
(𝑥
∗
)]

]

𝑇

(𝑥 − 𝑥
∗
) ≦ 0, (21)

which contradicts (17). Therefore 𝑥
∗ is a Pareto optimal

solution for (VQFP).

The expression 𝑓
𝑖
(𝑥)/𝑔
𝑖
(𝑥) − 𝑓

𝑖
(𝑥∗)/𝑔

𝑖
(𝑥∗) in Theorem 5

ismanipulated in a similar manner in [6, 7, 9, 12, 19]; however
some generalized convexity on the functions 𝑓

𝑖
and 𝑔

𝑖
is

imposed. In most of them, for each 𝑖 ∈ 𝐼 and 𝑥 ∈ 𝑆,
the hypotheses 𝑓

𝑖
(𝑥) ≧ 0, 𝑔

𝑖
(𝑥) > 0, and 𝑓

𝑖
, −𝑔
𝑖
satisfy

some generalized convexity. This is not the purpose of this
work, but the constraint functions can be assumed in a
more general class of convex functions; for example, the
generalized convexity of Liang et al. [9] can be used.

In the following, the Pareto optimal solution set is
denoted by Eff (VQFP).

Corollary 6. Let 𝑥
∗ be a feasible point of (VQFP). Suppose

that the constraint function ℎ
𝑗
is convex for each 𝑗 ∈ 𝐽 and

there exist vectors 𝜏 ∈ R𝑚, 𝜆 ∈ Rℓ, such that (3), (4), and (5)
are valid. If [𝐴

𝑖
− (𝑓
𝑖
(𝑥∗)/𝑔

𝑖
(𝑥∗))𝐵

𝑖
] are positive semidefinite

matrices for each 𝑖 ∈ 𝐼, then 𝑥
∗ ∈ Eff (𝑉𝑄𝐹𝑃).
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Proof. By hypothesis, given 𝑥 ∈ 𝑆 and 𝑖 ∈ 𝐼, we obtain

(𝑥 − 𝑥
∗
)
𝑇

[𝐴
𝑖
−

𝑓
𝑖
(𝑥∗)

𝑔
𝑖
(𝑥∗)

𝐵
𝑖
] (𝑥 − 𝑥

∗
) ≧ 0

󳨐⇒ 𝜏
𝑖

1

𝑔
𝑖
(𝑥∗)

{(𝑥 − 𝑥
∗
)
𝑇

[𝐴
𝑖
−

𝑓
𝑖
(𝑥∗)

𝑔
𝑖
(𝑥∗)

𝐵
𝑖
] (𝑥 − 𝑥

∗
)} ≧ 0

󳨐⇒

𝑚

∑
𝑖=1

𝜏
𝑖

𝑔
𝑖
(𝑥)

𝑔
𝑖
(𝑥∗)

1

𝑔
𝑖
(𝑥)

⋅ {(𝑥 − 𝑥
∗
)
𝑇

[𝐴
𝑖
−

𝑓
𝑖
(𝑥
∗
)

𝑔
𝑖
(𝑥∗)

𝐵
𝑖
] (𝑥 − 𝑥

∗
)} ≧ 0

󳨐⇒

𝑚

∑
𝑖=1

𝜏
𝑖

𝑠
𝑖
(𝑥, 𝑥∗)

𝑢
𝑖
(𝑥, 𝑥∗)

≧ 0.

(22)

Therefore, inequality (6) is valid and the result follows from
Theorem 5.

To ensure that inequality (6) is valid, we start exploring
the features of the Hessianmatrices of the objective functions
of (VQFP).

Negative values can occur in each term
𝜏
𝑖
(𝑠
𝑖
(𝑥, 𝑥∗)/𝑢

𝑖
(𝑥, 𝑥∗)) of the sum ∑

𝑚

𝑖=1
𝜏
𝑖
(𝑠
𝑖
(𝑥, 𝑥∗)/𝑢

𝑖
(𝑥, 𝑥∗)),

which depends on each matrix [𝐴
𝑖
− (𝑓
𝑖
(𝑥∗)/𝑔

𝑖
(𝑥∗))𝐵

𝑖
],

𝑖 ∈ 𝐼, and the vector (𝑥 − 𝑥∗). Let us check new conditions
for which (6) is satisfied; that is, we want to ensure the result
of Theorem 5 by analysing the function

𝑍 (𝑥, 𝑥
∗
) ≡

𝑚

∑
𝑖=1

𝜏
𝑖

𝑠
𝑖
(𝑥, 𝑥∗)

𝑢
𝑖
(𝑥, 𝑥∗)

=

𝑚

∑
𝑖=1

𝜏
𝑖

𝑔
𝑖
(𝑥)

𝑔
𝑖
(𝑥∗)

1

𝑔
𝑖
(𝑥)

⋅ {(𝑥 − 𝑥
∗
)
𝑇

[𝐴
𝑖
−

𝑓
𝑖
(𝑥∗)

𝑔
𝑖
(𝑥∗)

𝐵
𝑖
] (𝑥 − 𝑥

∗
)}

= (𝑥 − 𝑥
∗
)
𝑇

{

𝑚

∑
𝑖=1

[
𝜏
𝑖

𝑔
𝑖
(𝑥∗)

𝐴
𝑖
−

𝜏
𝑖
𝑓
𝑖
(𝑥∗)

[𝑔
𝑖
(𝑥∗)]
2
𝐵
𝑖
]} (𝑥 − 𝑥

∗
) .

(23)

Note that 𝑍(⋅, 𝑥∗) is a quadratic function without the
linear part; thus in (VQFP) we obtain 𝑍(𝑥, 𝑥∗) ≧ 0 on
𝑆 if and only if min

𝑥∈𝑆
𝑍(𝑥, 𝑥∗) ≧ 0; that is, we can use

the classical results on quadratic optimization to check if
min
𝑥∈𝑆

𝑍(𝑥, 𝑥∗) ≧ 0. The next corollary follows immediately
fromTheorem 5.

Corollary 7. Let 𝑥∗ be a feasible point of (VQFP). Suppose that
the constraint function ℎ

𝑗
is convex for each 𝑗 ∈ 𝐽 and there

exist vectors 𝜏 ∈ R𝑚, 𝜆 ∈ Rℓ, such that (3), (4), and (5) are
valid. If min

𝑥∈𝑆
𝑍(𝑥, 𝑥∗) ≧ 0, then 𝑥∗ ∈ Eff (𝑉𝑄𝐹𝑃).

Using the previous results to check whether a feasible
point is a Pareto optimal solution of (VQFP), we propose the
following computational test method.

Pareto Optimality Test

Step 1. Given 𝑥
∗ ∈ 𝑆, find the vectors 𝜏 > 0 and 𝜆 ≧ 0 such

that (3) and (4) are valid. If the vectors 𝜏 and 𝜆 do not exist,
then 𝑥∗ ∉ Eff (VQFP).

Step 2. Otherwise, solve 𝑍(𝑥, 𝑥∗) = min
𝑥∈𝑆

𝑍(𝑥, 𝑥∗). If
𝑍(𝑥, 𝑥∗) ≧ 0, we say that 𝑥∗ has passed the Pareto optimality
test and 𝑥∗ ∈ Eff (VQFP).

Pareto optimality test starts with a feasible point; then it
seeks to solve a system of linear equations containing 𝑚 + ℓ

unknowns, 𝜏 and 𝜆, the inequalities 𝜏 > 0, 𝜆 ≧ 0, and two
equalities (3) and (4). If this system has no solution, then the
point 𝑥∗ does not satisfy the first-order necessary condition
for Pareto optimality, so the method terminates concluding
that 𝑥∗ ∉ Eff (VQFP). Otherwise, in Step 2, a quadratic
optimization problem on 𝑆 should be solved. If the minimum
of the quadratic problem is nonnegative, then the procedure
ends, concluding that 𝑥∗ ∈ Eff (VQFP). Otherwise, we
say that 𝑥∗ has not passed the Pareto optimality test. Its
complexity lies in solving a system of linear inequalities plus
a quadratic optimization problem.

The next results, which address a linear combination of
the Hessianmatrices, can be used to develop a computational
search method.

Looking at the previous Pareto optimality test, if the fixed
point 𝑥∗ is assumed to be a variable 𝑦, then the linear system
in Step 1 becomes a nonlinear system for the variables 𝜏 > 0,
𝜆 ≧ 0, 𝑦 ∈ 𝑆. And the quadratic optimization problem
in Step 2 becomes a quadratic optimization problem of the
type min

𝑥,𝑦∈𝑆
𝑍(𝑥, 𝑦). This raises considerable difficulties.

In order to reduce these difficulties, we further explore the
characteristics of the matrix

𝐹 (𝑦
∗
) ≡

𝑚

∑
𝑖=1

[
𝜏
𝑖

𝑔
𝑖
(𝑦∗)

𝐴
𝑖
−

𝜏
𝑖
𝑓
𝑖
(𝑦∗)

[𝑔
𝑖
(𝑦∗)]
2
𝐵
𝑖
] . (24)

One possibility is to search for points 𝑦∗ such that 𝐹(𝑦∗)

becomes positive semidefinite. In this case 𝑍(𝑥, 𝑦∗) = (𝑥 −

𝑦∗)
𝑇
𝐹(𝑦∗)(𝑥 − 𝑦∗) ≧ 0 depends only on 𝑦∗ ∈ 𝑆.
Consider a fixed point 𝑥∗; the next theorem takes advan-

tage of the symmetry and diagonalizations of the matrices𝐴
𝑖

and𝐵
𝑖
, 𝑖 ∈ 𝐼, to give sufficient Pareto optimality conditions for

a feasible point of (VQFP). Consider the usual inner product
⟨⋅, ⋅⟩ in R𝑛.

Theorem8. Let 𝑥∗ be a feasible point of (VQFP). Suppose that
the constraint function ℎ

𝑗
is convex for each 𝑗 ∈ 𝐽 and there

exist vectors 𝜏 ∈ R𝑚, 𝜆 ∈ Rℓ, such that (3), (4), and (5) are
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valid. Consider also, for each 𝑖 ∈ 𝐼 and 𝑘 ∈ 𝐾 ≡ {1, . . . , 𝑛}, the
following functions:

𝛾
𝑘

𝑖
(𝑥, 𝑥
∗
, 𝜏) ≡

𝜏
𝑖

𝑔
𝑖
(𝑥∗)

⟨𝑥 − 𝑥
∗
, 𝑝
𝑘

𝑖
⟩
2

,

𝜂
𝑘

𝑖
(𝑥, 𝑥
∗
, 𝜏) ≡

𝜏
𝑖
𝑓
𝑖
(𝑥∗)

[𝑔
𝑖
(𝑥∗)]
2
⟨𝑥 − 𝑥

∗
, 𝑞
𝑘

𝑖
⟩
2

,

(25)

where 𝑝𝑘
𝑖
and 𝑞𝑘

𝑖
are the columns of orthogonal matrices 𝑃

𝑖

and 𝑄
𝑖
, constructed from the normalized eigenvectors of the

matrices 𝐴
𝑖
and 𝐵

𝑖
, respectively. If for all 𝑥 ∈ 𝑆 the following

inequality

𝜇
𝐴𝑖

𝑘
𝛾
𝑘

𝑖
(𝑥, 𝑥
∗
, 𝜏) ≧ 𝜇

𝐵𝑖

𝑘
𝜂
𝑘

𝑖
(𝑥, 𝑥
∗
, 𝜏) , ∀𝑖 ∈ 𝐼, ∀𝑘 ∈ 𝐾, (26)

is valid, where 𝜇
𝐴𝑖

𝑘
and 𝜇

𝐵𝑖

𝑘
are the eigenvalues of the matrices

𝐴
𝑖
and 𝐵

𝑖
associated with the eigenvectors 𝑝𝑘

𝑖
and 𝑞𝑘

𝑖
, respec-

tively, then 𝑥∗ ∈ Eff (𝑉𝑄𝐹𝑃).

Proof. The matrices 𝐴
𝑖
and 𝐵

𝑖
, 𝑖 ∈ 𝐼, are diagonalizable and

can be rewritten as 𝐴
𝑖
= 𝑃
𝑖
𝐷
𝐴𝑖

𝑃𝑇
𝑖

= ∑
𝑛

𝑘=1
𝜇
𝐴𝑖

𝑘
𝑝𝑘
𝑖
𝑝𝑘
𝑖

𝑇

and 𝐵
𝑖
=

𝑄
𝑖
𝐷
𝐵𝑖
𝑄𝑇
𝑖

= ∑
𝑛

𝑘=1
𝜇
𝐵𝑖

𝑘
𝑞𝑘
𝑖
𝑞𝑘
𝑖

𝑇

, where 𝐷
𝐴𝑖

and 𝐷
𝐵𝑖
are diagonal

matrices, with their diagonal formed by the eigenvalues 𝜇
𝐴𝑖

𝑘

and 𝜇
𝐵𝑖

𝑘
, 𝑘 ∈ 𝐾, of the matrices 𝐴

𝑖
and 𝐵

𝑖
, respectively. Thus,

we obtain
𝑚

∑
𝑖=1

𝜏
𝑖

𝑠
𝑖
(𝑥, 𝑥∗)

𝑢
𝑖
(𝑥, 𝑥∗)

=

𝑚

∑
𝑖=1

𝜏
𝑖

𝑔
𝑖
(𝑥)

𝑔
𝑖
(𝑥∗)

1

𝑔
𝑖
(𝑥)

⋅ {(𝑥 − 𝑥
∗
)
𝑇

[𝐴
𝑖
−

𝑓
𝑖
(𝑥∗)

𝑔
𝑖
(𝑥∗)

𝐵
𝑖
] (𝑥 − 𝑥

∗
)}

=

𝑚

∑
𝑖=1

{(𝑥 − 𝑥
∗
)
𝑇

[
𝜏
𝑖

𝑔
𝑖
(𝑥∗)

𝐴
𝑖
−

𝜏
𝑖
𝑓
𝑖
(𝑥∗)

[𝑔
𝑖
(𝑥∗)]
2
𝐵
𝑖
] (𝑥 − 𝑥

∗
)}

=

𝑚

∑
𝑖=1

{(𝑥 − 𝑥
∗
)
𝑇

[
𝜏
𝑖

𝑔
𝑖
(𝑥∗)

(

𝑛

∑
𝑘=1

𝜇
𝐴𝑖

𝑘
𝑝
𝑘

𝑖
𝑝
𝑘

𝑖

𝑇

)

−
𝜏
𝑖
𝑓
𝑖
(𝑥∗)

[𝑔
𝑖
(𝑥∗)]
2
(

𝑛

∑
𝑘=1

𝜇
𝐵𝑖

𝑘
𝑞
𝑘

𝑖
𝑞
𝑘

𝑖

𝑇

)] (𝑥 − 𝑥
∗
)}

=

𝑚

∑
𝑖=1

[

𝑛

∑
𝑘=1

𝜇
𝐴𝑖

𝑘
(

𝜏
𝑖

𝑔
𝑖
(𝑥∗)

⟨𝑥 − 𝑥
∗
, 𝑝
𝑘

𝑖
⟩
2

)

−

𝑛

∑
𝑘=1

𝜇
𝐵𝑖

𝑘
(

𝜏
𝑖
𝑓
𝑖
(𝑥∗)

[𝑔
𝑖
(𝑥∗)]
2
⟨𝑥 − 𝑥

∗
, 𝑞
𝑘

𝑖
⟩
2

)]

=

𝑚

∑
𝑖=1

[

𝑛

∑
𝑘=1

𝜇
𝐴𝑖

𝑘
𝛾
𝑘

𝑖
(𝑥, 𝑥
∗
, 𝜏) −

𝑛

∑
𝑘=1

𝜇
𝐵𝑖

𝑘
𝜂
𝑘

𝑖
(𝑥, 𝑥
∗
, 𝜏)]

=

𝑚

∑
𝑖=1

𝑛

∑
𝑘=1

[𝜇
𝐴𝑖

𝑘
𝛾
𝑘

𝑖
(𝑥, 𝑥
∗
, 𝜏) − 𝜇

𝐵𝑖

𝑘
𝜂
𝑘

𝑖
(𝑥, 𝑥
∗
, 𝜏)] .

(27)

Since, for all 𝑥 ∈ 𝑆, we have 𝜇
𝐴𝑖

𝑘
𝛾𝑘
𝑖
(𝑥, 𝑥∗, 𝜏) ≧ 𝜇

𝐵𝑖

𝑘
𝜂𝑘
𝑖
(𝑥, 𝑥∗, 𝜏),

for all 𝑖 ∈ 𝐼 and 𝑘 ∈ 𝐾, we conclude that 𝑍(𝑥, 𝑥∗) ≧ 0.
Therefore, inequality (6) is valid and the result follows from
Theorem 5.

Theorem 8 is not simple to use since (26) depends on all
points of the feasible set; that is, it depends on the functions
𝛾
𝑘

𝑖
(𝑥, 𝑥∗, 𝜏), 𝜂𝑘

𝑖
(𝑥, 𝑥∗, 𝜏), ∀𝑖 ∈ 𝐼, ∀𝑘 ∈ 𝐾, and 𝑥 ∈ 𝑆.

However, even if, for some 𝑖 ∈ 𝐼 and 𝑘 ∈ 𝐾, 𝜇𝐴𝑖
𝑘

𝛾𝑘
𝑖
(𝑥, 𝑥∗, 𝜏) <

𝜇
𝐵𝑖

𝑘
𝜂𝑘
𝑖
(𝑥, 𝑥∗, 𝜏) occurs, inequality (6) can still be satisfied. In

order to obtain (26), we present the next corollary, which
follows immediately from the previous theorem.

Corollary 9. Let 𝑥
∗ be a feasible point of (VQFP). Suppose

that the constraint function ℎ
𝑗
is convex for each 𝑗 ∈ 𝐽 and

there exist vectors 𝜏 ∈ R𝑚, 𝜆 ∈ Rℓ, such that (3), (4), and (5)
are valid. Consider also, for each 𝑖 ∈ 𝐼 and 𝑘 ∈ 𝐾,

𝑎
+

𝑖,𝑘
≡ √𝜇
𝐴𝑖

𝑘
𝑝
𝑘

𝑖
+ √𝜇
𝐵𝑖

𝑘

𝑓
𝑖
(𝑥∗)

𝑔
𝑖
(𝑥∗)

𝑞
𝑘

𝑖
,

𝑎
−

𝑖,𝑘
≡ √𝜇
𝐴𝑖

𝑘
𝑝
𝑘

𝑖
− √𝜇
𝐵𝑖

𝑘

𝑓
𝑖
(𝑥
∗
)

𝑔
𝑖
(𝑥∗)

𝑞
𝑘

𝑖
,

𝛼
𝑖,𝑘

≡ ⟨𝑥
∗
, 𝑎
+

𝑖,𝑘
⟩ 𝑎
−

𝑖,𝑘
+ ⟨𝑥
∗
, 𝑎
−

𝑖,𝑘
⟩ 𝑎
+

𝑖,𝑘
,

𝛽
𝑖,𝑘

≡ ⟨𝑥
∗
, 𝑎
+

𝑖,𝑘
⟩ ⟨𝑥
∗
, 𝑎
−

𝑖,𝑘
⟩ ,

𝐻
𝑖,𝑘

(𝑥) ≡ 𝑥
𝑇
[𝑎
+

𝑖,𝑘
𝑎
−

𝑖,𝑘

𝑇

] 𝑥 − 𝛼
𝑇

𝑖,𝑘
𝑥 + 𝛽
𝑖,𝑘
,

(28)

where 𝑝𝑘
𝑖
and 𝑞𝑘

𝑖
are the columns of orthogonal matrices

𝑃
𝑖
and 𝑄

𝑖
, constructed from the normalized eigenvectors of

the matrices 𝐴
𝑖
, 𝐵
𝑖
and 𝜇

𝐴𝑖

𝑘
, 𝜇
𝐵𝑖

𝑘
are the eigenvalues of the

matrices 𝐴
𝑖
and 𝐵

𝑖
associated with the eigenvectors 𝑝𝑘

𝑖
and 𝑞𝑘
𝑖
,

respectively. If, for all 𝑥 ∈ 𝑆, one obtains 𝐻
𝑖,𝑘
(𝑥) ≧ 0 for each

𝑖 ∈ 𝐼 and 𝑘 ∈ 𝐾, then 𝑥∗ ∈ Eff (𝑉𝑄𝐹𝑃).

Proof. According to Theorem 8, it is enough to show that,
for every feasible point and for all 𝑖 ∈ 𝐼 and 𝑘 ∈ 𝐾,
𝜇
𝐴𝑖

𝑘
𝛾𝑘
𝑖
(𝑥, 𝑥∗, 𝜏) ≧ 𝜇

𝐵𝑖

𝑘
𝜂𝑘
𝑖
(𝑥, 𝑥∗, 𝜏) is valid. Given 𝑥 ∈ 𝑆 and

a pair {𝑖, 𝑘} ∈ 𝐼 × 𝐾, we obtain

𝜇
𝐴𝑖

𝑘
𝛾
𝑘

𝑖
(𝑥, 𝑥
∗
, 𝜏) ≧ 𝜇

𝐵𝑖

𝑘
𝜂
𝑘

𝑖
(𝑥, 𝑥
∗
, 𝜏)

⇐⇒
𝜏
𝑖
𝜇
𝐴𝑖

𝑘

𝑔
𝑖
(𝑥∗)

⟨𝑥 − 𝑥
∗
, 𝑝
𝑘

𝑖
⟩
2

≧
𝜏
𝑖
𝜇
𝐵𝑖

𝑘
𝑓
𝑖
(𝑥∗)

[𝑔
𝑖
(𝑥∗)]
2

⟨𝑥 − 𝑥
∗
, 𝑞
𝑘

𝑖
⟩
2

⇐⇒ 𝜇
𝐴𝑖

𝑘
⟨𝑥 − 𝑥

∗
, 𝑝
𝑘

𝑖
⟩
2

≧ 𝜇
𝐵𝑖

𝑘

𝑓
𝑖
(𝑥∗)

𝑔
𝑖
(𝑥∗)

⟨𝑥 − 𝑥
∗
, 𝑞
𝑘

𝑖
⟩
2

⇐⇒ (√𝜇
𝐴𝑖

𝑘
⟨𝑥 − 𝑥

∗
, 𝑝
𝑘

𝑖
⟩ + √𝜇

𝐵𝑖

𝑘

𝑓
𝑖
(𝑥∗)

𝑔
𝑖
(𝑥∗)

⟨𝑥 − 𝑥
∗
, 𝑞
𝑘

𝑖
⟩)

⋅ (√𝜇
𝐴𝑖

𝑘
⟨𝑥 − 𝑥

∗
, 𝑝
𝑘

𝑖
⟩ − √𝜇

𝐵𝑖

𝑘

𝑓
𝑖
(𝑥∗)

𝑔
𝑖
(𝑥∗)

⟨𝑥 − 𝑥
∗
, 𝑞
𝑘

𝑖
⟩) ≧ 0
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⇐⇒ (⟨𝑥 − 𝑥
∗
, √𝜇
𝐴𝑖

𝑘
𝑝
𝑘

𝑖
+ √𝜇
𝐵𝑖

𝑘

𝑓
𝑖
(𝑥∗)

𝑔
𝑖
(𝑥∗)

𝑞
𝑘

𝑖
⟩)

⋅ (⟨𝑥 − 𝑥
∗
, √𝜇
𝐴𝑖

𝑘
𝑝
𝑘

𝑖
− √𝜇
𝐵𝑖

𝑘

𝑓
𝑖
(𝑥∗)

𝑔
𝑖
(𝑥∗)

𝑞
𝑘

𝑖
⟩) ≧ 0

⇐⇒ (⟨𝑥 − 𝑥
∗
, 𝑎
+

𝑖,𝑘
⟩) (⟨𝑥 − 𝑥

∗
, 𝑎
−

𝑖,𝑘
⟩) ≧ 0

⇐⇒ (⟨𝑥, 𝑎
+

𝑖,𝑘
⟩ − ⟨𝑥

∗
, 𝑎
+

𝑖,𝑘
⟩) (⟨𝑥, 𝑎

−

𝑖,𝑘
⟩ − ⟨𝑥

∗
, 𝑎
−

𝑖,𝑘
⟩) ≧ 0

⇐⇒ ⟨𝑥, 𝑎
+

𝑖,𝑘
⟩ ⟨𝑥, 𝑎

−

𝑖,𝑘
⟩ − ⟨𝑥

∗
, 𝑎
−

𝑖,𝑘
⟩ ⟨𝑥, 𝑎

+

𝑖,𝑘
⟩

− ⟨𝑥
∗
, 𝑎
+

𝑖,𝑘
⟩ ⟨𝑥, 𝑎

−

𝑖,𝑘
⟩ + ⟨𝑥

∗
, 𝑎
+

𝑖,𝑘
⟩ ⟨𝑥
∗
, 𝑎
−

𝑖,𝑘
⟩ ≧ 0

⇐⇒ ⟨𝑥, 𝑎
+

𝑖,𝑘
⟩ ⟨𝑥, 𝑎

−

𝑖,𝑘
⟩

− ⟨𝑥, (⟨𝑥
∗
, 𝑎
+

𝑖,𝑘
⟩ 𝑎
−

𝑖,𝑘
+ ⟨𝑥
∗
, 𝑎
−

𝑖,𝑘
⟩ 𝑎
+

𝑖,𝑘
)⟩

+ ⟨𝑥
∗
, 𝑎
+

𝑖,𝑘
⟩ ⟨𝑥
∗
, 𝑎
−

𝑖,𝑘
⟩ ≧ 0

⇐⇒ ⟨𝑥, 𝑎
+

𝑖,𝑘
⟩ ⟨𝑥, 𝑎

−

𝑖,𝑘
⟩ − ⟨𝑥, 𝛼

𝑖,𝑘
⟩ + 𝛽
𝑖,𝑘

≧ 0

⇐⇒ 𝑥
𝑇
[𝑎
+

𝑖,𝑘
𝑎
−

𝑖,𝑘

𝑇

] 𝑥 − 𝛼
𝑇

𝑖,𝑘
𝑥 + 𝛽
𝑖,𝑘

≧ 0

⇐⇒ 𝐻
𝑖,𝑘

(𝑥) ≧ 0.

(29)

Therefore, the result follows fromTheorem 8.

From Corollary 9, if each quadratic function 𝐻
𝑖,𝑘
(𝑥),

{𝑖, 𝑘} ∈ 𝐼×𝐾, is nonnegative in the feasible set, then a feasible
point satisfying (3), (4), and (5) is a Pareto optimal solution
of (VQFP).

Let [𝐻
𝑖,𝑘
] ≡ [𝑎+

𝑖,𝑘
𝑎−
𝑖,𝑘

𝑇

] ∈ R𝑛×𝑛. Then 𝛽
𝑖,𝑘

= 𝑥∗
𝑇
[𝐻
𝑖,𝑘
]𝑥∗,

and the nonnegativity of the quadratic 𝐻
𝑖,𝑘
(𝑥) = 𝑥𝑇[𝐻

𝑖,𝑘
]𝑥 −

𝛼𝑇
𝑖,𝑘
𝑥 + 𝛽

𝑖,𝑘
depends on each matrix [𝐻

𝑖,𝑘
] and each vector

𝛼
𝑖,𝑘

∈ R𝑛, where {𝑖, 𝑘} ∈ 𝐼 × 𝐾 and 𝑥∗ ∈ 𝑆. For example,
the unconstrained (VQFP) requires that each matrix [𝐻

𝑖,𝑘
]

be positive semidefinite and that 𝛽
𝑖,𝑘

≧ (𝛼
𝑖,𝑘

− 𝑤
𝑇
[𝐻
𝑖,𝑘
]𝑤),

where 𝑤 is a solution of the system 2[𝐻
𝑖,𝑘
]𝑥 = 𝛼

𝑖,𝑘
.

Corollary 10. Let 𝑥∗ be a feasible point of (VQFP). Suppose
that the constraint function ℎ

𝑗
is convex for each 𝑗 ∈ 𝐽 and there

exist vectors 𝜏 ∈ R𝑚, 𝜆 ∈ Rℓ, such that (3), (4), and (5) are
valid. If, for each pair {𝑖, 𝑘} ∈ 𝐼×𝐾, the matrix [𝐻

𝑖,𝑘
] is positive

semidefinite and 𝛼
𝑖,𝑘

= 0 (see (28)), then 𝑥∗ ∈ Eff (𝑉𝑄𝐹𝑃).

Proof. By hypothesis, for all 𝑥 ∈ 𝑆, we have 𝐻
𝑖,𝑘
(𝑥) ≧ 0 for

each pair {𝑖, 𝑘} ∈ 𝐼 × 𝐾. Therefore, the result follows from
Corollary 9.

Given a pair {𝑖, 𝑘} ∈ 𝐼 × 𝐾, writing each entry of the
matrix [𝐻

𝑖,𝑘
] = (𝐻

𝑖,𝑘
(𝑟, 𝑠)) and each entry of the vector

𝛼
𝑖,𝑘

= (𝛼
𝑖,𝑘
(𝑟)) according to the entries of the eigenvectors

𝑝
𝑘

𝑖
= (𝑝𝑘
𝑖
(𝑟)) and 𝑞𝑘

𝑖
= (𝑞𝑘
𝑖
(𝑟)), where 𝑟, 𝑠 ∈ 𝐾, we obtain, for

each pair {𝑟, 𝑠} ∈ 𝐾 × 𝐾,

𝐻
𝑖,𝑘

(𝑟, 𝑠) = 𝑎
+

𝑖,𝑘
(𝑟) 𝑎
−

𝑖,𝑘
(𝑠)

= 𝜇
𝐴𝑖

𝑘
𝑝
𝑘

𝑖
(𝑟) 𝑝
𝑘

𝑖
(𝑠)

+ √𝜇
𝐴𝑖

𝑘
𝜇
𝐵𝑖

𝑘

𝑓
𝑖
(𝑥∗)

𝑔
𝑖
(𝑥∗)

(𝑝
𝑘

𝑖
(𝑠) 𝑞
𝑘

𝑖
(𝑟) − 𝑝

𝑘

𝑖
(𝑟) 𝑞
𝑘

𝑖
(𝑠))

− 𝜇
𝐵𝑖

𝑘

𝑓
𝑖
(𝑥∗)

𝑔
𝑖
(𝑥∗)

𝑞
𝑘

𝑖
(𝑟) 𝑞
𝑘

𝑖
(𝑠) ,

𝐻
𝑖,𝑘

(𝑟, 𝑟) = 𝜇
𝐴𝑖

𝑘
(𝑝
𝑘

𝑖
(𝑟))
2

− 𝜇
𝐵𝑖

𝑘

𝑓
𝑖
(𝑥∗)

𝑔
𝑖
(𝑥∗)

(𝑞
𝑘

𝑖
(𝑟))
2

,

𝛼
𝑖,𝑘

(𝑟) = 2𝜇
𝐴𝑖

𝑘
⟨𝑥
∗
, 𝑝
𝑘

𝑖
⟩𝑝
𝑘

𝑖
(𝑟) − 2𝜇

𝐵𝑖

𝑘

𝑓
𝑖
(𝑥∗)

𝑔
𝑖
(𝑥∗)

⟨𝑥
∗
, 𝑞
𝑘

𝑖
⟩ 𝑞
𝑘

𝑖
(𝑟) .

(30)

We can draw some conclusions from (30). For example,
for a fixed pair {𝑖, 𝑘} ∈ 𝐼 × 𝐾, the vector 𝛼

𝑖,𝑘
is a linear

combination of the eigenvectors𝑝𝑘
𝑖
and 𝑞𝑘
𝑖
. If𝜇𝐴𝑖
𝑘

= 0,𝜇𝐵𝑖
𝑘

= 0,
or 𝑓
𝑖
(𝑥∗) = 0, then [𝐻

𝑖,𝑘
] is a symmetric matrix. Moreover, if

𝜇
𝐴𝑖

𝑘
𝜇
𝐵𝑖

𝑘
𝑓
𝑖
(𝑥∗) < 0 and there exists a pair {𝑟, 𝑠} ∈ 𝐾 × 𝐾 such

that 𝑝𝑘
𝑖
(𝑠)𝑞𝑘
𝑖
(𝑟) ̸= 𝑝𝑘

𝑖
(𝑟)𝑞𝑘
𝑖
(𝑠), then the matrix [𝐻

𝑖,𝑘
] ∉ R𝑛×𝑛.

In this case, if there exists 𝑥 ∈ 𝑆 such that 𝐻
𝑖,𝑘
(𝑥) ∈ C \ R,

𝐻
𝑖,𝑘
(𝑥) ≧ 0 does not make sense. However, when (26) is

required, it is possible to show that 𝐻
𝑖,𝑘
(𝑥) ∈ C \ R is not

possible.
The results of Theorems 5 and 8 and their corollaries

can be used in order to develop a method of searching for
Pareto optimal solutions of (VQFP), and it might be useful
to determine the termination criteria in the development of
algorithms.

4. Duality

Matrix (24) defines a specific function, and by adding some
assumptions about it, we obtain new results, such as, a rela-
tionship between the problem (VQFP) and a scalar problem
associated with it, and the main duality theorems.

In the scalar optimization problem case, Dinkelbach
[3] and Jagannathan [4] used a parametric approach that
transforms the fractional optimization problem in a new
scalar optimization problem. Similarly, we consider the fol-
lowing parameterized problem (VQFP)

𝑥
∗ associated with the

problem (VQFP):

Minimize 𝑓 (𝑥) −
𝑓 (𝑥∗)

𝑔 (𝑥∗)
𝑔 (𝑥)

= (𝑓
1
(𝑥) −

𝑓
1
(𝑥∗)

𝑔
1
(𝑥∗)

𝑔
1
(𝑥) , . . . , 𝑓

𝑚
(𝑥)

−
𝑓
𝑚

(𝑥∗)

𝑔
𝑚

(𝑥∗)
𝑔
𝑚

(𝑥))

subject to ℎ
𝑗
(𝑥) ≦ 0 𝑗 ∈ 𝐽, 𝑥 ∈ Ω,

(VQFP)
𝑥
∗
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where Ω ⊆ R𝑛, 𝑓
𝑖
, 𝑔
𝑖
, 𝑖 ∈ 𝐼, and ℎ

𝑗
, 𝑗 ∈ 𝐽, are defined in

(VQFP), and 𝑥
∗ ∈ 𝑆.

Using assumptions of generalized convexity, Osuna-
Gómez et al. [17] presented the problem (VFP)

𝑥
∗ and

obtained necessary and sufficient conditions for weakly
Pareto optimality and main duality theorems. The results
presented in [3, 4, 17] considered each objective function as
𝑓
𝑖
(𝑥) − 𝛼

𝑖
𝑔
𝑖
(𝑥), 𝑖 ∈ 𝐼, and they studied the properties of the

parameter 𝛼
𝑖
∈ R. Following the ideas presented by Osuna-

Gómez et al. [17], we obtain new results by considering
directly 𝛼

𝑖
≡ 𝑓
𝑖
(𝑥∗)/𝑔

𝑖
(𝑥∗), 𝑖 ∈ 𝐼, where 𝑥∗ ∈ Eff (VQFP).

However, by imposing hypothesis on the linear combination
of matrices [𝐴

𝑖
− (𝑓
𝑖
(𝑥∗)/𝑔

𝑖
(𝑥∗))𝐵

𝑖
], 𝑖 ∈ 𝐼 and 𝑥∗ ∈ 𝑆, we

consider Pareto optimal solutions rather than weakly Pareto
optimal solutions.

To characterize the solutions of the problems (VOP),
Geoffrion [37] used the solutions of the associated scalar
problems. Similarly, we consider the followingweighted scalar
problem (VQFP)𝑤

𝑥
∗ associated with the problem (VQFP):

Minimize
𝑚

∑
𝑖=1

𝑤
𝑖
(𝑓
𝑖
(𝑥) −

𝑓
𝑖
(𝑥∗)

𝑔
𝑖
(𝑥∗)

𝑔
𝑖
(𝑥))

subject to ℎ
𝑗
(𝑥) ≦ 0 𝑗 ∈ 𝐽, 𝑥 ∈ Ω,

(VQFP)𝑤
𝑥
∗

where Ω ⊆ R𝑛, 𝑓
𝑖
, 𝑔
𝑖
, 𝑖 ∈ 𝐼, and ℎ

𝑗
, 𝑗 ∈ 𝐽, are defined in

(VQFP), 𝑥∗ ∈ 𝑆 and 𝑤 = (𝑤
1
, . . . , 𝑤

𝑚
)
𝑇

∈ R𝑚, 𝑤 > 0.

4.1. The Relationship between the Associated Problems. The
next theorem and its proof are similar to Lemma 1.1 from
[17], whenPareto optimal solutions (not necessarilyweak) are
considered.

Theorem 11. 𝑥
∗ ∈ Eff (𝑉𝑄𝐹𝑃) if and only if 𝑥∗ ∈

Eff (𝑉𝑄𝐹𝑃)
𝑥
∗ .

Proof. See Lemma 1.1 in [17], considering “≤” instead of “<.”

In Section 3, we define the matrix 𝐹(𝑥
∗
) =

∑
𝑚

𝑖=1
[(𝜏
𝑖
/𝑔
𝑖
(𝑥∗))𝐴

𝑖
− (𝜏

𝑖
𝑓
𝑖
(𝑥∗)/[𝑔

𝑖
(𝑥∗)]
2
)𝐵
𝑖
], where

𝑥∗ ∈ 𝑆 and 𝜏 ∈ R𝑚, 𝜏 > 0. Let us define now the set
W = {𝑤 ∈ R𝑚 | 𝑤 > 0}, the function 𝐹 : W × 𝑆 → R𝑛×𝑛

given by

𝐹 (𝑤, 𝑥) ≡

𝑚

∑
𝑖=1

𝑤
𝑖
[𝐴
𝑖
−

𝑓
𝑖
(𝑥)

𝑔
𝑖
(𝑥)

𝐵
𝑖
] , (31)

and, for each 𝑖 ∈ 𝐼, the functions 𝐹
𝑖
: 𝑆 → R𝑛×𝑛 given by

𝐹
𝑖
(𝑥) ≡ 𝐴

𝑖
−

𝑓
𝑖
(𝑥)

𝑔
𝑖
(𝑥)

𝐵
𝑖
. (32)

Then, we have 𝐹(𝑥∗) = 𝐹(𝜏/𝑔(𝑥∗), 𝑥∗), where 𝜏/𝑔(𝑥∗) =

(𝜏
1
/𝑔
1
(𝑥∗), . . . , 𝜏

𝑚
/𝑔
𝑚
(𝑥∗))𝑇 ∈ W, 𝐹(𝑤, 𝑥) = ∑

𝑚

𝑖=1
𝑤
𝑖
𝐹
𝑖
(𝑥),

and we can establish some relations among the associated
problems (VQFP), (VQFP)

𝑥
∗ , and (VQFP)𝑤

𝑥
∗ .

Theorem 12. If 𝑥∗ is an optimal solution of the weighted scalar
problem (VQFP)𝑤

𝑥
∗ , then 𝑥∗ ∈ Eff (𝑉𝑄𝐹𝑃).

Proof. Suppose that 𝑥
∗ ∉ Eff (VQFP); then there exists

another point 𝑥 ∈ 𝑆 such that

𝑓
𝑖
(𝑥)

𝑔
𝑖
(𝑥)

≤
𝑓
𝑖
(𝑥∗)

𝑔
𝑖
(𝑥∗)

󳨐⇒ 𝑓
𝑖
(𝑥) −

𝑓
𝑖
(𝑥∗)

𝑔
𝑖
(𝑥∗)

𝑔
𝑖
(𝑥) ≤ 0

󳨐⇒

𝑚

∑
𝑖=1

𝑤
𝑖
(𝑓
𝑖
(𝑥) −

𝑓
𝑖
(𝑥∗)

𝑔
𝑖
(𝑥∗)

𝑔
𝑖
(𝑥)) < 0

󳨐⇒

𝑚

∑
𝑖=1

𝑤
𝑖
(𝑓
𝑖
(𝑥) −

𝑓
𝑖
(𝑥∗)

𝑔
𝑖
(𝑥∗)

𝑔
𝑖
(𝑥))

<

𝑚

∑
𝑖=1

𝑤
𝑖
(𝑓
𝑖
(𝑥
∗
) −

𝑓
𝑖
(𝑥∗)

𝑔
𝑖
(𝑥∗)

𝑔
𝑖
(𝑥
∗
)) .

(33)

This contradicts the minimality of 𝑥∗ in (VQFP)𝑤
𝑥
∗ .

Lemma 13. Let 𝑥∗ ∈ Eff (𝑉𝑄𝐹𝑃). Suppose that the constraint
qualification (GGCQ) is satisfied at 𝑥∗; then there exist vectors
𝜏∗ > 0 and 𝜆∗ ≧ 0 such that

𝑚

∑
𝑖=1

𝜏∗
𝑖
(∇𝑓
𝑖
(𝑥∗) −

𝑓
𝑖
(𝑥∗)

𝑔
𝑖
(𝑥∗)

∇𝑔
𝑖
(𝑥∗)) +

ℓ

∑
𝑗=1

𝜆∗
𝑗
∇ℎ
𝑗
(𝑥∗) = 0,

ℓ

∑
𝑗=1

𝜆∗
𝑗
ℎ
𝑗
(𝑥∗) = 0.

(34)

Proof. Let 𝑥∗ ∈ 𝑆, 𝜇 ∈ R𝑚, 𝜇 > 0, and 𝜏
𝑖
= 𝜇
𝑖
/𝑔
𝑖
(𝑥∗) > 0,

𝑖 ∈ 𝐼. Then

𝑚

∑
𝑖=1

𝜇
𝑖
∇
𝑓
𝑖
(𝑥∗)

𝑔
𝑖
(𝑥∗)

=

𝑚

∑
𝑖=1

𝜏
𝑖
𝑔
𝑖
(𝑥
∗
) ∇

𝑓
𝑖
(𝑥∗)

𝑔
𝑖
(𝑥∗)

=

𝑚

∑
𝑖=1

𝜏
𝑖
𝑔
𝑖
(𝑥
∗
)(

∇𝑓
𝑖
(𝑥∗) 𝑔

𝑖
(𝑥∗) − ∇𝑔

𝑖
(𝑥∗) 𝑓

𝑖
(𝑥∗)

[𝑔
𝑖
(𝑥∗)]
2

)

=

𝑚

∑
𝑖=1

𝜏
𝑖
(∇𝑓
𝑖
(𝑥
∗
) −

𝑓
𝑖
(𝑥∗)

𝑔
𝑖
(𝑥∗)

∇𝑔
𝑖
(𝑥
∗
)) ,

(35)

and if 𝑥∗ ∈ Eff (VQFP), by Lemma 4, there exist 𝜇∗ > 0 and
𝜆∗ ≧ 0 such that (𝑥∗, 𝜇∗, 𝜆∗) is a critical point, in the KKT
sense, of the problem (VQFP). That is,

𝑚

∑
𝑖=1

𝜇
∗

𝑖
∇
𝑓
𝑖
(𝑥∗)

𝑔
𝑖
(𝑥∗)

+

ℓ

∑
𝑗=1

𝜆
∗

𝑗
∇ℎ
𝑗
(𝑥
∗
) = 0,

ℓ

∑
𝑗=1

𝜆
∗

𝑗
ℎ
𝑗
(𝑥
∗
) = 0.

(36)
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From (35), there exist 𝜏∗ > 0, 𝜏∗
𝑖

= 𝜇∗
𝑖
/𝑔
𝑖
(𝑥∗) > 0, 𝑖 ∈ 𝐼, and

𝜆∗ ≧ 0 such that

𝑚

∑
𝑖=1

𝜏∗
𝑖
(∇𝑓
𝑖
(𝑥∗) −

𝑓
𝑖
(𝑥∗)

𝑔
𝑖
(𝑥∗)

∇𝑔
𝑖
(𝑥∗)) +

ℓ

∑
𝑗=1

𝜆∗
𝑗
∇ℎ
𝑗
(𝑥∗) = 0,

ℓ

∑
𝑗=1

𝜆∗
𝑗
ℎ
𝑗
(𝑥∗) = 0.

(37)

Therefore, the result is valid.

Lemma 14. Let 𝑥∗ ∈ 𝑆. If there exists 𝑤 ∈ W, such that
the matrix 𝐹(𝑤, 𝑥∗) is positive semidefinite, then the objective
function of (VQFP)𝑤

𝑥
∗ is convex.

Proof. Given 𝑥
1
, 𝑥
2
∈ 𝑆, we have, for each 𝑖 ∈ 𝐼,

𝑓
𝑖
(𝑥
1
) − 𝑓
𝑖
(𝑥
2
) = (𝑥

1
− 𝑥
2
)
𝑇

𝐴
𝑖
(𝑥
1
− 𝑥
2
)

+ ∇𝑓
𝑖
(𝑥
2
)
𝑇

(𝑥
1
− 𝑥
2
) ,

𝑔
𝑖
(𝑥
1
) − 𝑔
𝑖
(𝑥
2
) = (𝑥

1
− 𝑥
2
)
𝑇

𝐵
𝑖
(𝑥
1
− 𝑥
2
)

+ ∇𝑔
𝑖
(𝑥
2
)
𝑇

(𝑥
1
− 𝑥
2
) .

(38)

Hence, for each objective function of (VQFP)
𝑥
∗ , we have

(𝑓
𝑖
(𝑥
1
) −

𝑓
𝑖
(𝑥
∗
)

𝑔
𝑖
(𝑥∗)

𝑔
𝑖
(𝑥
1
))

− (𝑓
𝑖
(𝑥
2
) −

𝑓
𝑖
(𝑥∗)

𝑔
𝑖
(𝑥∗)

𝑔
𝑖
(𝑥
2
))

= (𝑓
𝑖
(𝑥
1
) − 𝑓
𝑖
(𝑥
2
)) −

𝑓
𝑖
(𝑥∗)

𝑔
𝑖
(𝑥∗)

(𝑔
𝑖
(𝑥
1
) − 𝑔
𝑖
(𝑥
2
))

= {(𝑥
1
− 𝑥
2
)
𝑇

𝐴
𝑖
(𝑥
1
− 𝑥
2
) + ∇𝑓

𝑖
(𝑥
2
)
𝑇

(𝑥
1
− 𝑥
2
)}

−
𝑓
𝑖
(𝑥∗)

𝑔
𝑖
(𝑥∗)

⋅ {(𝑥
1
− 𝑥
2
)
𝑇

𝐵
𝑖
(𝑥
1
− 𝑥
2
) + ∇𝑔

𝑖
(𝑥
2
)
𝑇

(𝑥
1
− 𝑥
2
)}

= (𝑥
1
− 𝑥
2
)
𝑇

[𝐴
𝑖
−

𝑓
𝑖
(𝑥∗)

𝑔
𝑖
(𝑥∗)

𝐵
𝑖
] (𝑥
1
− 𝑥
2
)

+ (∇𝑓
𝑖
(𝑥
2
) −

𝑓
𝑖
(𝑥∗)

𝑔
𝑖
(𝑥∗)

∇𝑔
𝑖
(𝑥
2
))

𝑇

(𝑥
1
− 𝑥
2
) .

(39)

If there exists𝑤 ∈ W such that thematrix𝐹(𝑤, 𝑥∗) is positive
semidefinite, then

𝑚

∑
𝑖=1

𝑤
𝑖
(𝑓
𝑖
(𝑥
1
) −

𝑓
𝑖
(𝑥∗)

𝑔
𝑖
(𝑥∗)

𝑔
𝑖
(𝑥
1
))

−

𝑚

∑
𝑖=1

𝑤
𝑖
(𝑓
𝑖
(𝑥
2
) −

𝑓
𝑖
(𝑥∗)

𝑔
𝑖
(𝑥∗)

𝑔
𝑖
(𝑥
2
))

= (𝑥
1
− 𝑥
2
)
𝑇

𝑚

∑
𝑖=1

𝑤
𝑖
[𝐴
𝑖
−

𝑓
𝑖
(𝑥∗)

𝑔
𝑖
(𝑥∗)

𝐵
𝑖
] (𝑥
1
− 𝑥
2
)

+

𝑚

∑
𝑖=1

𝑤
𝑖
(∇𝑓
𝑖
(𝑥
2
) −

𝑓
𝑖
(𝑥∗)

𝑔
𝑖
(𝑥∗)

∇𝑔
𝑖
(𝑥
2
))

𝑇

(𝑥
1
− 𝑥
2
)

≧ (

𝑚

∑
𝑖=1

𝑤
𝑖
(∇𝑓
𝑖
(𝑥
2
) −

𝑓
𝑖
(𝑥∗)

𝑔
𝑖
(𝑥∗)

∇𝑔
𝑖
(𝑥
2
)))

𝑇

(𝑥
1
− 𝑥
2
) .

(40)

Therefore, the objective function of (VQFP)𝑤
𝑥
∗ is convex.

Note that the hypothesis of semidefiniteness on the
matrix 𝐹(𝑤, 𝑥

∗) or on the matrices 𝐹
𝑖
(𝑥∗), 𝑖 ∈ 𝐼, 𝑥∗ ∈ 𝑆, is

punctual. However, in the next example, we draw a situation
in which, for all 𝑥 ∈ 𝑆 and 𝑖 ∈ 𝐼, we have 𝑦

𝑇
𝐹
𝑖
(𝑥)𝑦 ≧ 0, for all

𝑦 ∈ 𝑆, and then 𝑦𝑇𝐹(𝑤, 𝑥)𝑦 ≧ 0, for all 𝑦 ∈ 𝑆.

Example. Consider the problem (VQFP), where 𝑆 = [−2, 2]

and for all 𝑥 ∈ 𝑆

𝑓
1
(𝑥)

𝑔
1
(𝑥)

=
𝑥 − 2

𝑥2 + 2
,

𝑓
2
(𝑥)

𝑔
2
(𝑥)

=
2𝑥2 − 𝑥 − 1

𝑥2 + 1
,

𝑓
3
(𝑥)

𝑔
3
(𝑥)

=
−2𝑥2 − 2𝑥 − 5

𝑥2 + 𝑥 + 1
.

(41)

For all these functions, we obtain for all 𝑦 ∈ 𝑆

𝑦
𝑇
[𝐴
1
−

𝑓
1
(𝑥)

𝑔
1
(𝑥)

𝐵
1
] 𝑦 = 𝑦

2
(0 −

𝑥 − 2

𝑥2 + 2
1)

=
𝑦
2
(2 − 𝑥)

𝑥2 + 2
≧ 0,

𝑦
𝑇
[𝐴
2
−

𝑓
2
(𝑥)

𝑔
2
(𝑥)

𝐵
2
] 𝑦 = 𝑦

2
(2 −

2𝑥2 − 𝑥 − 1

𝑥2 + 1
1)

=
𝑦2 (𝑥 + 3)

𝑥2 + 1
≧ 0,

𝑦
𝑇
[𝐴
3
−

𝑓
3
(𝑥)

𝑔
3
(𝑥)

𝐵
3
] 𝑦 = 𝑦

2
(−2 −

−2𝑥2 − 2𝑥 − 5

𝑥2 + 𝑥 + 1
1)

=
3𝑦2

𝑥2 + 𝑥 + 1
≧ 0.

(42)

Therefore, for this example, each point 𝑥∗ satisfying (3), (4),
and (5) is Pareto optimal. For example, for (𝜏

1
, 𝜏
2
, 𝜏
3
)
𝑇

=

(0.5, 1, 0.25)
𝑇 and (𝜆

1
, 𝜆
2
)
𝑇

= (1, 1), we have that 𝑥∗ =

0 is Pareto optimal solution. Likewise, for (𝜏
1
, 𝜏
2
, 𝜏
3
)
𝑇

≈

(0.62, 1, 0.89)
𝑇 and (𝜆

1
, 𝜆
2
)
𝑇

= (0, 0)
𝑇, we have that 𝑥∗ =

−0.25 is Pareto optimal solution.

Theorem 11 shows an equivalence between the associated
problems (VQFP) and (VQFP)

𝑥
∗ . The next theorem shows a

relation between the problems (VQFP)
𝑥
∗ and (VQFP)𝑤

𝑥
∗ ; then

it provides a converse to the Theorem 12.



10 Journal of Applied Mathematics

Theorem 15. Let 𝑥∗ ∈ Eff (𝑉𝑄𝐹𝑃)
𝑥
∗ . Suppose that the

constraint qualification (GGCQ) is satisfied at 𝑥∗ and the
constraint function ℎ

𝑗
is convex for each 𝑗 ∈ 𝐽.Then there exists

𝑤 ∈ W such that if the matrix 𝐹(𝑤, 𝑥∗) is positive semidefinite,
then 𝑥∗ is the optimal solution for the weighted scalar problem
(VQFP)𝑤

𝑥
∗ .

Proof. If 𝑥∗ ∈ Eff (VQFP)
𝑥
∗ and satisfies (GGCQ), by

Lemma 13, there exist 𝑤 > 0 and 𝜆 ≧ 0, such that

𝑚

∑
𝑖=1

𝑤∗
𝑖
(∇𝑓
𝑖
(𝑥∗) −

𝑓
𝑖
(𝑥∗)

𝑔
𝑖
(𝑥∗)

∇𝑔
𝑖
(𝑥∗)) +

ℓ

∑
𝑗=1

𝜆∗
𝑗
∇ℎ
𝑗
(𝑥∗) = 0,

ℓ

∑
𝑗=1

𝜆∗
𝑗
ℎ
𝑗
(𝑥∗) = 0.

(43)

Therefore, 𝑥∗ is a critical point of the weighted scalar problem
(VQFP)𝑤

𝑥
∗ , and since 𝐹(𝑤, 𝑥∗) is positive semidefinite, by

Lemma 14, the objective function of (VQFP)𝑤
𝑥
∗ is convex.

Since for each 𝑗 ∈ 𝐽 the constraint function ℎ
𝑗
is convex, it

follows that 𝑥∗ is an optimal solution for (VQFP)𝑤
𝑥
∗ .

4.2. Duality Theorems. For a given mathematical optimiza-
tion problem there are many types of duality. Two well-
known duals are theWolfe dual [38] and theMond-Weir dual
[13]. In this work, we consider the primal problem (VQFP)
and discuss the Mond-Weir dual problem, but we use the
associated problem (VQFP)

𝑥
∗ to generate the constraint set

of the dual problem. Let us consider the following vector
quadratic fractional dual optimization problem (VQFD):

Maximize
𝑓 (𝑢)

𝑔 (𝑢)
= (

𝑓
1
(𝑢)

𝑔
1
(𝑢)

, . . . ,
𝑓
𝑚

(𝑢)

𝑔
𝑚

(𝑢)
)

subject to
𝑚

∑
𝑖=1

𝜏
𝑖
(∇𝑓
𝑖
(𝑢) −

𝑓 (𝑢)

𝑔 (𝑢)
∇𝑔
𝑖
(𝑢))

+

ℓ

∑
𝑗=1

𝜆
𝑗
∇ℎ
𝑗
(𝑢) = 0,

ℓ

∑
𝑗=1

𝜆
𝑗
ℎ
𝑗
(𝑢) ≧ 0,

𝜏 > 0, 𝜆 ≧ 0,

ℓ

∑
𝑗=1

𝜆
𝑗
= 1,

𝑢 ∈ 𝑆,

(VQFD)

where 𝑓
𝑖
and 𝑔

𝑖
, 𝑖 ∈ 𝐼, are the same quadratic functions

defined on (VQFP), and we denote its feasible set by 𝑌.

Theorem 16 (weak duality). Let 𝑥 ∈ 𝑆 and (𝑢, 𝜏, 𝜆) ∈ 𝑌. If
𝐹(𝜏, 𝑢) is positive semidefinite and the constraint function ℎ

𝑗
is

convex for each 𝑗 ∈ 𝐽, then

𝑓 (𝑥)

𝑔 (𝑥)
≰

𝑓 (𝑢)

𝑔 (𝑢)
. (44)

Proof. If there are 𝑥 ∈ 𝑆 and (𝑢, 𝜏, 𝜆) ∈ 𝑌 such that
𝑓(𝑥)/𝑔(𝑥) ≤ 𝑓(𝑢)/𝑔(𝑢), then

𝑓 (𝑥)

𝑔 (𝑥)
≤

𝑓 (𝑢)

𝑔 (𝑢)
󳨐⇒ 𝑓 (𝑥) −

𝑓 (𝑢)

𝑔 (𝑢)
𝑔 (𝑥) ≤ 0

󳨐⇒

𝑚

∑
𝑖=1

𝜏
𝑖
(𝑓
𝑖
(𝑥) −

𝑓
𝑖
(𝑢)

𝑔
𝑖
(𝑢)

𝑔
𝑖
(𝑥)) < 0.

(45)

Since 𝑥 ∈ 𝑆, then ∑
ℓ

𝑗=1
𝜆
𝑗
ℎ
𝑗
(𝑥) ≦ 0, and ∑

ℓ

𝑗=1
𝜆
𝑗
ℎ
𝑗
(𝑢) ≧ 0

implies that

𝑚

∑
𝑖=1

𝜏
𝑖
(𝑓
𝑖
(𝑥) −

𝑓
𝑖
(𝑢)

𝑔
𝑖
(𝑢)

𝑔
𝑖
(𝑥)) +

ℓ

∑
𝑗=1

𝜆
𝑗
ℎ
𝑗
(𝑥)

<

𝑚

∑
𝑖=1

𝜏
𝑖
(𝑓
𝑖
(𝑢) −

𝑓
𝑖
(𝑢)

𝑔
𝑖
(𝑢)

𝑔
𝑖
(𝑢)) +

ℓ

∑
𝑗=1

𝜆
𝑗
ℎ
𝑗
(𝑢) .

(46)

Once 𝐹(𝜏, 𝑢) is positive semidefinite and each constraint
function ℎ

𝑗
is convex, we can use Lemma 14 to conclude that

the objective function of (VQFP)𝜏
𝑥
∗ is convex, and

0 >

𝑚

∑
𝑖=1

𝜏
𝑖
[(𝑓
𝑖
(𝑥) −

𝑓
𝑖
(𝑢)

𝑔
𝑖
(𝑢)

𝑔
𝑖
(𝑥)) − (𝑓

𝑖
(𝑢) −

𝑓
𝑖
(𝑢)

𝑔
𝑖
(𝑢)

𝑔
𝑖
(𝑢))]

+

ℓ

∑
𝑗=1

𝜆
𝑗
(ℎ
𝑗
(𝑥) − ℎ

𝑗
(𝑢))

≧

𝑚

∑
𝑖=1

𝜏
𝑖
(∇𝑓
𝑖
(𝑢) −

𝑓
𝑖
(𝑢)

𝑔
𝑖
(𝑢)

∇𝑔
𝑖
(𝑢))

𝑇

(𝑥 − 𝑢)

+

ℓ

∑
𝑗=1

𝜆
𝑗
∇ℎ
𝑗
(𝑢)
𝑇
(𝑥 − 𝑢)

= (𝑥 − 𝑢)
𝑇

⋅ (

𝑚

∑
𝑖=1

𝜏
𝑖
(∇𝑓
𝑖
(𝑢) −

𝑓
𝑖
(𝑢)

𝑔
𝑖
(𝑢)

∇𝑔
𝑖
(𝑢)) +

ℓ

∑
𝑗=1

𝜆
𝑗
∇ℎ
𝑗
(𝑢))

= 0,

(47)

which is a contradiction.

Theorem 17 (strong duality). Let 𝑥∗ ∈ Eff (𝑉𝑄𝐹𝑃). Suppose
that (GGCQ) holds at 𝑥∗; then there exists (𝜏∗, 𝜆∗) such
that (𝑥∗, 𝜏∗, 𝜆∗) is feasible for (VQFD) and the values of the
objective function of (VQFP) and (VQFD) are equal.Moreover,
if 𝐹(𝜏
∗, 𝑥∗) is positive semidefinite and the constraint function

ℎ
𝑗
is convex for each 𝑗 ∈ 𝐽, then (𝑥∗, 𝜏∗, 𝜆∗) ∈ Eff (𝑉𝑄𝐹𝐷).
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Proof. If 𝑥∗ ∈ Eff (VQFP), by Lemma 13, there are 𝜏∗ > 0

and 𝜆∗ ≧ 0 such that (𝑥∗, 𝜏∗, 𝜆∗) satisfies

𝑚

∑
𝑖=1

𝜏∗
𝑖
(∇𝑓
𝑖
(𝑥∗) −

𝑓
𝑖
(𝑥∗)

𝑔
𝑖
(𝑥∗)

∇𝑔
𝑖
(𝑥∗)) +

ℓ

∑
𝑗=1

𝜆∗
𝑗
∇ℎ
𝑗
(𝑥∗) = 0,

ℓ

∑
𝑗=1

𝜆∗
𝑗
ℎ
𝑗
(𝑥∗) = 0.

(48)

Then (𝑥∗, 𝜏∗, 𝜆∗) ∈ 𝑌 and the values of the objective
functions of (VQFP) and (VQFD) are equal. Moreover, if
𝐹(𝜏
∗, 𝑥∗) is positive semidefinite, each constraint function ℎ

𝑗

is convex, and (𝑥∗, 𝜏∗, 𝜆∗) ∉ Eff (VQFD), then there exists
another point (𝑢, 𝜏, 𝜆) ∈ 𝑌 such that

𝑓 (𝑢)

𝑔 (𝑢)
≥

𝑓 (𝑥∗)

𝑔 (𝑥∗)
, (49)

contradicting the weak duality.

Theorem 18 (converse duality). Let (𝑢∗, 𝜏∗, 𝜆∗) ∈ 𝑌 and 𝑢∗

be feasible point of the primal problem (VQFP). If 𝐹(𝜏∗, 𝑢∗) is
positive semidefinite and the constraint function ℎ

𝑗
is convex

for each 𝑗 ∈ 𝐽, then 𝑢∗ ∈ Eff (𝑉𝑄𝐹𝑃).

Proof. If (𝑢∗, 𝜏∗, 𝜆∗) ∈ 𝑌 and 𝑢∗ ∈ 𝑆, then∑
ℓ

𝑗=1
𝜆∗
𝑗
ℎ
𝑗
(𝑢∗) ≧ 0,

∑
ℓ

𝑗=1
𝜆∗
𝑗
ℎ
𝑗
(𝑢∗) ≦ 0, and

𝑚

∑
𝑖=1

𝜏∗
𝑖
(∇𝑓
𝑖
(𝑢∗) −

𝑓
𝑖
(𝑢∗)

𝑔
𝑖
(𝑢∗)

∇𝑔
𝑖
(𝑢∗)) +

ℓ

∑
𝑗=1

𝜆∗
𝑗
∇ℎ
𝑗
(𝑢∗) = 0,

ℓ

∑
𝑗=1

𝜆∗
𝑗
ℎ
𝑗
(𝑢∗) = 0.

(50)

Therefore, 𝑢∗ is a critical point for the weighted scalar
problem (VQFP)𝜏

∗

𝑢
∗ . Since 𝐹(𝜏∗, 𝑢∗) is positive semidefinite,

by Lemma 14, the objective function of (VQFP)𝜏
∗

𝑢
∗ is convex.

Moreover, if each constraint function ℎ
𝑗
is convex, 𝑗 ∈ 𝐽, then

𝑢∗ is an optimal solution of (VQFP)𝜏
∗

𝑢
∗ . Thus, by Theorem 12,

we have 𝑢∗ ∈ Eff (VQFP).

We can obtain a second type of converse duality theorem
requiring more of the matrix function 𝐹. Specifically, there
must be vectors (𝑤, 𝑥) ∈ W × 𝑆 such that 𝐹(𝑤, 𝑥) is positive
definite; that is, 𝑦𝑇𝐹(𝑤, 𝑥)𝑦 > 0, ∀𝑦 ∈ R𝑛, and 𝑦 ̸= 0.

Theorem 19 (strict converse duality). Let 𝑥∗ ∈ 𝑆 and
(𝑢∗, 𝜏∗, 𝜆∗) ∈ 𝑌 such that

𝑚

∑
𝑖=1

𝜏
∗

𝑖

𝑓
𝑖
(𝑥∗)

𝑔
𝑖
(𝑥∗)

=

𝑚

∑
𝑖=1

𝜏
∗

𝑖

𝑓
𝑖
(𝑢∗)

𝑔
𝑖
(𝑢∗)

. (51)

If the matrix 𝐹(𝜏∗/𝑔(𝑥∗), 𝑢∗) is positive definite and the
constraint function ℎ

𝑗
is convex for each 𝑗 ∈ 𝐽, then 𝑥∗ = 𝑢∗.

Proof. Suppose 𝑥
∗ ̸= 𝑢∗. Since 𝑥∗ ∈ 𝑆 and (𝑢∗, 𝜏∗, 𝜆∗) ∈ 𝑌,

then −∑
ℓ

𝑗=1
𝜆∗
𝑗
ℎ
𝑗
(𝑢∗) ≦ 0 and ∑

ℓ

𝑗=1
𝜆∗
𝑗
ℎ
𝑗
(𝑥∗) ≦ 0. If each

constraint function ℎ
𝑗
is convex, 𝑗 ∈ 𝐽, we obtain

0 ≧

ℓ

∑
𝑗=1

𝜆
∗

𝑗
ℎ
𝑗
(𝑥
∗
) −

ℓ

∑
𝑗=1

𝜆
∗

𝑗
ℎ
𝑗
(𝑢
∗
)

≧ (

ℓ

∑
𝑗=1

𝜆
∗

𝑗
∇ℎ
𝑗
(𝑢
∗
))

𝑇

(𝑥
∗
− 𝑢
∗
)

= (−

𝑚

∑
𝑖=1

𝜏
∗

𝑖
(∇𝑓
𝑖
(𝑢
∗
) −

𝑓
𝑖
(𝑢∗)

𝑔
𝑖
(𝑢∗)

∇𝑔
𝑖
(𝑢
∗
)))

𝑇

(𝑥
∗
− 𝑢
∗
)

󳨐⇒

𝑚

∑
𝑖=1

𝜏
∗

𝑖
(∇𝑓
𝑖
(𝑢
∗
) −

𝑓
𝑖
(𝑢∗)

𝑔
𝑖
(𝑢∗)

∇𝑔
𝑖
(𝑢
∗
))

𝑇

(𝑥
∗
− 𝑢
∗
) ≧ 0.

(52)

Using the proof of Theorem 5, given 𝑢∗ ∈ 𝑆 and 𝑖 ∈ 𝐼, for all
𝑥 ∈ 𝑆, we have

𝑓
𝑖
(𝑥)

𝑔
𝑖
(𝑥)

−
𝑓
𝑖
(𝑢∗)

𝑔
𝑖
(𝑢∗)

=
1

𝑔
𝑖
(𝑥)

{(𝑥 − 𝑢
∗
)
𝑇

[𝐴
𝑖
−

𝑓
𝑖
(𝑢∗)

𝑔
𝑖
(𝑢∗)

𝐵
𝑖
] (𝑥 − 𝑢

∗
)}

+
1

𝑔
𝑖
(𝑥)

{(∇𝑓
𝑖
(𝑢
∗
) −

𝑓
𝑖
(𝑢∗)

𝑔
𝑖
(𝑢∗)

∇𝑔
𝑖
(𝑢
∗
))

𝑇

(𝑥 − 𝑢
∗
)} .

(53)

Therefore, for (𝜏∗, 𝑥∗) ∈ W × 𝑆, we obtain
𝑚

∑
𝑖=1

𝜏
∗

𝑖
(

𝑓
𝑖
(𝑥∗)

𝑔
𝑖
(𝑥∗)

−
𝑓
𝑖
(𝑢∗)

𝑔
𝑖
(𝑢∗)

)

= (𝑥
∗
− 𝑢
∗
)
𝑇

[𝐹(
𝜏∗

𝑔 (𝑥∗)
, 𝑢
∗
)] (𝑥

∗
− 𝑢
∗
)

+

𝑚

∑
𝑖=1

𝜏∗
𝑖

𝑔
𝑖
(𝑥∗)

(∇𝑓
𝑖
(𝑢
∗
) −

𝑓
𝑖
(𝑢∗)

𝑔
𝑖
(𝑢∗)

∇𝑔
𝑖
(𝑢
∗
))

𝑇

(𝑥
∗
− 𝑢
∗
) ,

(54)

and since 𝐹(𝜏∗/𝑔(𝑥∗), 𝑢∗) is positive definite and 𝑥∗ ̸= 𝑢∗,
then by (51)

0 =

𝑚

∑
𝑖=1

𝜏
∗

𝑖
(

𝑓
𝑖
(𝑥∗)

𝑔
𝑖
(𝑥∗)

−
𝑓
𝑖
(𝑢∗)

𝑔
𝑖
(𝑢∗)

)

>

𝑚

∑
𝑖=1

𝜏∗
𝑖

𝑔
𝑖
(𝑥∗)

(∇𝑓
𝑖
(𝑢
∗
) −

𝑓
𝑖
(𝑢∗)

𝑔
𝑖
(𝑢∗)

∇𝑔
𝑖
(𝑢
∗
))

𝑇

(𝑥
∗
− 𝑢
∗
)

≧ min
𝑖∈𝐼

{
1

𝑔
𝑖
(𝑥∗)

}

⋅

𝑚

∑
𝑖=1

𝜏
∗

𝑖
(∇𝑓
𝑖
(𝑢
∗
) −

𝑓
𝑖
(𝑢∗)

𝑔
𝑖
(𝑢∗)

∇𝑔
𝑖
(𝑢
∗
))

𝑇

(𝑥
∗
− 𝑢
∗
) ≧ 0,

(55)

which is a contradiction.
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5. Conclusions

The main contribution of this work is the development of
Pareto optimality conditions for a particular vector opti-
mization problem, where each objective function consists
of a ratio of two quadratic functions with convexity being
only assumed on the constraint set. We took advantage of
the diagonalization of Hessian matrices. We have shown
the relationship between the particular problem and two
problems associated with it, and we use some assumptions
of the linear combination of Hessian matrices to show the
main duality theorems. For the particular problem, the
results presented in this work might be useful to determine
the termination criteria in the development of algorithms,
and new extensions can be established to more general
vector optimization problems, in which algorithms based on
quadratic approximations are used locally. In future work we
plan to develop algorithms using the concepts presented here.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The authors are indebted to the anonymous reviewers for
their helpful comments. W. A. Oliveira was supported by
Coordination for the Improvement ofHigher Level Personnel
of Brazil (CAPES). A. Beato-Moreno was partially supported
by Spain’s Ministry of Science and Technology under Grant
MTM2007-63432. A. C. Moretti and L. L. Salles Neto were
partially supported by National Council for Scientific and
Technological Development of Brazil (CNPq) and Founda-
tion for Research Support of the State of São Paulo (FAPESP).

References

[1] V. Chankong and Y. Y. Haimes,Multiobjective Decision Making:
Theory and Methodology, vol. 8 of North-Holland Series in Sys-
tem Science and Engineering, North-Holland, Elsevier Science,
New York, NY, USA, 1983.

[2] K.M.Miettinen,NonlinearMultiobjectiveOptimization, Kluwer
Academic Publishers, Boston, Mass, Usa, 1999.

[3] W. Dinkelbach, “On nonlinear fractional programming,”Man-
agement Science, vol. 13, no. 7, pp. 492–498, 1967.

[4] R. Jagannathan, “Duality for nonlinear fractional programs,”
Zeitschrift für Operations Research, vol. 17, no. 1, pp. 1–3, 1973.

[5] T. Antczak, “Modified ratio objective approach inmathematical
programming,” Journal of Optimization Theory and Applica-
tions, vol. 126, no. 1, pp. 23–40, 2005.

[6] Z. A. Khan and M. A. Hanson, “On ratio invexity in mathe-
matical programming,” Journal of Mathematical Analysis and
Applications, vol. 205, no. 2, pp. 330–336, 1997.

[7] L. V. Reddy and R. N. Mukherjee, “Some results on mathemat-
ical programming with generalized ratio invexity,” Journal of
Mathematical Analysis andApplications, vol. 240, no. 2, pp. 299–
310, 1999.

[8] V. Jeyakumar, “Strong and weak invexity in mathematical
programming,”Methods ofOperations Research, vol. 55, pp. 109–
125, 1985.

[9] Z. A. Liang, H. X. Huang, and P. M. Pardalos, “Optimality
conditions and duality for a class of nonlinear fractional
programming problems,” Journal of Optimization Theory and
Applications, vol. 110, no. 3, pp. 611–619, 2001.

[10] B. D. Craven, Fractional Programming, vol. 4 of Sigma Series in
Applied Mathematics, Heldermann, Berlin, Germany, 1988.

[11] T. Weir, “A note on invex functions and duality in generalized
fractional programming,” Research Report ACT 2600, Depart-
ment ofMathematics,TheUniversity of New SouthWales, New
South Wales, Australia, 1990.

[12] Z. Liang, H. Huang, and P. M. Pardalos, “Efficiency conditions
and duality for a class ofmultiobjective fractional programming
problems,” Journal of Global Optimization, vol. 27, no. 4, pp.
447–471, 2003.

[13] B. Mond and T. Weir, “Generalized concavity and duality,” in
Generalized Concavity Optimization and Economics, S. Schaible
and W. T. Ziemba, Eds., pp. 263–280, Academic Press, New
York, NY, USA, 1981.

[14] S. Schaible, “Duality in fractional programming: a unified
approach,”Operations Research, vol. 24, no. 3, pp. 452–461, 1976.

[15] C. R. Bector, “Duality in nonlinear fractional programming,”
Zeitschrift für Operations Research B, vol. 17, pp. A183–A193,
1973.

[16] C. R. Bector, S. Chandra, and C. Singh, “A linearization
approach to multiobjective programming duality,” Journal of
Mathematical Analysis and Applications, vol. 175, no. 1, pp. 268–
279, 1993.
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