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Some classes of systems of difference equations whose all well-defined solutions are periodic are presented in this note.

1. Introduction

There has been a great recent interest in studying difference
equations and systems of difference equations which do not
stem fromdifferential ones (see, e.g., [1–19] and the references
therein). For some results on concrete systems of nonlinear
difference equations, see, for example, [1, 3–5, 9–12, 18, 19].
Some classical results in the topic can be found, for example,
in book [20].

Solution (𝑥(1)𝑛 , . . . , 𝑥
(𝑙)
𝑛 )𝑛≥−𝑘, of the system of difference

equations

𝑥
(1)

𝑛 = 𝑓1 (𝑥
(1)

𝑛−1, . . . , 𝑥
(1)

𝑛−𝑘
1

, . . . , 𝑥
(𝑙)

𝑛−1, . . . , 𝑥
(𝑙)

𝑛−𝑘
𝑙

) ,

𝑥
(2)

𝑛 = 𝑓2 (𝑥
(1)

𝑛−1, . . . , 𝑥
(1)

𝑛−𝑘
1

, . . . , 𝑥
(𝑙)

𝑛−1, . . . , 𝑥
(𝑙)

𝑛−𝑘
𝑙

) ,

...

𝑥
(𝑙)

𝑛 = 𝑓𝑙 (𝑥
(1)

𝑛−1, . . . , 𝑥
(1)

𝑛−𝑘
1

, . . . , 𝑥
(𝑙)

𝑛−1, . . . , 𝑥
(𝑙)

𝑛−𝑘
𝑙

) ,

(1)

where 𝑛 ∈ N0 and 𝑘 = max{𝑘1, . . . , 𝑘𝑙}, is called eventually
periodic with period 𝑝, if there is an 𝑛1 ≥ −𝑘 such that

𝑥
(𝑗)

𝑛+𝑝 = 𝑥
(𝑗)

𝑛 , (2)

for every 𝑗 = 1, 𝑙, and 𝑛 ≥ 𝑛1. It is periodic with period
𝑝 if 𝑛1 = −𝑘. Period 𝑝 is prime if there is no 𝑝 ∈ N,

𝑝 < 𝑝, which is a period. If all well-defined solutions of an
equation or a system of difference equations are eventually
periodic with the same period, then such an equation or
system is called periodic. For some results on the periodicity,
asymptotic periodicity and periodic equations or systems of
difference equations see, for example, [1–10, 12–14, 16–19] and
the related references therein.

In recent paper [19], the authors formulated four results
which claim that the following systems of difference equa-
tions are periodic with period ten:

𝑥𝑛+1 =
𝑦𝑛

𝑥𝑛−1 (1 + 𝑦𝑛)
, 𝑦𝑛+1 =

𝑥𝑛

𝑦𝑛−1 (1 + 𝑥𝑛)
, 𝑛 ∈ N0;

(3)

𝑥𝑛+1 =
𝑦𝑛

𝑥𝑛−1 (−1 + 𝑦𝑛)
, 𝑦𝑛+1 =

𝑥𝑛

𝑦𝑛−1 (−1 + 𝑥𝑛)
, 𝑛 ∈ N0;

(4)

𝑥𝑛+1 =
𝑦𝑛

𝑥𝑛−1 (1 + 𝑦𝑛)
, 𝑦𝑛+1 =

𝑥𝑛

𝑦𝑛−1 (−1 + 𝑥𝑛)
, 𝑛 ∈ N0;

(5)

𝑥𝑛+1 =
𝑦𝑛

𝑥𝑛−1 (−1 + 𝑦𝑛)
, 𝑦𝑛+1 =

𝑥𝑛

𝑦𝑛−1 (1 + 𝑥𝑛)
, 𝑛 ∈ N0.

(6)
First, we show that all the results in [19] follow from

knownones in the literature and also present some extensions
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of these results in the spirit of systems (3)–(6). To do this,
we will use a system of difference equations related to the
following, so called, Lyness difference equation:

𝑥𝑛+1 =
1 + 𝑥𝑛

𝑥𝑛−1
, 𝑛 ∈ N0. (7)

It is easy to see that every well-defined solution of (7) is
periodic with period five. The equation arises in frieze pat-
terns (for the original sources, see [21–23]).

Studying max-type equations and systems of difference
equations is another topic of a recent interest (see, e.g, [2, 3, 5–
7, 10, 11, 15–19]).

Some special cases of the following max-type difference
equation:

𝑥𝑛 = max{
𝐴𝑛

𝑥𝑛−𝑠
, 𝑥𝑛−𝑘} , 𝑛 ∈ N0, (8)

where 𝑠, 𝑘 ∈ N, and (𝐴𝑛)𝑛∈N
0

⊂ R, have been studied, for
example, in [2, 16]. Positive solutions of (8) are periodic in
many cases. However, if (𝐴𝑛)𝑛∈N

0

is not a positive sequence, it
was shown in [2] that (8) can have unbounded solutions.

In [5], it was shown that all solutions of the following
max-type system of difference equations:

𝑥𝑛+1 = max{
𝐴𝑛

𝑦𝑛
, 𝑥𝑛−1} , 𝑐𝑦𝑛+1 = max{

𝐵𝑛

𝑥𝑛
, 𝑦𝑛−1} ,

𝑛 ∈ N0,

(9)

where 𝑥0, 𝑥−1, 𝑦0, 𝑦−1 ∈ (0, +∞) and (𝐴𝑛)𝑛∈N
0

, (𝐵𝑛)𝑛∈N
0

are positive two-periodic sequences, are eventually periodic
with, not necessarily prime, period two. This was done by
direct calculation.

By using direct calculation, it can be easily shown that
positive solutions of the following max-type system of differ-
ence equations:

𝑥𝑛+1 = max{
𝐴𝑛

𝑥𝑛
, 𝑦𝑛−1} , 𝑦𝑛+1 = max{

𝐵𝑛

𝑦𝑛
, 𝑥𝑛−1} ,

𝑛 ∈ N0,

(10)

where (𝐴𝑛)𝑛∈N
0

and (𝐵𝑛)𝑛∈N
0

are positive two-periodic
sequences, are also periodic.

Here, we give a noncalculatory explanation of the fact
by proving that positive solutions of the following max-type
system of difference equations:

𝑥𝑛 = max{
𝐴𝑛

𝑥𝑛−𝑠
, 𝑦𝑛−𝑘} , 𝑦𝑛 = max{

𝐵𝑛

𝑦𝑛−𝑠
, 𝑥𝑛−𝑘} ,

𝑛 ∈ N0,

(11)

where 𝑠, 𝑘 ∈ N, and (𝐴𝑛)𝑛∈N
0

, (𝐵𝑛)𝑛∈N
0

are positive periodic
sequences of a certain period, are also periodic. We also
present another extension of the result.

2. Some Extensions of Systems (3)–(6)
In this section, we present some periodic systems of differ-
ence equations in the spirit of systems (3)–(6).

Theorem 1. Consider the following system of difference equa-
tions

𝑥
(1)

𝑛+1 = 𝑓
−1

1 (
1 + 𝑓2 (𝑥

(2)
𝑛 )

𝑓3 (𝑥
(3)
𝑛−1)

) ,

...

𝑥
(𝑘−1)

𝑛+1 = 𝑓
−1

𝑘−1(
1 + 𝑓𝑘 (𝑥

(𝑘)
𝑛 )

𝑓1 (𝑥
(1)
𝑛−1)

) ,

𝑥
(𝑘)

𝑛+1 = 𝑓
−1

𝑘 (
1 + 𝑓1 (𝑥

(1)
𝑛 )

𝑓2 (𝑥
(2)
𝑛−1)

) , 𝑛 ∈ N0,

(12)

where 𝑘 ∈ N\ {1}, and functions 𝑓𝑗, 𝑗 = 1, 𝑘, are continuous on
their domains; map the setR\{0} onto itself and, for each fixed
𝑗 ∈ {1, . . . , 𝑘}, 𝑓𝑗 is simultaneously increasing or decreasing on
the intervals (−∞, 0) and (0, +∞).

Then the following statements hold.

(a) If 𝑘 ̸≡ 0 (mod 5), then every well-defined solution of
system (12) is periodic with period 5𝑘.

(b) If 𝑘 ≡ 0 (mod5), then every well-defined solution of
system (12) is periodic with period 𝑘.

Proof. From the conditions of the theorem, it follows that for
each 𝑗 ∈ {1, . . . , 𝑘}, there is 𝑓−1𝑗 which continuously map the
set R \ {0} onto itself. Using the change of variables

𝑦
(𝑗)

𝑛 = 𝑓𝑗 (𝑥
(𝑗)

𝑛 ) , 𝑗 = 1, 𝑘, (13)

system (12) is easily transformed into the next one

𝑦
(1)

𝑛+1 =
1 + 𝑦(2)𝑛

𝑦
(1)
𝑛−1

, 𝑦
(2)

𝑛+1 =
1 + 𝑦(1)𝑛

𝑦
(2)
𝑛−1

, (14)

for 𝑘 = 2,

𝑦
(1)

𝑛+1 =
1 + 𝑦(2)𝑛

𝑦
(3)
𝑛−1

, 𝑦
(2)

𝑛+1 =
1 + 𝑦(3)𝑛

𝑦
(1)
𝑛−1

, 𝑦
(3)

𝑛+1 =
1 + 𝑦(1)𝑛

𝑦
(2)
𝑛−1

,

(15)

for 𝑘 = 3, and

𝑦
(1)

𝑛+1 =
1 + 𝑦(2)𝑛

𝑦
(3)
𝑛−1

, 𝑦
(2)

𝑛+1 =
1 + 𝑦(3)𝑛

𝑦
(4)
𝑛−1

, . . . , 𝑦
(𝑘)

𝑛+1 =
1 + 𝑦(1)𝑛

𝑦
(2)
𝑛−1

,

(16)

for 𝑘 ≥ 4. In [4], it was proved that, if 𝑘 ̸≡ 0 (mod 5), then
every well-defined solution of systems (14)–(16) is periodic
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with period 5𝑘, and, if 𝑘 ≡ 0 (mod5), then every well-
defined solution of systems (14)–(16) is periodic with period
𝑘. Using this along with the fact

𝑥
(𝑗)

𝑛 = 𝑓
−1

𝑗 (𝑦
(𝑗)

𝑛 ) , 𝑗 = 1, 𝑘, (17)

following from (13), the results in (a) and (b) follow.

The following theorem is proved in a similar way. There-
fore, the proof will be omitted.

Theorem 2. Consider the following system of difference equa-
tions

𝑥
(1)

𝑛+1 = 𝑓
−1

1 (
1 + 𝑓𝑘 (𝑥

(𝑘)
𝑛 )

𝑓𝑘−1 (𝑥
(𝑘−1)
𝑛−1 )

) ,

𝑥
(2)

𝑛+1 = 𝑓
−1

2 (
1 + 𝑓1 (𝑥

(1)
𝑛 )

𝑓𝑘 (𝑥
(𝑘)
𝑛−1)

) ,

...

𝑥
(𝑘)

𝑛+1 = 𝑓
−1

𝑘 (
1 + 𝑓𝑘−1 (𝑥

(𝑘−1)
𝑛 )

𝑓𝑘−2 (𝑥
(𝑘−2)
𝑛−1 )

) , 𝑛 ∈ N0,

(18)

where 𝑘 ∈ N\ {1}, and functions 𝑓𝑗, 𝑗 = 1, 𝑘, are continuous on
their domains; map the setR\{0} onto itself and, for each fixed
𝑗 ∈ {1, . . . , 𝑘}, 𝑓𝑗 is simultaneously increasing or decreasing on
the intervals (−∞, 0) and (0, +∞).

Then the following statements hold.

(a) If 𝑘 ̸≡ 0 (mod 5), then every well-defined solution of
system (18) is periodic with period 5𝑘.

(b) If 𝑘 ≡ 0 (mod5), then every well-defined solution of
system (18) is periodic with period 𝑘.

Now, we show that all the results on the periodicity of the
solutions of systems (3)–(6) in [19] follow from Theorems 1
and 2.

Corollary 3. Systems of difference equations (3)–(6) are all
periodic with period ten.

Proof. For the systems of difference equations (3)–(6), we use
the following changes of variables, respectively:

𝑥𝑛 =
1

𝑢𝑛
, 𝑦𝑛 =

1

V𝑛
, 𝑛 ∈ N0;

𝑥𝑛 = −
1

𝑢𝑛
, 𝑦𝑛 = −

1

V𝑛
, 𝑛 ∈ N0;

𝑥𝑛 = −
1

𝑢𝑛
, 𝑦𝑛 =

1

V𝑛
, 𝑛 ∈ N0;

𝑥𝑛 =
1

𝑢𝑛
, 𝑦𝑛 = −

1

V𝑛
, 𝑛 ∈ N0.

(19)

By using them, systems (3)–(6) are transformed into system
(14). By applying Theorem 1(a), ten-periodicity of all well-
defined solutions of system (14) follows, from which ten-
periodicity of all well-defined solutions of systems (3)–(6)
follows.

The following four examples are natural extensions of
systems (3)–(6).

Example 4. If we use the following functions:

𝑓1 (𝑥) =
1

𝑥𝑙
, 𝑓2 (𝑥) =

1

𝑥𝑚
, (20)

where 𝑙 and𝑚 are odd integers, we see that all the conditions
inTheorem 1 are applied with 𝑘 = 2, so by using the theorem
we obtain that the system of difference equations

𝑥𝑛+1 =
1

𝑥𝑛−1
(

𝑦𝑚𝑛

1 + 𝑦𝑚𝑛
)

1/𝑙

,

𝑦𝑛+1 =
1

𝑦𝑛−1
(

𝑥𝑙𝑛

1 + 𝑥𝑙𝑛
)

1/𝑚

,

(21)

𝑛 ∈ N0, is also periodic with period ten.

Example 5. For

𝑓1 (𝑥) = −
1

𝑥𝑙
, 𝑓2 (𝑥) = −

1

𝑥𝑚
, (22)

where 𝑙 and 𝑚 are also odd integers, all the conditions of
Theorem 1 are again satisfied with 𝑘 = 2. Using the theorem,
it follows that the system

𝑥𝑛+1 =
1

𝑥𝑛−1
(

𝑦𝑚𝑛

−1 + 𝑦𝑚𝑛
)

1/𝑙

,

𝑦𝑛+1 =
1

𝑦𝑛−1
(

𝑥𝑙𝑛

−1 + 𝑥𝑙𝑛
)

1/𝑚

,

(23)

𝑛 ∈ N0, is ten-periodic.

Example 6. For

𝑓1 (𝑥) =
1

𝑥𝑙
, 𝑓2 (𝑥) = −

1

𝑥𝑚
, (24)

where 𝑙 and 𝑚 are odd integers, all the conditions of
Theorem 1 are also satisfiedwith 𝑘 = 2. Applying the theorem,
it follows that the system

𝑥𝑛+1 =
1

𝑥𝑛−1
(

𝑦𝑚𝑛

−1 + 𝑦𝑚𝑛
)

1/𝑙

,

𝑦𝑛+1 =
1

𝑦𝑛−1
(

𝑥𝑙𝑛

1 + 𝑥𝑙𝑛
)

1/𝑚

,

(25)

𝑛 ∈ N0, is ten-periodic.

Example 7. Finally, for

𝑓1 (𝑥) = −
1

𝑥𝑙
, 𝑓2 (𝑥) =

1

𝑥𝑚
, (26)
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where 𝑙 and𝑚 are odd integers and applying Theorem 1 with
𝑘 = 2, we get that the system

𝑥𝑛+1 =
1

𝑥𝑛−1
(

𝑦𝑚𝑛

1 + 𝑦𝑚𝑛
)

1/𝑙

,

𝑦𝑛+1 =
1

𝑦𝑛−1
(

𝑥𝑙𝑛

−1 + 𝑥𝑙𝑛
)

1/𝑚

,

(27)

𝑛 ∈ N0, is ten-periodic.

Themain results in [4] can be relatively easily extended to
a very general situation, which have been noticed by Iričanin
and Stević soon after publishing [4], and later also proved by
several other authors. Namely, the following result holds (see,
e.g., [1]).

Theorem 8. Assume that the following difference equation

𝑥𝑛 = 𝑓 (𝑥𝑛−1, . . . , 𝑥𝑛−𝑘) , 𝑛 ∈ N0, (28)

is periodic with period 𝑝.
Then the following system of difference equations

𝑥
(𝑖)

𝑛 = 𝑓(𝑥
(𝜎(𝑖))

𝑛−1 , 𝑥
(𝜎
[2]
(𝑖))

𝑛−2 , . . . , 𝑥
(𝜎
[𝑘]
(𝑖))

𝑛−𝑘
) ,

𝑖 = 1, 𝑙, 𝑛 ∈ N0,

(29)

where 𝜎(𝑖) = 𝑖 + 1, for 1 ≤ 𝑖 ≤ 𝑙 − 1, 𝜎(𝑙) = 1 and 𝜎[𝑗](𝑖) =
𝜎(𝜎[𝑗−1](𝑖)), 𝑗 = 1, 𝑘, and 𝜎[0](𝑖) = 𝑖, 𝑖 = 1, 𝑙, is periodic with
period lcm(𝑝, 𝑙) (the least common multiple of numbers 𝑝
and 𝑙).

Theorem 8 can be used in constructing numerous peri-
odic cyclic systems of difference equations based on scalar
periodic difference equations, which, with some changes of
variables, give some other periodic cyclic systems of differ-
ence equations.

3. Periodicity of Positive Solutions
of System (11)

In this section, we study positive solutions of system (11). By
gcd(𝑠, 𝑘), we denote the greatest common divisor of natural
numbers 𝑠 and 𝑘.

Theorem 9. Consider system (11). Assume that 𝑠, 𝑘 ∈ N,
and (𝐴𝑛)𝑛∈N

0

and (𝐵𝑛)𝑛∈N
0

are positive 𝑘 gcd(𝑠, 𝑘)-periodic
sequences.Then every positive solution of system (11) is periodic
with, not necessarily prime, period

𝑝 = 2𝑘 gcd(𝑠, 𝑘) . (30)

Proof. Let 𝑟 = gcd(𝑠, 𝑘).Thenwehave that 𝑠 = 𝑟𝑠1 and 𝑘 = 𝑟𝑘1
for some 𝑠1, 𝑘1 ∈ N such that

gcd (𝑠1, 𝑘1) = 1. (31)

Since every 𝑛 ∈ N0 can be written as 𝑛 = 𝑚𝑟 + 𝑖, for some
𝑚 ∈ N0 and 𝑖 = 0, 𝑟 − 1, system (11) becomes

𝑥𝑚𝑟+𝑖 = max{
𝐴𝑚𝑟+𝑖

𝑥𝑟(𝑚−𝑠
1
)+𝑖

, 𝑦𝑟(𝑚−𝑘
1
)+𝑖} ,

𝑦𝑚𝑟+𝑖 = max{
𝐵𝑚𝑟+𝑖

𝑦𝑟(𝑚−𝑠
1
)+𝑖

, 𝑥𝑟(𝑚−𝑘
1
)+𝑖} ,

(32)

for every𝑚 ∈ N0 and 𝑖 = 0, 𝑟 − 1.
Using the next change of variables

𝑥
(𝑖)

𝑡 = 𝑥𝑡𝑟+𝑖, 𝑦
(𝑖)

𝑡 = 𝑦𝑡𝑟+𝑖, (33)

where 𝑡 ≥ −max{𝑠1, 𝑘1}, 𝑖 = 0, 𝑟 − 1, in (32), we have that
(𝑥(𝑖)𝑡 )𝑡≥−max{𝑠

1
,𝑘
1
}, (𝑦
(𝑖)
𝑡 )𝑡≥−max{𝑠

1
,𝑘
1
}, 𝑖 = 0, 𝑟 − 1, are 𝑟 indepen-

dent solutions of the next systems

𝑥𝑡 = max{
𝐴 𝑡𝑟+𝑖

𝑥𝑡−𝑠
1

, 𝑦𝑡−𝑘
1

} , 𝑦𝑡 = max{
𝐵𝑡𝑟+𝑖

𝑦𝑡−𝑠
1

, 𝑥𝑡−𝑘
1

} ,

(34)

which are systems of the form in (11) with 𝑠1 and 𝑘1 instead of
𝑠 and 𝑘, and where the sequences (𝐴 𝑡𝑟+𝑖)𝑡∈N

0

and (𝐵𝑡𝑟+𝑖)𝑡∈N
0

,
𝑖 = 1, 𝑟, are 𝑘-periodic.

Hence, it is enough to prove the theoremwhen gcd(𝑠, 𝑘) =
1 and the sequences (𝐴𝑛)𝑛∈N

0

, and (𝐵𝑛)𝑛∈N
0

are positive 𝑘-
periodic.

Now note that from the equations in (11), we have that

𝑥𝑛 ≥ 𝑦𝑛−𝑘, 𝑦𝑛 ≥ 𝑥𝑛−𝑘, for 𝑛 ∈ N0. (35)

Further, by using the equations in (11), we also get

𝑥𝑛 = max{
𝐴𝑛

𝑥𝑛−𝑠
, 𝑦𝑛−𝑘} = max{

𝐴𝑛

𝑥𝑛−𝑠
,
𝐵𝑛−𝑘

𝑦𝑛−𝑘−𝑠
, 𝑥𝑛−2𝑘} ,

𝑦𝑛 = max{
𝐵𝑛

𝑦𝑛−𝑠
, 𝑥𝑛−𝑘} = max{

𝐵𝑛

𝑦𝑛−𝑠
,
𝐴𝑛−𝑘

𝑥𝑛−𝑘−𝑠
, 𝑦𝑛−2𝑘} ,

(36)

for 𝑛 ≥ 𝑘.
Using relations (36), we get

𝑥𝑛 = max{
𝐴𝑛

𝑥𝑛−𝑠
,
𝐵𝑛−𝑘

𝑦𝑛−𝑘−𝑠
, 𝑥𝑛−2𝑘}

= max{
𝐴𝑛

𝑥𝑛−𝑠
,
𝐵𝑛−𝑘

𝑦𝑛−𝑘−𝑠
,
𝐴𝑛−2𝑘

𝑥𝑛−2𝑘−𝑠
,
𝐵𝑛−3𝑘

𝑦𝑛−3𝑘−𝑠
, 𝑥𝑛−4𝑘} ,

𝑦𝑛 = max{
𝐵𝑛

𝑦𝑛−𝑠
,
𝐴𝑛−𝑘

𝑥𝑛−𝑘−𝑠
, 𝑦𝑛−2𝑘}

= max{
𝐵𝑛

𝑦𝑛−𝑠
,
𝐴𝑛−𝑘

𝑥𝑛−𝑘−𝑠
,
𝐵𝑛−2𝑘

𝑦𝑛−2𝑘−𝑠
,
𝐴𝑛−3𝑘

𝑥𝑛−3𝑘−𝑠
, 𝑦𝑛−4𝑘} ,

(37)

for 𝑛 ≥ 3𝑘.
Now, note that, from the inequalities in (35), we have that

𝑥𝑛 ≥ 𝑥𝑛−2𝑘, 𝑦𝑛 ≥ 𝑦𝑛−2𝑘, for 𝑛 ≥ 𝑘. (38)
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Using (38) and 𝑘-periodicity of the sequences𝐴𝑛 and 𝐵𝑛,
we obtain

𝐴𝑛

𝑥𝑛−𝑠
=
𝐴𝑛−2𝑘

𝑥𝑛−𝑠
≤
𝐴𝑛−2𝑘

𝑥𝑛−2𝑘−𝑠
,

𝐵𝑛−𝑘

𝑦𝑛−𝑘−𝑠
=
𝐵𝑛−3𝑘

𝑦𝑛−𝑘−𝑠
≤
𝐵𝑛−3𝑘

𝑦𝑛−3𝑘−𝑠
,

𝐵𝑛

𝑦𝑛−𝑠
=
𝐵𝑛−2𝑘

𝑦𝑛−𝑠
≤
𝐵𝑛−2𝑘

𝑦𝑛−2𝑘−𝑠
,

𝐴𝑛−𝑘

𝑥𝑛−𝑘−𝑠
=
𝐴𝑛−3𝑘

𝑥𝑛−𝑘−𝑠
≤
𝐴𝑛−3𝑘

𝑥𝑛−3𝑘−𝑠
.

(39)

Employing (39) into (37), we get

𝑥𝑛 = max{
𝐴𝑛−2𝑘

𝑥𝑛−2𝑘−𝑠
,
𝐵𝑛−3𝑘

𝑦𝑛−3𝑘−𝑠
, 𝑥𝑛−4𝑘} = 𝑥𝑛−2𝑘,

𝑦𝑛 = max{
𝐵𝑛−2𝑘

𝑦𝑛−2𝑘−𝑠
,
𝐴𝑛−3𝑘

𝑥𝑛−3𝑘−𝑠
, 𝑦𝑛−4𝑘} = 𝑦𝑛−2𝑘,

(40)

from which it follows that in this case the solutions of system
(11) are 2𝑘-periodic. From all the above, the theorem follows.

By a slight modification of the proof of Theorem 9, the
next result can be proved. We omit the proof.

Theorem 10. Consider the following system of difference
equations

𝑥𝑛 = max{
𝐴𝑛

𝑥𝑛−𝑠
, 𝑦𝑛−𝑘} , 𝑦𝑛 = max{

𝐵𝑛

𝑦𝑛−𝑠
, 𝑧𝑛−𝑘} ,

𝑧𝑛 = max{
𝐶𝑛

𝑧𝑛−𝑠
, 𝑥𝑛−𝑘} , 𝑛 ∈ N0,

(41)

where 𝑠, 𝑘 ∈ N, and (𝐴𝑛)𝑛∈N
0

, (𝐵𝑛)𝑛∈N
0

, and (𝐶𝑛)𝑛∈N
0

are pos-
itive 𝑘 gcd(𝑠, 𝑘)-periodic sequences. Then, every positive solu-
tion of system (41) is periodic with, not necessarily prime,
period

𝑝 = 3𝑘 gcd(𝑠, 𝑘) . (42)
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