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We study the existence and uniqueness of best proximity points in the setting of 0-complete partial metric spaces.We get our results
by showing that the generalizations, which we have to consider, are obtained from the corresponding results in metric spaces. We
introduce some new concepts and consider significant theorems to support this fact.

1. Introduction

Best approximation theory, in general, and best proximity
point theory, in particular, have received a great attention in
the last decades and have significant applications in convex
optimization, differential inclusions, and optimal controls.
We can say that these theories strongly relate nonlinear
functional analysis with theory of functions and topologic
studies.

Let (𝑋, 𝑑) be a metric space and let𝐴 and 𝐵 be nonempty
subsets of𝑋. Amapping𝑇 : 𝐴∪𝐵 → 𝐴∪𝐵 is said to be cyclic
if 𝑇(𝐴) ⊂ 𝐵 and 𝑇(𝐵) ⊂ 𝐴; see [1, 2]. Also, a point 𝑥 ∈ 𝐴 ∪ 𝐵

is called a best proximity point if 𝑑(𝑥, 𝑇𝑥) = 𝑑(𝐴, 𝐵), where
𝑑(𝐴, 𝐵) = inf{𝑑(𝑥, 𝑦) : 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵}. In light of these
concepts, Eldred and Veeramani [3] proved the following
existence theorem (see preliminaries for basic notions in this
theorem); see also [4–7].

Theorem 1 (see [3]). Let 𝐴 and 𝐵 be nonempty closed convex
subsets of a uniformly convex Banach space and let𝑇 be a cyclic
mapping on𝐴∪𝐵. Suppose that there exists 𝑟 ∈ (0, 1) such that

𝑑 (𝑇𝑦, 𝑇𝑥) ≤ 𝑟 𝑑 (𝑥, 𝑦) + (1 − 𝑟) 𝑑 (𝐴, 𝐵) , (1)

for all 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵. Then 𝑇 has a unique best proximity
point 𝑧 in 𝐴 and {𝑇2𝑛𝑥} converges to 𝑧 for each 𝑥 ∈ 𝐴.

On the other hand, the concept of metric space has been
generalized in many directions. In this paper, we consider
the concept of partial metric introduced by Matthews [8] as
a part of the study of denotational semantics. The reader is
referred to Bukatin et al. [9] for more details and motivation
in introducing the new context, which is also leading to
interesting research in foundations of topology; see, for
instance, [10–18]. In particular, Romaguera [19] introduced
the notions of 0-Cauchy sequence and 0-complete partial
metric spaces and proved an interesting characterization of
partial metric spaces in terms of 0-completeness. For other
results on this specific topic, we refer to [19–21].

Also, we point out that some recent results [22–24]
showed that a lot of fixed point theorems in partial metric
spaces can be directly reduced to their known metric coun-
terparts.

In this paper, we study the existence and uniqueness of
best proximity points in the setting of 0-complete partial
metric spaces. We get our results by showing that the gener-
alizations, which we have to consider, are obtained from the
corresponding results in metric spaces. We introduce some
new concepts and consider significant theorems to support
this fact.The overall motivation of this work is in underlining
the strong relation between standard metric spaces and their
generalizations to better target the research on this topic.
Using the approach described in this paper, the reader will
succeed in obtaining the extensions, to partial metric setting,
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of many recent results in the literature on best approximation
theory.

2. Preliminaries

We collect some notions and notations needed in the sequel.
Let R+ be the set of all nonnegative real numbers, Q the set
of rational numbers, and N the set of all positive integers.

2.1. Best Approximation. We recall the notion of the property
UC and some basic properties of this notion.

Let 𝑋 be a Banach space. Then 𝑋 is said to be uniformly
convex if for every 0 < 𝜖 ≤ 2 there exists some 𝛿(𝜖) > 0

such that the conditions ‖𝑥‖ = 1, ‖𝑦‖ = 1 and ‖𝑥 − 𝑦‖ ≥ 𝜖

imply that ‖(𝑥 + 𝑦)/2‖ ≤ 1 − 𝛿(𝜖). On this basis, Suzuki et al.
[25] introduced the notion of the property UC and extended
Theorem 1 to metric spaces with the property UC.

Definition 2 (see [25]). Let𝐴 and 𝐵 be nonempty subsets of a
metric space (𝑋, 𝑑). Then (𝐴, 𝐵) is said to satisfy the property
UC if the following holds.

If {𝑥
𝑛
} and {𝑥

𝑛
} are sequences in 𝐴 and {𝑦

𝑛
} is a

sequence in 𝐵 such that

lim
𝑛→+∞

𝑑 (𝑥
𝑛
, 𝑦
𝑛
) = 𝑑 (𝐴, 𝐵) ,

lim
𝑛→+∞

𝑑 (𝑥


𝑛
, 𝑦
𝑛
) = 𝑑 (𝐴, 𝐵) ,

(2)

then

lim
𝑛→+∞

𝑑 (𝑥
𝑛
, 𝑥


𝑛
) = 0. (3)

To clarify the value of the property UC, we give some
examples.

Example 3 (see [26]). Let 𝐴 and 𝐵 be nonempty subsets of a
uniformly convex Banach space𝑋. Assume that 𝐴 is convex.
Then (𝐴, 𝐵) has the property UC.

Example 4 (see [25]). Let 𝐴 and 𝐵 be nonempty subsets of a
metric space (𝑋, 𝑑) such that𝑑(𝐴, 𝐵) = 0.Then (𝐴, 𝐵) satisfies
the property UC.

Example 5 (see [25]). Let 𝐴, 𝐴, 𝐵, and 𝐵 be nonempty
subsets of a metric space (𝑋, 𝑑) such that 𝐴 ⊂ 𝐴, 𝐵 ⊂ 𝐵,
and 𝑑(𝐴, 𝐵) = 𝑑(𝐴, 𝐵). If (𝐴, 𝐵) satisfies the property UC,
then (𝐴, 𝐵) satisfies the property UC.

Theorem 6 (see [25]). Let (𝑋, 𝑑) be a metric space and let 𝐴
and 𝐵 be nonempty subsets of 𝑋 such that (𝐴, 𝐵) satisfies the
property UC. Assume that 𝐴 is complete and let 𝑇 be a cyclic
mapping on𝐴∪𝐵. Assume that there exists 𝑟 ∈ [0, 1) such that

𝑑 (𝑇𝑦, 𝑇𝑥) ≤ 𝑟max {𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑇𝑥) , 𝑑 (𝑇𝑦, 𝑦)}

+ (1 − 𝑟) 𝑑 (𝐴, 𝐵) ,
(4)

for all 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵. Then the following hold:

(i) 𝑇 has a unique best proximity point 𝑧 in 𝐴;
(ii) 𝑧 is a unique fixed point of 𝑇2 in 𝐴;
(iii) {𝑇2𝑛𝑥} converges to 𝑧 for every 𝑥 ∈ 𝐴;
(iv) 𝑇 has at least one best proximity point in 𝐵;
(v) if (𝐵, 𝐴) satisfies the property UC, then 𝑇𝑧 is a unique

best proximity point in 𝐵 and {𝑇2𝑛𝑦} converges to 𝑇𝑧

for every 𝑦 ∈ 𝐵.

2.2. Partial Metric Spaces. We give the definitions and some
characterizations of partial metric and partial metric space.

Definition 7 (see [8]). A partial metric on a nonempty set 𝑋
is a mapping 𝑝 : 𝑋 × 𝑋 → R+ such that, for all 𝑥, 𝑦, 𝑧 ∈ 𝑋,
the following conditions are satisfied:

(p1) 𝑥 = 𝑦 ⇔ 𝑝(𝑥, 𝑥) = 𝑝(𝑥, 𝑦) = 𝑝(𝑦, 𝑦);
(p2) 𝑝(𝑥, 𝑥) ≤ 𝑝(𝑥, 𝑦);
(p3) 𝑝(𝑥, 𝑦) = 𝑝(𝑦, 𝑥);
(p4) 𝑝(𝑥, 𝑦) ≤ 𝑝(𝑥, 𝑧) + 𝑝(𝑧, 𝑦) − 𝑝(𝑧, 𝑧).

A nonempty set 𝑋 equipped with a partial metric 𝑝 is called
partial metric space; we denote this space by (𝑋, 𝑝).

Notice that if 𝑝(𝑥, 𝑦) = 0, then (p1) and (p2) imply 𝑥 = 𝑦,
but the converse does not hold true in general.

Also, each partial metric 𝑝 on 𝑋 generates a 𝑇
0
topology

𝛾
𝑝
on 𝑋 which has as a base the family of the open balls (𝑝-

balls) {𝐵
𝑝
(𝑥, 𝜀) : 𝑥 ∈ 𝑋, 𝜀 > 0}, where

𝐵
𝑝
(𝑥, 𝜀) = {𝑦 ∈ 𝑋 : 𝑝 (𝑥, 𝑦) < 𝑝 (𝑥, 𝑥) + 𝜀} (5)

for all 𝑥 ∈ 𝑋 and 𝜀 > 0.

Definition 8 (see [8, 27]). Let (𝑋, 𝑝) be a partial metric space.
Then a sequence {𝑥

𝑛
} is called

(i) convergent, with respect to 𝛾
𝑝
, if there exists some 𝑥

in𝑋 such that 𝑝(𝑥, 𝑥) = lim
𝑛→+∞

𝑝(𝑥, 𝑥
𝑛
);

(ii) Cauchy sequence if there exists (and is finite)
lim
𝑛,𝑚→+∞

𝑝(𝑥
𝑛
, 𝑥
𝑚
).

A partialmetric space (𝑋, 𝑝) is said to be complete if every
Cauchy sequence {𝑥

𝑛
} in𝑋 converges, with respect to 𝛾

𝑝
, to a

point 𝑥 ∈ 𝑋 such that 𝑝(𝑥, 𝑥) = lim
𝑛,𝑚→+∞

𝑝(𝑥
𝑛
, 𝑥
𝑚
).

As shown in [19], one can introduce a weaker form of
completeness in partial metric spaces. Precisely, we recall the
following statements:

(i) a sequence {𝑥
𝑛
} in (𝑋, 𝑝) is called 0-Cauchy if

lim
𝑛,𝑚→+∞

𝑝(𝑥
𝑛
, 𝑥
𝑚
) = 0;

(ii) (𝑋, 𝑝) is 0-complete if every 0-Cauchy sequence in𝑋

converges, with respect to the partial metric 𝑝, to a
point 𝑥 ∈ 𝑋 such that 𝑝(𝑥, 𝑥) = 0;

(iii) if (𝑋, 𝑝) is complete, then (𝑋, 𝑝) is 0-complete, but the
converse does not hold.

Example 9 (see [19]). The partial metric space (Q ∩ R+, 𝑝),
where 𝑝(𝑥, 𝑦) = max{𝑥, 𝑦} for all 𝑥, 𝑦 ∈ Q ∩ R+, is a 0-
complete partial metric space which is not complete.
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3. Fixed Point Results

Hitzler and Seda in [28] proved a useful tool: Proposition 10.
Later on, Haghi et al. [22] used the same argument to
show that many fixed point generalizations to partial metric
spaces can be obtained from the corresponding results in
metric spaces. Also, they considered some significant cases to
support their work. Here we recall, without giving the proof,
the key result of the above authors; the interested reader is
referred to [22, 28] for more details.

Proposition 10 (see [22, 28]). Let (𝑋, 𝑝) be a partial metric
space. Then the function 𝑑 : 𝑋 × 𝑋 → R+ given by

𝑑 (𝑥, 𝑦) = {
0, if 𝑥 = 𝑦,

𝑝 (𝑥, 𝑦) , if 𝑥 ̸= 𝑦,
(6)

is ametric on𝑋 such that (𝑋, 𝑑) is complete if and only if (𝑋, 𝑝)
is 0-complete.

Inspired by this fact, we introduce two new notions in
partial metric spaces and use these notions to extend the
approach in [22] to best proximity point results.

Definition 11. Let (𝑋, 𝑝) be a partial metric space and let 𝐴
be a nonempty subset of 𝑋. Then, 𝐴 is said to be a 0-closed
subset of (𝑋, 𝑝) if, for each sequence {𝑥

𝑛
} in 𝐴 converging to

a point 𝑥 ∈ 𝑋 with 𝑝(𝑥, 𝑥) = 0, we have 𝑥 ∈ 𝐴.

Example 12. In the partial metric space (R+, 𝑝), where
𝑝(𝑥, 𝑦) = max{𝑥, 𝑦} for all 𝑥, 𝑦 ∈ R+, any real line interval
containing zero is 0-closed. Also the interval [𝑎, +∞), for
every 𝑎 > 0, is 0-closed. We note that [0, 1] is 0-closed but
it is not closed.

Proposition 13. Let (𝑋, 𝑝) be a partial metric space and let
𝐴 be a nonempty 0-closed subset of (𝑋, 𝑝). Then 𝐴 is a closed
subset of the metric space (𝑋, 𝑑), where 𝑑 is the metric given in
Proposition 10.

Proof. Let 𝐴 be any nonempty 0-closed subset of (𝑋, 𝑝).
Assume that a sequence {𝑥

𝑛
} in 𝐴 converges, with respect to

themetric 𝑑, to a point 𝑥 ∈ 𝑋; that is 𝑑(𝑥
𝑛
, 𝑥) → 0whenever

𝑛 → +∞. Also, we assume that 𝑥
𝑛

̸= 𝑥 for all 𝑛 ∈ N. This
implies that 𝑝(𝑥

𝑛
, 𝑥) = 𝑑(𝑥

𝑛
, 𝑥) for all 𝑛 ∈ N. The triangular

inequality gives us

𝑝 (𝑥, 𝑥) ≤ 𝑝 (𝑥
𝑛
, 𝑥) + 𝑝 (𝑥

𝑛
, 𝑥) − 𝑝 (𝑥

𝑛
, 𝑥
𝑛
)

≤ 𝑝 (𝑥
𝑛
, 𝑥) + 𝑝 (𝑥

𝑛
, 𝑥)

(7)

and hence, for 𝑛 → +∞, we deduce that 𝑝(𝑥, 𝑥) = 0. It
follows that the sequence {𝑥

𝑛
} converges to 𝑥 in (𝑋, 𝑝). Now,

since𝐴 is 0-closed, we have 𝑥 ∈ 𝐴 and so𝐴 is a closed subset
of (𝑋, 𝑑).

In view of the results in [22], we recall some known
results in partial metric spaces and relate these results to
their metric counterparts. Obviously we start with the partial
metric version of the Banach-Caccioppoli theorem, due to
Matthews [8]. However, for convenience, we formulate this
result in the setting of 0-complete partial metric spaces.

Theorem 14 (see [19]). Let (𝑋, 𝑝) be a 0-complete partial
metric space and let 𝑇 : 𝑋 → 𝑋 be a mapping. If there exists
a real number 𝑘 ∈ [0, 1) such that

𝑝 (𝑇𝑥, 𝑇𝑦) ≤ 𝑘𝑝 (𝑥, 𝑦) , (8)

for all 𝑥, 𝑦 ∈ 𝑋, then there exists a unique point 𝑥 ∈ 𝑋 such
that 𝑥 = 𝑇𝑥. Moreover, 𝑝(𝑥, 𝑥) = 0.

Asknown, the above statement affirms that the fixed point
of any contraction (i.e., self-mapping satisfying condition (8))
has zero self-distance.

Then, we give the following short proof of the above
theorem.

Proof. Let 𝑑 be the metric defined in Proposition 10. Since 𝑇
satisfies condition (8), then 𝑇 satisfies the following condi-
tion:

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝑘𝑑 (𝑥, 𝑦) , ∀𝑥, 𝑦 ∈ 𝑋. (9)

Indeed, if 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ̸= 𝑦, then 𝑑(𝑥, 𝑦) = 𝑝(𝑥, 𝑦);
on the contrary, if 𝑥 = 𝑦 the contraction condition is triv-
ially satisfied. Thus, 𝑇 is a contraction in the metric space
(𝑋, 𝑑). Now, the metric space (𝑋, 𝑑) is complete in view of
Proposition 10, since (𝑋, 𝑝) is a 0-complete partial metric
space. Consequently, the existence and uniqueness of a point
𝑥 ∈ 𝑋 such that 𝑥 = 𝑇𝑥 follows by application of the Banach-
Caccioppoli fixed point theorem in metric space. Finally,
from (8), by choosing 𝑦 = 𝑥, we deduce that 𝑝(𝑥, 𝑥) = 0.

For our scope, we need to introduce a new notion of 0-
continuity.

Definition 15. Let (𝑋, 𝑝) be a partial metric space and let 𝑇 :

𝑋 → 𝑋 be a mapping. We say that 𝑇 is 0-continuous in 𝑥 ∈

𝑋 with 𝑝(𝑥, 𝑥) = 0 if 𝑝(𝑇𝑥, 𝑇𝑥) = 0 and for each sequence
{𝑥
𝑛
} converging to 𝑥 we have

lim
𝑛→+∞

𝑝 (𝑇𝑥
𝑛
, 𝑇𝑥) = 𝑝 (𝑇𝑥, 𝑇𝑥) . (10)

Also, 𝑇 is 0-continuous mapping in𝑋 if 𝑇 is 0-continuous in
each 𝑥 ∈ 𝑋 with 𝑝(𝑥, 𝑥) = 0.

Remark 16. Any contraction in Banach-Caccioppoli sense, in
a partial metric space, is a 0-continuous mapping.

Now, we give an example of a 0-continuous mapping that
is not continuous.

Example 17. Let (R+, 𝑝) be a partial metric space, where
𝑝(𝑥, 𝑦) = max{𝑥, 𝑦} for all 𝑥 ∈ R+. Let 𝑇 : R+ → R+ be
the mapping defined by

𝑇𝑥 =

{{

{{

{

𝑥

3
, 𝑥 ∈ R+ ∩Q,

𝑥

2
, ∈ R+ \Q.

(11)

We note that 𝑇 is a contraction with 𝑘 = 1/2 and hence
𝑇 is a 0-continuous mapping. On the other hand, 𝑇 is not
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continuous, for instance, in 𝑥 = 1. In fact, for every 𝑛 ∈ N, let
𝑥
𝑛
= 1 + (√2/𝑛); then we have 𝑥

𝑛
→ 1 as 𝑛 → +∞, but

lim
𝑛→+∞

𝑝 (𝑇𝑥
𝑛
, 𝑇1) = lim

𝑛→+∞
max{1

2
(1 +

√2

𝑛
) ,

1

3
}

=
1

2
̸=
1

3
= 𝑝 (𝑇1, 𝑇1) .

(12)

Now, we recall that 𝑇 : (𝑋, 𝑑) → (𝑋, 𝑑) is said to be a
Banach operator if there exists a real number 𝑘 ∈ [0, 1) such
that 𝑑(𝑇𝑥, 𝑇2𝑥) ≤ 𝑘𝑑(𝑥, 𝑇𝑥), for all 𝑥 ∈ 𝑋 ([29], Definition
4). It is well known that every continuous Banach operator
on a complete metric space (𝑋, 𝑑) has a fixed point (see,
for instance, [29], Corollary 2). Then, we give the following
existence result in partial metric spaces.

Theorem 18. Let (𝑋, 𝑝) be a 0-complete partial metric space
and let 𝑇 : 𝑋 → 𝑋 be a 0-continuous mapping such that

𝑝 (𝑇𝑥, 𝑇
2
𝑥) ≤ 𝑘𝑝 (𝑥, 𝑇𝑥) , (13)

for all 𝑥 ∈ 𝑋, where 𝑘 ∈ (0, 1). Then 𝑇 has a fixed point in𝑋.

Proof. Let 𝑑 be the metric given in Proposition 10. Since 𝑇

satisfies condition (13), then 𝑇 is a Banach operator; that is

𝑑 (𝑇𝑥, 𝑇
2
𝑥) ≤ 𝑘𝑑 (𝑥, 𝑇𝑥) , ∀𝑥 ∈ 𝑋. (14)

Indeed, if 𝑥 ̸= 𝑇𝑥, then 𝑑(𝑥, 𝑇𝑥) = 𝑝(𝑥, 𝑇𝑥). Again, if
𝑥 = 𝑇𝑥, the above contractive condition is trivially satisfied.
This implies that, for each starting point 𝑥

0
∈ 𝑋, the sequence

{𝑇𝑛𝑥
0
} is Cauchy in (𝑋, 𝑑) and hence 0-Cauchy in (𝑋, 𝑝).

Thus, there exists 𝑥 ∈ 𝑋 such that

lim
𝑛→+∞

𝑝 (𝑥
𝑛
, 𝑥) = 𝑝 (𝑥, 𝑥) = 0. (15)

Also, since 𝑇 is 0-continuous, we deduce that

𝑥 = lim
𝑛→+∞

𝑥
𝑛+1

= lim
𝑛→+∞

𝑇𝑥
𝑛
= 𝑇𝑥. (16)

It follows that 𝑥 is a fixed point of 𝑇; that is 𝑥 = 𝑇𝑥.

Next, we show that this theorem can be viewed as a direct
consequence of its metric counterpart. First, we need the
following auxiliary result.

Proposition 19. Let (𝑋, 𝑝) be a partial metric space and let
𝑇 : 𝑋 → 𝑋 be a 0-continuous mapping. Then 𝑇 is continuous
with respect to the metric 𝑑 given in Proposition 10; that is 𝑇 :

(𝑋, 𝑑) → (𝑋, 𝑑) is continuous.

Proof. We assume that 𝑇 is 0-continuous mapping and show
that 𝑇 is continuous with respect to the metric 𝑑. Fix 𝑥 ∈ 𝑋

and consider a sequence {𝑥
𝑛
} converging to 𝑥 with respect to

𝑑. If 𝑥
𝑛
= 𝑥
𝑚
for all 𝑛 ≥ 𝑚, then 𝑥 = 𝑥

𝑚
and so 𝑑(𝑇𝑥

𝑛
, 𝑇𝑥) =

𝑑(𝑇𝑥, 𝑇𝑥) = 0 for all 𝑛 ≥ 𝑚. On the contrary, assume that
𝑥
𝑛

̸= 𝑥 for all 𝑛 ∈ N (the same holds if 𝑥
𝑛

̸= 𝑥 for infinite
many values of 𝑛). Therefore, from 𝑝(𝑥

𝑛
, 𝑥) = 𝑑(𝑥

𝑛
, 𝑥) we

deduce that

lim
𝑛→+∞

𝑝 (𝑥
𝑛
, 𝑥) = 𝑝 (𝑥, 𝑥) = 0. (17)

Since 𝑇 is 0-continuous, then

lim
𝑛→+∞

𝑑 (𝑇𝑥
𝑛
, 𝑇𝑥) ≤ lim

𝑛→+∞
𝑝 (𝑇𝑥

𝑛
, 𝑇𝑥) = 0 (18)

and so we conclude that 𝑇 : (𝑋, 𝑑) → (𝑋, 𝑑) is continuous.

We give the following short proof of Theorem 18.

Proof. Since 𝑇 : 𝑋 → 𝑋 in Theorem 18 is 0-continuous, in
virtue of Proposition 19, we have that 𝑇 is continuous with
respect to the metric 𝑑 given in Proposition 10. Thus, we can
apply Corollary 2 of [29] to conclude.

Briefly, by using the same technique, we show that also
the fixed point results for cyclic mappings in metric spaces
can be translated in partial metric spaces. Firstly, we recall
the following definition.

Definition 20. Let (𝑋, 𝑝) be a partial metric space and let 𝐴
and𝐵 be two nonempty subsets of𝑋. Amapping𝑇 : 𝐴∪𝐵 →

𝐴∪𝐵 is called cyclic mapping if𝑇(𝐴) ⊂ 𝐵 and𝑇(𝐵) ⊂ 𝐴. Also
𝑇 is a cyclic contraction if there exists a real number 𝑘 ∈ [0, 1)

such that

𝑝 (𝑇𝑥, 𝑇𝑦) ≤ 𝑘𝑝 (𝑥, 𝑦) , ∀𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵. (19)

Now, we state and prove the following.

Theorem 21. Let (𝑋, 𝑝) be a 0-complete partial metric space
and let 𝐴 and 𝐵 be two nonempty 0-closed subsets of 𝑋. If 𝑇 :

𝐴 ∪ 𝐵 → 𝐴 ∪ 𝐵 is a cyclic contraction, then 𝑇 has a unique
fixed point in 𝐴 ∩ 𝐵.

Proof. Let 𝑑 be the metric given in Proposition 10. In virtue
of Proposition 13, 𝐴 and 𝐵 are closed subsets of the metric
space (𝑋, 𝑑), since𝐴 and 𝐵 are 0-closed sets. Obviously, since
𝑇 satisfies condition (19), then 𝑇 satisfies also the following
condition:

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝑘𝑑 (𝑥, 𝑦) , ∀𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵. (20)

Indeed, if 𝑥, 𝑦 ∈ 𝑋 and 𝑥 ̸= 𝑦, then 𝑑(𝑥, 𝑦) = 𝑝(𝑥, 𝑦). On the
other hand, for 𝑥 = 𝑦, the above condition is trivially true.
We obtain that 𝑇 is a cyclic contraction with respect to the
metric 𝑑. Therefore, from Theorem 1.1 of [2] (in view of the
comments in the introduction section of [2]) readily follows
the existence and uniqueness of a point 𝑥 ∈ 𝐴 ∩ 𝐵 such that
𝑥 = 𝑇𝑥. Also, from (19) for 𝑦 = 𝑇𝑥, we get 𝑝(𝑥, 𝑥) = 0.

4. Best Proximity Point Results

In the light of extending the technique in the previous section
to obtain best proximity point results in partial metric space,
we recall some notions and notations.

Definition 22. Let (𝑋, 𝑝) be a partial metric space and let 𝐴
and 𝐵 be two nonempty subsets of𝑋. For all 𝑥 ∈ 𝑋, put

𝑝 (𝑥, 𝐴) := inf {𝑝 (𝑥, 𝑎) : 𝑎 ∈ 𝐴} ,

𝑝 (𝐴, 𝐵) := inf {𝑝 (𝑎, 𝑏) : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} .
(21)
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If 𝑑 is the metric related to the partial metric 𝑝 in
Proposition 10, then 𝑑(𝑥, 𝐴) = 𝑝(𝑥, 𝐴) if 𝑥 ∉ 𝐴 and 𝑑(𝐴, 𝐵) =
𝑝(𝐴, 𝐵) if 𝐴 ∩ 𝐵 = 0.

Then we adapt the property UC in partial metric spaces.

Definition 23. Let 𝐴 and 𝐵 be nonempty subsets of a partial
metric space (𝑋, 𝑝). Then (𝐴, 𝐵) is said to satisfy the property
UC
𝑝
if the following holds.

If {𝑥
𝑛
} and {𝑥

𝑛
} are sequences in 𝐴 and {𝑦

𝑛
} is a

sequence in 𝐵 such that

lim
𝑛→+∞

𝑝 (𝑥
𝑛
, 𝑦
𝑛
) = 𝑝 (𝐴, 𝐵) ,

lim
𝑛→+∞

𝑝 (𝑥


𝑛
, 𝑦
𝑛
) = 𝑝 (𝐴, 𝐵) ,

(22)

then

lim
𝑛→+∞

𝑝 (𝑥
𝑛
, 𝑥


𝑛
) = 0. (23)

Following the approach in [22], we present an auxiliary
lemma; see Lemma 2.2 of [22].

Lemma 24. Let (𝑋, 𝑝) be a partial metric space and let 𝐴 and
𝐵 be two nonempty subsets of𝑋. Assume that𝑇 : 𝐴∪𝐵 → 𝐴∪

𝐵 is a cyclicmapping and𝑑 is themetric given in Proposition 10.
Then, for all 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵 with 𝑥 ̸= 𝑦, we have𝑀

𝑑
(𝑥, 𝑦) =

𝑀
𝑝
(𝑥, 𝑦), where

𝑀
𝑑
(𝑥, 𝑦) := max {𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑇𝑥) , 𝑑 (𝑦, 𝑇𝑦)} ,

𝑀
𝑝
(𝑥, 𝑦) := max {𝑝 (𝑥, 𝑦) , 𝑝 (𝑥, 𝑇𝑥) , 𝑝 (𝑦, 𝑇𝑦)} .

(24)

Proof. Let 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵; if 𝑥 ̸= 𝑦, 𝑥 ̸= 𝑇𝑥 and 𝑦 ̸= 𝑇𝑦,
then

𝑀
𝑑
(𝑥, 𝑦) = max {𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑇𝑥) , 𝑑 (𝑦, 𝑇𝑦)}

= max {𝑝 (𝑥, 𝑦) , 𝑝 (𝑥, 𝑇𝑥) , 𝑝 (𝑦, 𝑇𝑦)}

= 𝑀
𝑝
(𝑥, 𝑦) .

(25)

Also, if 𝑥 ̸= 𝑦, 𝑥 ̸= 𝑇𝑥 and 𝑦 = 𝑇𝑦, in view of the fact that
𝑝(𝑦, 𝑇𝑦) ≤ 𝑝(𝑥, 𝑦), we deduce

𝑀
𝑑
(𝑥, 𝑦) = max {𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑇𝑥)}

= max {𝑝 (𝑥, 𝑦) , 𝑝 (𝑥, 𝑇𝑥)}

= max {𝑝 (𝑥, 𝑦) , 𝑝 (𝑥, 𝑇𝑥) , 𝑝 (𝑦, 𝑇𝑦)}

= 𝑀
𝑝
(𝑥, 𝑦) .

(26)

Analogous reasoning shows that𝑀
𝑑
(𝑥, 𝑦) = 𝑀

𝑝
(𝑥, 𝑦) in the

case 𝑥 ̸= 𝑦, 𝑥 = 𝑇𝑥 and 𝑦 ̸= 𝑇𝑦, and in the case 𝑥 ̸= 𝑦, 𝑥 = 𝑇𝑥

and 𝑦 = 𝑇𝑦. This concludes the proof. However, notice that
for all 𝑥, 𝑦 ∈ 𝑋 we have

𝑑 (𝑥, 𝑦) ≤ 𝑝 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑇𝑥) ≤ 𝑝 (𝑥, 𝑇𝑥) ,

𝑑 (𝑦, 𝑇𝑦) ≤ 𝑝 (𝑦, 𝑇𝑦) .
(27)

This implies that

𝑀
𝑑
(𝑥, 𝑦) ≤ 𝑀

𝑝
(𝑥, 𝑦) (28)

for all 𝑥, 𝑦 ∈ 𝑋.

A direct consequence of Lemma 24 is the following.
If 𝐴 and 𝐵 are nonempty and disjoint subsets of a partial

metric space (𝑋, 𝑝), then

𝑟𝑀
𝑑
(𝑥, 𝑦) + (1 − 𝑟) 𝑑 (𝐴, 𝐵)

= 𝑟𝑀
𝑝
(𝑥, 𝑦) + (1 − 𝑟) 𝑝 (𝐴, 𝐵) ,

(29)

for all 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵, where 𝑟 ∈ [0, 1).
We are ready to state and prove the following best

approximation result in partial metric spaces.

Theorem 25. Let (𝑋, 𝑝) be a partial metric space and let 𝐴
and 𝐵 be nonempty and disjoint subsets of 𝑋 such that (𝐴, 𝐵)
satisfies the property UC

𝑝
. Assume that 𝐴 is 0-complete and 𝑇

is a cyclic mapping on 𝐴 ∪ 𝐵. Also suppose that there exists a
real number 𝑟 ∈ [0, 1) such that

𝑝 (𝑇𝑦, 𝑇𝑥) ≤ 𝑟𝑀
𝑝
(𝑥, 𝑦) + (1 − 𝑟) 𝑝 (𝐴, 𝐵) (30)

for all 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵. Then the following hold:

(i) 𝑇 has a unique best proximity point 𝑧 in 𝐴;
(ii) 𝑧 is a unique fixed point of 𝑇2 in 𝐴;
(iii) {𝑇2𝑛𝑥} converges to 𝑧 for every 𝑥 ∈ 𝐴;
(iv) 𝑇 has at least one best proximity point in 𝐵;
(v) if (𝐵, 𝐴) satisfies the property𝑈𝐶

𝑝
, then 𝑇𝑧 is a unique

best proximity point in 𝐵 and {𝑇2𝑛𝑦} converges to 𝑇𝑧

for every 𝑦 ∈ 𝐵.

Proof. Let 𝑑 be the metric given in Proposition 10. Since
(𝐴, 𝐵) has the property UC

𝑝
in (𝑋, 𝑝) and 𝐴 ∩ 𝐵 = 0,

then (𝐴, 𝐵) has the property UC in (𝑋, 𝑑). Also, since 𝐴 is
0-complete, then 𝐴 is complete in (𝑋, 𝑑). It follows that all
the hypotheses of Theorem 6 are satisfied with respect to
the metric 𝑑 and consequently also the assertions (i)–(v) in
Theorem 25 hold true.

Recently, Caballero et al. [30] proved the following
theorem for noncyclic mappings.

Theorem 26 (see [30]). Let (𝑋, 𝑑) be a complete metric space
and let 𝐴 and 𝐵 be nonempty closed subsets of 𝑋 such that
𝐴
0
:= {𝑥 ∈ 𝐴 : 𝑑(𝑥, 𝑦) = 𝑑(𝐴, 𝐵) 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑦 ∈ 𝐵} ̸= 0

and

𝑑 (𝑥
1
, 𝑦
1
) = 𝑑 (𝐴, 𝐵)

𝑑 (𝑥
2
, 𝑦
2
) = 𝑑 (𝐴, 𝐵)

⇒ 𝑑 (𝑥
1
, 𝑥
2
) = 𝑑 (𝑦

1
, 𝑦
2
) , (31)

where 𝑥
1
, 𝑥
2
∈ 𝐴
0
and 𝑦

1
, 𝑦
2
∈ 𝐵
0
:= {𝑦 ∈ 𝐵 : 𝑑(𝑥, 𝑦) =

𝑑(𝐴, 𝐵) 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑥 ∈ 𝐴}. Let 𝑇 : 𝐴 → 𝐵 be a mapping such
that 𝑇(𝐴

0
) ⊆ 𝐵
0
and

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝛽 (𝑑 (𝑥, 𝑦)) 𝑑 (𝑥, 𝑦) , (32)



6 Abstract and Applied Analysis

for all 𝑥, 𝑦 ∈ 𝐴 and some function 𝛽 : R+ → [0, 1) satisfying
the condition:𝛽(𝑡

𝑛
) → 1 implies 𝑡

𝑛
→ 0.Then𝑇 has a unique

best proximity point 𝑧 ∈ 𝐴.

From the above theoremwe are ready to derive the partial
metric counterpart.

Theorem 27. Let (𝑋, 𝑝) be a 0-complete partial metric space
and let 𝐴 and 𝐵 be nonempty and disjoint 0-closed subsets of
𝑋 such that 𝐴

0
:= {𝑥 ∈ 𝐴 : 𝑝(𝑥, 𝑦) = 𝑝(𝐴, 𝐵) 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑦 ∈

𝐵} ̸= 0 and

𝑝 (𝑥
1
, 𝑦
1
) = 𝑝 (𝐴, 𝐵)

𝑝 (𝑥
2
, 𝑦
2
) = 𝑝 (𝐴, 𝐵)

⇒ 𝑝 (𝑥
1
, 𝑥
2
) = 𝑝 (𝑦

1
, 𝑦
2
) , (33)

where 𝑥
1
, 𝑥
2
∈ 𝐴
0
and 𝑦

1
, 𝑦
2
∈ 𝐵
0
:= {𝑦 ∈ 𝐵 : 𝑝(𝑥, 𝑦) =

𝑝(𝐴, 𝐵) 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑥 ∈ 𝐴}. Let 𝑇 : 𝐴 → 𝐵 be a mapping such
that 𝑇(𝐴

0
) ⊆ 𝐵
0
and

𝑝 (𝑇𝑥, 𝑇𝑦) ≤ 𝛽 (𝑝 (𝑥, 𝑦)) 𝑝 (𝑥, 𝑦) , (34)

for all 𝑥, 𝑦 ∈ 𝐴 and some function 𝛽 : R+ → [0, 1) satisfying
the condition:𝛽(𝑡

𝑛
) → 1 implies 𝑡

𝑛
→ 0.Then𝑇 has a unique

best proximity point 𝑧 ∈ 𝐴.

Proof. Let 𝑑 be the metric given in Proposition 10 and hence,
since (𝑋, 𝑝) is 0-complete, (𝑋, 𝑑) is complete. In virtue of
Proposition 13,𝐴 and 𝐵 are closed subsets of the metric space
(𝑋, 𝑑), since 𝐴 and 𝐵 are 0-closed sets. Also, since 𝐴 ∩ 𝐵 = 0,
then (31) and (32) hold true. It follows that all the hypotheses
of Theorem 26 are satisfied with respect to the metric 𝑑 and
consequently also Theorem 27 holds true.

Very recently, Gabeleh and Shahzad [31] proved the
following theorem for a pair of mappings.

Theorem 28 (see [31]). Let (𝑋, 𝑑) be a complete metric space,
let 𝐴 and 𝐵 be nonempty closed subsets of 𝑋 with 𝐴

0
, 𝐵
0
as

in Theorem 26 and let 𝜂 : [0, 1) → (1/2, 1] be defined by
𝜂(𝑟) = (1 + 𝑟)

−1. Assume that 𝑆 : 𝐴 → 𝐴 and 𝑇 : 𝐴 → 𝐵 are
two mappings satisfying the following conditions:

(i) there exists 𝑟 ∈ [0, 1) such that 𝜂(𝑟)[𝑑(𝑆𝑥, 𝑇𝑥) −

𝑑(𝐴, 𝐵)] ≤ 𝑑(𝑥, 𝑦) implies 𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝑟𝑑(𝑥, 𝑦) for
all 𝑥, 𝑦 ∈ 𝐴;

(ii) 𝑇(𝐴
0
) ⊆ 𝐵
0
and 𝐴

0
⊆ 𝑆(𝐴

0
);

(iii) 𝑆 is an isometry; that is 𝑑(𝑢, V) = 𝑑(𝑆𝑢, 𝑆V) for all 𝑢, V ∈
𝐴.

If the pair (𝐴, 𝐵) satisfies the condition

𝑑 (𝑥
1
, 𝑦
1
) = 𝑑 (𝐴, 𝐵)

𝑑 (𝑥
2
, 𝑦
2
) = 𝑑 (𝐴, 𝐵)

⇒ 𝑑 (𝑥
1
, 𝑥
2
) ≤ 𝑑 (𝑦

1
, 𝑦
2
) , (35)

where 𝑥
1
, 𝑥
2
∈ 𝐴
0
and 𝑦

1
, 𝑦
2
∈ 𝐵
0
, then there exists a unique

𝑧 ∈ 𝐴 such that 𝑑(𝑆𝑧, 𝑇𝑧) = 𝑑(𝐴, 𝐵). Moreover, for any
𝑥
0
∈ 𝐴
0
, the iterative sequence {𝑥

𝑛
}, defined by the algorithm

𝑑(𝑆𝑥
𝑛+1

, 𝑇𝑥
𝑛
) = 𝑑(𝐴, 𝐵), converges to 𝑧.

Also from this theorem we are ready to derive the partial
metric counterpart.

Theorem 29. Let (𝑋, 𝑝) be a 0-complete partial metric space,
let𝐴 and𝐵 be nonempty and disjoint 0-closed subsets of𝑋with
𝐴
0
, 𝐵
0
as in Theorem 27, and let 𝜂 : [0, 1) → (1/2, 1] be

defined by 𝜂(𝑟) = (1 + 𝑟)
−1. Assume that 𝑆 : 𝐴 → 𝐴 and 𝑇 :

𝐴 → 𝐵 are two mappings satisfying the following conditions:
(i) there exists 𝑟 ∈ [0, 1) such that 𝜂(𝑟)[𝑝(𝑆𝑥, 𝑇𝑥) −

𝑝(𝐴, 𝐵)] ≤ 𝑝(𝑥, 𝑦) implies 𝑝(𝑇𝑥, 𝑇𝑦) ≤ 𝑟𝑝(𝑥, 𝑦) for
all 𝑥, 𝑦 ∈ 𝐴;

(ii) 𝑇(𝐴
0
) ⊆ 𝐵
0
and 𝐴

0
⊆ 𝑆(𝐴

0
);

(iii) 𝑆 is an injective function such that 𝑝(𝑢, V) = 𝑝(𝑆𝑢, 𝑆V)
for all 𝑢, V ∈ 𝐴.

If the pair (𝐴, 𝐵) satisfies the condition

𝑝 (𝑥
1
, 𝑦
1
) = 𝑝 (𝐴, 𝐵)

𝑝 (𝑥
2
, 𝑦
2
) = 𝑝 (𝐴, 𝐵)

⇒ 𝑝 (𝑥
1
, 𝑥
2
) ≤ 𝑝 (𝑦

1
, 𝑦
2
) , (36)

where 𝑥
1
, 𝑥
2
∈ 𝐴
0
and 𝑦

1
, 𝑦
2
∈ 𝐵
0
, then there exists a unique

𝑧 ∈ 𝐴 such that 𝑝(𝑆𝑧, 𝑇𝑧) = 𝑝(𝐴, 𝐵). Moreover, for any
𝑥
0
∈ 𝐴
0
, the iterative sequence {𝑥

𝑛
}, defined by the algorithm

𝑝(𝑆𝑥
𝑛+1

, 𝑇𝑥
𝑛
) = 𝑝(𝐴, 𝐵), converges to 𝑧.

Proof. Let 𝑑 be the metric given in Proposition 10; since
(𝑋, 𝑝) is 0-complete, then (𝑋, 𝑑) is complete. In virtue
of Proposition 13, 𝐴 and 𝐵 are closed subsets of the
metric space (𝑋, 𝑑), since 𝐴 and 𝐵 are 0-closed sets.
Also, since 𝐴 ∩ 𝐵 = 0, then conditions (i) and (iii)
of Theorem 28 and (35) hold true. It follows that all
the hypotheses of Theorem 28 are satisfied with respect
to the metric 𝑑 and consequently also Theorem 29
holds true.

5. Conclusion

The development of best approximation theory is an actual
and relevant topic in solving various minimization prob-
lems. In particular, the constructive proofs of the existence
and uniqueness of best proximity points consent to obtain
algorithms for approaching these problems. On the other
hand, over the years, an interesting matter was to introduce
generalized notions of distance to suit better specific prob-
lems (i.e., here we consider partial metrics used in Computer
Science).Then, the approach described in this paper suggests
how to obtain theoretical results in generalized metric spaces
from the corresponding results in standard metric spaces.
As shown above, the approach has several advantages, such
as the ability to define and use new notions for simplifying
proofs and calculations.
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