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Different approaches to construct first integrals for ordinary differential equations and systems of ordinary differential equations
are studied here. These approaches can be grouped into three categories: direct methods, Lagrangian or partial Lagrangian
formulations, and characteristic (multipliers) approaches. The direct method and symmetry conditions on the first integrals
correspond to first category. The Lagrangian and partial Lagrangian include three approaches: Noether’s theorem, the partial
Noether approach, and the Noether approach for the equation and its adjoint as a system.The characteristic method, the multiplier
approaches, and the direct construction formula approach require the integrating factors or characteristics or multipliers. The
Hamiltonian version of Noether’s theorem is presented to derive first integrals. We apply these different approaches to derive the
first integrals of the harmonic oscillator equation. We also study first integrals for some physical models. The first integrals for
nonlinear jerk equation and the free oscillations of a two-degree-of-freedom gyroscopic system with quadratic nonlinearities are
derived. Moreover, solutions via first integrals are also constructed.

1. Introduction

The study of conserved quantities plays a great role in math-
ematical physics and in applied mathematics. For instance,
a considerable number of phenomena have some kind of
“conservation.” Examples can be easily found from the hydro-
dynamics, electrodynamics, shallow water phenomena, and
so forth. One can also mention the celebrated Kepler’s third
law or the conservation of energy in the classical mechanics,
particularly the one-dimensional harmonic oscillator. In
regard to these last two phenomena, the conserved quantity
is called first integral, which is the analogous of conservation
laws for ordinary differential equations models.

In a recent paper, Naz et al. [1] studied different
approaches to construct conservation laws for partial dif-
ferential equations. The purpose of this paper is to analyze
all different approaches for construction of first integrals for
ordinary differential equations. In fact, different approaches

to derive first integrals can be grouped into three cate-
gories: direct methods, Lagrangian or partial Lagrangian
formulations, and characteristic (multipliers) approaches. In
1798, Laplace [2] developed a method known as the direct
method for the construction of first integrals. Although such
a method does not originally require any symmetry of the
considered equation, Kara and Mahomed [3] developed a
relationship between symmetries and conservation laws. The
joint conditions of symmetry and direct method are used to
construct the first integrals.

Noether’s theorem [4] is a powerful technique to derive
first integrals for the differential equations having Lagrangian
formulations using its symmetries, although it requires a
suitable Lagrangian. Kara et al. [5] developed the partial
Noether approach.ThepartialNoether approach is applicable
to differential equations with or without a Lagrangian. The
interested readers are referred to [6–11] for discussions on
first integrals by the Noether approach and partial Noether
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approach. Ibragimov [12] introduced the concept of formal
Lagrangian formulation for differential equations and its
adjoint as a system. Atherton and Homsy [13] introduced
the adjoint variational principle for such systems. Then
Ibragimov [12] incorporated symmetry considerations and
provided formulas to construct the first integrals similar to
those provided by Noether’s approach. The concepts of self-
adjointness [14, 15], weak self-adjointness [16], nonlinear self-
adjointness [17–20], and quasi-self-adjointness [21, 22] are
used to construct first integrals by this approach.

The characteristic, multiplier, or integrating factor meth-
ods are also very powerful and elegant methods for construc-
tion of the first integrals. There are four different approaches
based on the knowledge of the characteristics. The first
method developed by Steudel [23] in 1962 involves writing
a first integral in the characteristic form. The characteristics
or integrating factors are the multipliers of the differential
equations that makes them exact. To derive the first integrals
by this method first of all the characteristics need to be
determined.The second method is based on the first method
and it involves the variational derivative (see Proposition
5.49 in Olver [24]). The reader is referred to [25–27] for a
good account of understanding how to compute multipliers
and first integrals. In the third approach, we compute the
variational derivatives on the solution space of given dif-
ferential equations and these characteristics sometimes may
correspond to an adjoint symmetry not to first integral. The
fourth approach according toAnco andBluman [28] provides
formulae for finding first integrals. In the last few decades,
the researchers focused on the development of symbolic
computational packages based on different approaches of first
integrals and these packages are well documented in [29] and
references therein.

The well-known Noether identity can be expressed in
terms of Hamiltonian function and symmetry operators (see,
e.g., [30, 31]).This is a simple and elegantway to construct first
integrals of Hamiltonian equations consisting of a system of
first-order differential equations. No integration is required
here to construct solutions.

Lie approach as described, for example, by Ibragimov
and Nucci [32] and Mahomed [33], is successfully applied to
differential equations to derive the exact solutions. On the
other hand, the knowledge of first integrals enables one to
reduce or completely solve an ordinary differential equation.
In fact, if one considers an 𝑛th-order scalar ordinary dif-
ferential equation having 𝑛 independent first integrals, one
can obtain from those first integrals the general solution of
the considered equation possessing 𝑛 constants. Kara et al.
[34] explored the solutions of differential equations using the
Noether symmetries of a Lagrangian associated with the first
integrals. Using the relationship between Noether symme-
tries and first integrals [35] the reductions and exact solutions
of differential equations were derived. The generalization of
this idea is the association of Lie-Bäcklund symmetries [3]
and nonlocal symmetries [36, 37] with a first integral and it
led to the development of the double reduction theory to find
reductions and solutions [38–43].

The paper is organized in the following manner. The
fundamental relations are defined in Section 2. We present

the main ideas behind the mentioned methods in Section 3.
Then, in Section 4, we apply these different approaches to the
harmonic oscillator equation. In Section 5 some solutions are
obtained via first integrals. Relations between Hamiltonian
functions and first integrals are discussed in Section 6. In
Section 7, the first integrals for nonlinear jerk equation are
computed by the Noether approach for the equation and
its adjoint as a system and by the multiplier approach.
The exact solutions of jerk equation for different cases are
also established via first integrals. The first integrals for
the free oscillations of a two-degree-of-freedom gyroscopic
system with quadratic nonlinearities are also derived. Finally,
concluding remarks are presented in Section 8.

2. Fundamental Relations

The following definitions are taken from the literature (see,
e.g., [44, 45]).

Consider a 𝑘th-order ordinary differential equation sys-
tem

𝐸
𝛼
(𝑥, 𝑢, 𝑢

(1)
, 𝑢
(2)
, . . . , 𝑢

(𝑘)
) = 0, 𝛼 = 1, . . . , 𝑚, (1)

where 𝑥 is the independent variable and 𝑢𝛼, 𝛼 = 1, 2, . . . , 𝑚,
are the𝑚 dependent variables. We will adopt the summation
convention and there is summation over repeated upper and
lower indices.

The total derivative with respect to 𝑥 is

𝐷
𝑥
=

𝜕

𝜕𝑥

+ 𝑢
𝛼

𝑥

𝜕

𝜕𝑢
𝛼
+ 𝑢
𝛼

𝑥𝑥

𝜕

𝜕𝑢
𝛼

𝑥

+ ⋅ ⋅ ⋅ . (2)

The following are the basic operators defined inA, the vector
space of differential functions.

The Lie-Bäcklund operator𝑋 is defined as

𝑋 = 𝜉

𝜕

𝜕𝑥

+ 𝜂
𝛼
𝜕

𝜕𝑢
𝛼
+∑

𝑠≥1

𝜁
𝛼

𝑠

𝜕

𝜕𝑢
𝛼

𝑠

, (3)

where

𝜁
𝛼

𝑠
= 𝐷
𝑥
(𝜁
𝛼

𝑠−1
) − 𝑢
𝛼

𝑠
𝐷
𝑥
(𝜉) , 𝑠 ≥ 1, 𝛼 = 1, . . . , 𝑚, (4)

in which 𝜁𝛼
0
≡ 𝜂
𝛼.

The Euler operator is given by

𝛿

𝛿𝑢
𝛼
=

𝜕

𝜕𝑢
𝛼
+∑

𝑠≥1

(−𝐷
𝑥
)
𝑠 𝜕

𝜕𝑢
𝛼

𝑠

, 𝛼 = 1, 2, . . . 𝑚. (5)

The characteristic form of Lie-Bäcklund operator (3) is

𝑋 = 𝜉𝐷
𝑥
+𝑊
𝛼
𝜕

𝜕𝑢
𝛼
+∑

𝑠≥1

𝐷
𝑠

𝑥
(𝑊
𝛼

)

𝜕

𝜕𝑢
𝛼

𝑠

, (6)

in which𝑊𝛼 is the Lie characteristic function defined by

𝑊
𝛼

= 𝜂
𝛼

− 𝜉𝑢
𝛼

𝑥
, 𝛼 = 1, . . . , 𝑚. (7)

The Noether operator associated with a Lie-Bäcklund
operator𝑋 is

𝑁 = 𝜉 +𝑊
𝛼
𝛿

𝛿𝑢
𝛼

𝑥

+∑

𝑠≥1

𝐷
𝑠

𝑥
(𝑊
𝛼

)

𝛿

𝛿𝑢
𝛼

𝑠+1

, (8)
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where

𝛿

𝛿𝑢
𝛼

𝑥

=

𝜕

𝜕𝑢
𝛼

𝑥

+∑

𝑠≥1

(−𝐷
𝑥
)
𝑠 𝜕

𝜕𝑢
𝛼

𝑠+1

, 𝛼 = 1, . . . , 𝑚. (9)

First Integral. A first integral of system (1) is a differential
function 𝐼 ∈ A, such that

𝐷
𝑥
𝐼 = 0 (10)

for every solution of (1).

3. Approaches to Construct First Integrals

Now we present various approaches to construct first inte-
grals taken from the literature.

3.1. Direct Method. The direct method was first used by
Laplace [2] in 1798 to construct all local first integrals. The
determining equations for the first integrals for the direct
method are

𝐷
𝑥
𝐼
󵄨
󵄨
󵄨
󵄨𝐸
𝛼
=0
= 0. (11)

3.2. Symmetry and First Integral Relation. Kara and
Mahomed [3] added a symmetry condition to the direct
method. The Lie-Bäcklund symmetry generator 𝑋 and the
first integral 𝐼 are associated with the following equation:

𝑋 (𝐼) + 𝐷
𝑥
(𝜉) 𝐼 = 0. (12)

The first integrals are computed by the joint conditions (11)
and (12).

3.3. Noether’s Approach. In 1918, Noether developed a new
approach to construct first integrals [4] and it is currently
known as Noether’s approach.

Euler-Lagrange Differential Equations. If there exists a func-
tion 𝐿(𝑥, 𝑢, 𝑢

(1)
, 𝑢
(2)
, . . . , 𝑢

(𝑠)
) ∈ A, satisfying

𝛿𝐿

𝛿𝑢
𝛼
= 0, 𝛼 = 1, 2, . . . , 𝑚, (13)

then 𝐿 is called a Lagrangian of (1) and relationship (13) yields
the Euler-Lagrange differential equations. Equations (1) and
(13) are equivalent.

Noether Symmetry Generator.A Lie-Bäcklund operator𝑋 is a
Noether symmetry generator associated with a Lagrangian 𝐿
of the Euler-Lagrange differential equations (13) if there exists
a function 𝐵 such that

𝑋 (𝐿) + 𝐿𝐷
𝑥
(𝜉) = 𝐷

𝑥
(𝐵) . (14)

Noether First Integral. For each Noether symmetry generator
𝑋 associated with a given Lagrangian 𝐿 corresponding to
the Euler-Lagrange differential equations, there corresponds
a function 𝐼 known as a first integral and is defined by

𝐼 = 𝐵 − 𝑁 (𝐿) (15)

or

𝐼 = 𝐵 − 𝜉𝐿 −𝑊
𝛼
𝛿𝐿

𝛿𝑢
𝛼

𝑥

−∑

𝑠≥1

𝐷
𝑠

𝑥
(𝑊
𝛼

)

𝛿𝐿

𝛿𝑢
𝛼

𝑠+1

, (16)

where𝑊𝛼 are the characteristics of the first integral.
In theNoether approachwe need to construct Lagrangian

𝐿(𝑥, 𝑢, . . . , 𝑢
(𝑘−1)

). The Noether symmetries are then com-
puted from (14) and finally (16) provides the first integrals
corresponding to each Noether symmetry. The reader is
guided to [46] for further discussions about this technique
and its relations with the so-called Noether symmetries.

3.4. Partial Noether Approach. The partial Noether approach
for construction of first integrals was introduced byKara et al.
[5] and it can be useful for constructing first integrals when
the differential equation does not have a known Lagrangian.

Partial Lagrangian. Suppose that the 𝑘th-order differential
system (1) can be expressed as

𝐸
𝛼
= 𝐸
0

𝛼
+ 𝐸
1

𝛼
= 0. (17)

A function 𝐿 = 𝐿(𝑥, 𝑢, 𝑢
(1)
, 𝑢
(2)
, . . . , 𝑢

(𝑙)
), 𝑙 ≤ 𝑘 is known as a

partial Lagrangian of system (17) if

𝛿𝐿

𝛿𝑢
𝛼
= 𝑓
𝛽

𝛼
𝐸
1

𝛽
(18)

provided 𝐸1
𝛽

̸= 0 for some 𝛽. Here (𝑓𝛽
𝛼
) is an invertible matrix.

Partial Noether Operator.The operator𝑋 satisfying

𝑋(𝐿) + 𝐿𝐷
𝑥
(𝜉) = 𝐷

𝑥
(𝐵) + (𝜂

𝛼

− 𝜉𝑢
𝛼

𝑥
)

𝛿𝐿

𝛿𝑢
𝛼
,

𝛼 = 1, 2, . . . , 𝑚

(19)

is a partial Noether operator corresponding to the partial
Lagrangian 𝐿.

The first integrals of the system (1) associated with a
partial Noether operator 𝑋 corresponding to the partial
Lagrangian 𝐿 are determined from (16).

We can also use the partial Noether approach for equa-
tions arising from the variational principal and have the
Lagrangian.

3.5. Noether Approach for a System and Its Adjoint

Adjoint Equations. Let V = (V1, V2, . . . , V𝑚) be the new
dependent variables. The system of adjoint equations to the
system of 𝑘th-order differential equations (1) is defined by
(Atherton and Homsy [13], Ibragimov [12])

𝐸
∗

𝛼
(𝑥, 𝑢, V, . . . , 𝑢

(𝑘)
, V
(𝑘)
) = 0, 𝛼 = 1, 2, . . . , 𝑚, (20)

where

𝐸
∗

𝛼
(𝑥, 𝑢, V, . . . , 𝑢

(𝑘)
, V
(𝑘)
) =

𝛿 (V𝛽𝐸
𝛽
)

𝛿𝑢
𝛼

,

𝛼 = 1, 2, . . . , 𝑚, V = V (𝑥) .

(21)
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Symmetries of Adjoint Equations. Suppose system (1) has the
generator

𝑋 = 𝜉

𝜕

𝜕𝑥

+ 𝜂
𝛼
𝜕

𝜕𝑢
𝛼
. (22)

Ibragimov [12] showed that the following operator is a Lie
point symmetry for the system (1) and (20):

𝑌 = 𝜉

𝜕

𝜕𝑥

+ 𝜂
𝛼
𝜕

𝜕𝑢
𝛼
+ 𝜂
𝛼

∗

𝜕

𝜕V𝛼
, 𝜂

𝛼

∗
= − (𝜆

𝛼

𝛽
V𝛽 + V𝛼𝐷

𝑥
(𝜉)) .

(23)

The operator (23) is an extension of (22) to the variable V𝛼
and

𝑋(𝐸
𝛼
) = 𝜆
𝛽

𝛼
𝐸
𝛽

(24)

yields 𝜆𝛼
𝛽
.

Conservation Theorem. Every Lie point, Lie Bäcklund, and
nonlocal symmetry of the system of kth-order differential
equations (1) yields a first integral for the system consisting
of (1) and the adjoint equations (21). Let 𝐿 be the Lagrangian
defined by

𝐿 = V𝛼𝐸
𝛼
(𝑥, 𝑢, . . . , 𝑢

(𝑘)
) . (25)

Then the first integrals are given from the formula

𝐼 = 𝜉𝐿 +𝑊
𝛼
𝛿𝐿

𝛿𝑢
𝛼

𝑥

+∑

𝑠≥1

𝐷
𝑠

𝑥
(𝑊
𝛼

)

𝛿𝐿

𝛿𝑢
𝛼

𝑠+1

, (26)

where 𝜉𝑖, 𝜂𝛼 are the coefficient functions of the generator
(22). The first integrals constructed from (26) contain the
arbitrary solutions V of adjoint equation (21) and, thus, for
each solution V one has first integrals.

The dependence on the nonlocal variable V provides a
nonlocal first integral. One can eliminate such variable if the
original system of ODEs is nonlinearly self-adjoint [14, 17]
and to the equations admitting this remarkable property one
can establish a first integral for the original system.

3.6. Characteristic Method. According to Steudel [23] and
Olver [24], the first integral can be expressed in the charac-
teristic form as

𝐷
𝑥
𝐼 = 𝑄

𝛼

𝐸
𝛼
, (27)

where 𝑄𝛼 are the characteristics or multipliers.

3.7. Variational Approach. The variational approach was
developed by Olver [24]. The variational derivative of (27)
yields all the multipliers for which the equation can be
expressed as a local first integral.Themultipliers determining
equation is

𝛿

𝛿𝑢
𝛽

(𝑄
𝛼

𝐸
𝛼
) = 0, (28)

and it holds for arbitrary functions 𝑢(𝑥).

3.8. Variational Approach on Solution Space of the Differential
Equation. In this approach, themultiplier determining equa-
tion is obtained by taking the variational derivative of (27) on
the solution space of the differential equation; that is,

𝛿

𝛿𝑢
𝛽

(𝑄
𝛼

𝐸
𝛼
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝐸
𝛼
=0

= 0. (29)

Equations (29) are less overdetermined than (28). Sometimes
the characteristics constructed from (29) may correspond to
adjoint symmetries (see [28]) and not to a first integral.

3.9. Integrating Factor Method for First Integrals. Consider
the system (1) and let 𝜙[𝑢] = 𝜙(𝑥, 𝑢, 𝑢

󸀠

, . . . , 𝑢
𝑘−1

), Λ
𝛼

[𝑢] =

Λ
𝛼

(𝑥, 𝑢, 𝑢
󸀠

, . . . , 𝑢
𝑘−1

) and 𝐸
𝛼
[𝑢] = 𝐸

𝛼
(𝑥, 𝑢, 𝑢

󸀠

, . . . , 𝑢
𝑘−1

) such
that

𝑑

𝑑𝑥

𝜙 [𝑢] = Λ
𝛼

[𝑢] 𝐸
𝛼
[𝑢] . (30)

On the solutions 𝑢 of system (1), it is concluded that
𝜙[𝑢] = const, which means that 𝜙[𝑢] is a first integral of
(1) and the functions Λ𝛼 are integrating factors; see [28] for
further details and deeper discussion.

The linearized system to (1) is given by

𝐿
𝜎𝜌
[𝑢] V𝜌 ≡ 𝐸

𝜎𝜌
[𝑢] + 𝐸

1

𝜎𝜌

𝑑V𝜌

𝑑𝑥

+ ⋅ ⋅ ⋅ + 𝐸
𝑛

𝜎𝜌

𝑑
𝑛V𝜌

𝑑𝑥
𝑛
= 0, (31)

where

𝐸
𝜎𝜌
[𝑢] =

𝜕𝐸
𝜎

𝜕𝑦
𝜌
, . . . , 𝐸

𝑛

𝜎𝜌
[𝑢] =

𝜕𝐸
𝜎

𝜕𝑢
(𝑛)𝜌

. (32)

The adjoint of the linearized system (31) is given by

𝐿
∗

𝜌𝜎
[𝑢] 𝑤
𝜎

≡ 𝐸
𝜌𝜎
[𝑢] 𝑤
𝜎

−

𝑑

𝑑𝑥

(𝐸
1

𝜎𝜌
𝑤
𝜎

) + ⋅ ⋅ ⋅ +

𝑑
𝑛

𝑑𝑥
𝑛
(𝐸
𝑛

𝜎𝜌
𝑤
𝜎

)

= 0.

(33)

Moreover, the operators 𝐿
𝜎𝜌

and 𝐿∗
𝜌𝜎

satisfy the identity

𝑤
𝜎

𝐿
𝜎𝜌
[𝑢] V𝜌 − V𝜌𝐿∗

𝜌𝜎
[𝑢] 𝑤
𝜎

=

𝑑

𝑑𝑥

𝑆 [𝑤, V; 𝐸 [𝑢]] , (34)

where

𝑆 [𝑤, V, 𝐸 [𝑢]] = V𝜌𝑤𝜎𝐸1
𝜎𝜌
+ (

𝑑V𝜌

𝑑𝑥

− V𝜌
𝑑

𝑑𝑥

) (𝑤
𝜎

𝐸
2

𝜎𝜌
) + ⋅ ⋅ ⋅

+ (

𝑑
𝑛−1

𝑑𝑥
𝑛−1V𝜌

+

𝑛−2

∑

𝑙=1

𝑑
𝑛−𝑙−1V𝜌

𝑑𝑥
𝑛−𝑙−1

𝑑
𝑙

𝑑𝑥
𝑙

+(−1)
𝑛−1V𝜌

𝑑
𝑛−1

𝑑𝑥
𝑛−1

)(𝑤
𝜎

𝐸
𝑛

𝜎𝜌
) .

(35)

If Λ𝜎 satisfy the condition

𝐿
∗

𝜌𝜎
[𝑢] Λ
𝜎

[𝑢] = −Λ
𝜎

𝜌
[𝑢] 𝐸
𝜎
[𝑢] +

𝑑

𝑑𝑥

(Λ
1𝜎

𝜌
𝐸
𝜎
) + ⋅ ⋅ ⋅

+ (−1)
𝑛−2

𝑑
𝑛−1

𝑑𝑥
𝑛−1

(Λ
(𝑛−1)𝜎

𝜌
[𝑢] 𝐸
𝜎
) ,

(36)
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where

Λ
𝜎

𝜌
=

𝜕Λ
𝜎

𝜕𝑢
𝜌
, . . . , Λ

(𝑛−1)𝜎

𝜌
=

𝜕Λ
𝜎

𝜕𝑢
(𝑛−1)𝜌

, (37)

then the first integral 𝜙 is

𝜙 [𝑢] = 𝜙
1
+ 𝜙
2
= const. (38)

In (38)

𝜙
1
= ∫

1

0

{𝑆 [Λ [𝑢 (𝑥; 𝜆)] ,

𝜕𝑢 (𝑥; 𝜆)

𝜕𝜆

; 𝐸 [𝑢 (𝑥; 𝜆)]]

+𝑁[Λ [𝑢 (𝑥; 𝜆)] ,

𝜕𝑢 (𝑥; 𝜆)

𝜕𝜆

; 𝐸 [𝑢 (𝑥; 𝜆)]]} 𝑑𝜆,

𝜙
2
= ∫𝑘 (𝑥) 𝑑𝑥,

(39)

𝑁[Λ [𝑢 (𝑥; 𝜆)] ,

𝜕𝑢 (𝑥; 𝜆)

𝜕𝜆

; 𝐸 [𝑢 (𝑥; 𝜆)]]

=

𝜕𝑢
𝜌

(𝑥; 𝜆)

𝜕𝜆

𝐸
𝜎
[𝑢 (𝑥; 𝜆)] Λ

1𝜎

𝜌
[𝑢 (𝑥; 𝜆)]

+ (

𝑑

𝑑𝑥

(

𝜕𝑢
𝜌

(𝑥; 𝜆)

𝜕𝜆

) −

𝜕𝑢
𝜌

(𝑥; 𝜆)

𝜕𝜆

𝑑

𝑑𝑥

)

× (𝐸
𝜎
[𝑢 (𝑥; 𝜆)] Λ

2𝜎

𝜌
[𝑢 (𝑥; 𝜆)])

+ ⋅ ⋅ ⋅ +

𝑑
𝑛−2

𝑑𝑥
𝑛−2

(

𝜕𝑢
𝜌

(𝑥; 𝜆)

𝜕𝜆

)

+

𝑛−2

∑

𝑙=1

𝑑
𝑛−𝑙−2

𝑑𝑥
𝑛−𝑙−2

(

𝜕𝑢
𝜌

(𝑥; 𝜆)

𝜕𝜆

)

𝑑
𝑙

𝑑𝑥
𝑙

+ ⋅ ⋅ ⋅ + (−1)
𝑛−2

𝜕𝑢
𝜌

(𝑥; 𝜆)

𝜕𝜆

𝑑
𝑛−2

𝑑𝑥
𝑛−2

,

𝑘 (𝑥) = Λ
𝜎

[𝑢̃ (𝑥)] 𝐸
𝜎
[𝑢̃ (𝑥)] ,

(40)

and 𝑢̃(𝑥) = (𝑢̃
1
(𝑥), . . . , 𝑢̃

𝑛
(𝑥)) are any fixed functions such

that the function 𝑘(𝑥) is finite, while

𝑢 (𝑥; 𝜆) = 𝜆𝑢 (𝑥) + (1 − 𝜆) 𝑢̃ (𝑥) . (41)

We finish with the following definition.

Definition 1. The system (1) is said to be self-adjoint if and
only if 𝐿∗

𝜎𝜌
[𝑢] = 𝐿

𝜎𝜌
[𝑢].

4. First Integrals of Simple
Harmonic Oscillator

We compute the first integrals of simple harmonic oscillator
by utilizing different approaches. Consider

𝑢
󸀠󸀠

+ 𝑢 = 0. (42)

4.1. Direct Method. Equation (11) with 𝐼(𝑥, 𝑢, 𝑢󸀠) becomes

𝐷
𝑥
𝐼
󵄨
󵄨
󵄨
󵄨𝑢
󸀠󸀠
+𝑢=0

= 0, (43)

where

𝐷
𝑥
=

𝜕

𝜕𝑥

+ 𝑢
󸀠
𝜕

𝜕𝑢

+ 𝑢
󸀠󸀠
𝜕

𝜕𝑢
󸀠
+ ⋅ ⋅ ⋅ . (44)

Equation (43) after expansion results in

𝐼
𝑥
+ 𝐼
𝑢
𝑢
󸀠

+ 𝐼
𝑢
󸀠𝑢
󸀠󸀠
󵄨
󵄨
󵄨
󵄨
󵄨𝑢
󸀠󸀠
+𝑢=0

= 0 (45)

or

𝐼
𝑥
+ 𝐼
𝑢
𝑢
󸀠

− 𝐼
𝑢
󸀠𝑢 = 0. (46)

If we further restrict 𝐼 to be

𝐼 = 𝑎 (𝑥, 𝑢)

𝑢
󸀠2

2

+ 𝑏 (𝑥, 𝑢) 𝑢
󸀠

+ 𝑐 (𝑥, 𝑢) , (47)

then (46) becomes

𝑎
𝑢

2

𝑢
󸀠3

+ (

𝑎
𝑥

2

+ 𝑏
𝑢
) 𝑢
󸀠2

+ (𝑏
𝑥
+ 𝑐
𝑢
− 𝑎𝑢) 𝑢

󸀠

+ 𝑐
𝑥
− 𝑏𝑢 = 0.

(48)

Splitting (47) according to derivatives of 𝑢, we obtain

𝑢
󸀠3

: 𝑎
𝑢
= 0,

𝑢
󸀠2

:

𝑎
𝑥

2

+ 𝑏
𝑢
= 0,

𝑢
󸀠

: 𝑏
𝑥
+ 𝑐
𝑢
− 𝑎𝑢 = 0,

rest : 𝑐
𝑥
− 𝑏𝑢 = 0.

(49)

The system of (49) is solved for 𝑎, 𝑏, and 𝑐 to obtain

𝐼
1
=

𝑢
󸀠2

2

+

𝑢
2

2

,

𝐼
2
= −𝑢
󸀠 sin𝑥 + 𝑢 cos𝑥,

𝐼
3
= 𝑢
󸀠 cos𝑥 + 𝑢 sin𝑥,

𝐼
4
=

𝑢
󸀠2

2

sin 2𝑥 − 𝑢𝑢󸀠 cos 2𝑥 − 𝑢
2

2

sin 2𝑥,

𝐼
5
=

𝑢
󸀠2

2

cos 2𝑥 + 𝑢𝑢󸀠 sin 2𝑥 − 𝑢
2

2

cos 2𝑥.

(50)

4.2. Symmetry and First Integral Relation. The first-order
prolongation of the Lie point symmetry generators of (42) is

𝑋 = [𝑐
1
+ 𝑐
5
sin 2𝑥 + 𝑐

6
cos 2𝑥 + 𝑐

7
𝑢 sin𝑥 + 𝑐

8
𝑢 cos𝑥] 𝜕

𝜕𝑥

+ [𝑐
2
𝑢 + 𝑐
3
sin𝑥 + 𝑐

4
cos𝑥 + 𝑐

5
𝑢 cos 2𝑥 − 𝑐

6
𝑢 sin 2𝑥

+𝑐
7
cos𝑥 − 𝑐

8
𝑢
2 sin𝑥] 𝜕

𝜕𝑢

+ 𝜁

𝜕

𝜕𝑢
󸀠
,

(51)
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where

𝜁 = 𝐷
𝑥
𝜂 − 𝑢
󸀠

𝐷
𝑥
(𝜉) . (52)

The first integrals are computed by the joint conditions
(11) and (12).

The second important aspect of this approach is that
we can associate a symmetry with a first integral. The
relationship (12) holds for symmetry 𝑋

3
and first integral 𝐼

2

and, thus, symmetry 𝑋
3
is associated with 𝐼

2
. Similarly 𝑋

4

is associated with 𝐼
3
. This association of symmetries with a

first integral helps in finding a solution via double reduction
theory [38–43].

4.3. Noether’s Approach. Equation (42) admits the standard
Lagrangian

𝐿 =

𝑢
󸀠2

2

−

𝑢
2

2

, (53)

which satisfies the Euler Lagrange equation 𝛿𝐿/𝛿𝑢 = 0.
Now we show how to compute the Noether symmetries
corresponding to a Lagrangian (53).

The Noether symmetry determining (14) results in

𝑋 (𝐿) + 𝐷
𝑥
(𝜉) = 𝐷

𝑥
𝐵, (54)

where 𝜉 = 𝜉(𝑥, 𝑢), 𝜂 = 𝜂(𝑥, 𝑢), lie symmetry operators and
𝐵 = 𝐵(𝑥, 𝑢) is the gauge terms. Expansion of (54) gives
Noether symmetry determining equation

− 𝑢𝜂 + 𝑢
󸀠

[𝜂
𝑥
+ 𝜂
𝑢
𝑢
󸀠

− 𝑢
󸀠

(𝜉
𝑥
+ 𝜉
𝑢
𝑢
󸀠

)]

+ (

𝑢
󸀠
2

2

−

𝑢
2

2

) (𝜉
𝑥
+ 𝜉
𝑢
𝑢
󸀠

) = 𝐵
𝑥
+ 𝐵
𝑢
𝑢
󸀠

.

(55)

The separation of (55) with respect to powers of derivatives
of 𝑢 gives rise to

𝑢
󸀠3

: 𝜉
𝑢
= 0,

𝑢
󸀠2

: 𝜂
𝑢
−

1

2

𝜉
𝑥
= 0,

𝑢
󸀠

: 𝜂
𝑥
= 𝐵
𝑢
,

𝑢
󸀠0

: 0 = 𝑢𝜂 +

𝑢
2

2

𝜉
𝑥
+ 𝐵
𝑥
.

(56)

The solution of system (56) is

𝐵 = 𝑐
2
𝑢 cos𝑥 − 𝑐

3
𝑢 sin𝑥 − 𝑐

4
𝑢
2 sin 2𝑥 − 𝑐

5
𝑢
2 cos 2𝑥,

𝜉 = 𝑐
1
+ 𝑐
4
sin 2𝑥 + 𝑐

5
cos 2𝑥,

𝜂 = 𝑐
2
sin𝑥 + 𝑐

3
cos𝑥 + 𝑢 (𝑐

4
cos 2𝑥 − 𝑐

5
sin 2𝑥) .

(57)

Formula (16) with 𝜉, 𝜂, and 𝐵 from (57) yields the first
integrals (50).

4.4. Partial Noether Approach. Equation (42) admits the
partial Lagrangian 𝐿 = 𝑢

󸀠2

/2 and the corresponding partial
Euler-Lagrange equation is

𝑢 =

𝛿𝐿

𝛿𝑢

, (58)

where

𝛿

𝛿𝑢

=

𝜕

𝜕𝑢

− 𝐷
𝑥

𝜕

𝜕𝑢
󸀠
+ 𝐷
2

𝑥

𝜕

𝜕𝑢
󸀠󸀠
− ⋅ ⋅ ⋅ . (59)

The partial Noether operators 𝑋 = 𝜉𝜕/𝜕𝑥 + 𝜂𝜕/𝜕𝑢

corresponding to 𝐿 satisfy (19); that is,

[𝜂
𝑥
+ 𝜂
𝑢
𝑢
󸀠

− 𝑢
󸀠

𝜉
𝑥
− 𝑢
󸀠2

𝜉
𝑢
] 𝑢
󸀠

+ (𝜉
𝑥
+ 𝜉
𝑢
𝑢
󸀠

)

1

2

𝑢
󸀠2

= 𝜂𝑢 − 𝑢
󸀠

𝜉𝑢 + 𝐵
𝑥
+ 𝑢
󸀠

𝐵
𝑢
.

(60)

The usual separation by derivatives of 𝑢 gives

𝑢
󸀠3

: 𝜉 = 𝑎 (𝑥) ,

𝑢
󸀠2

: 𝜂 =

1

2

𝑎
󸀠

𝑢 + 𝑏 (𝑥) ,

𝑢
󸀠

: 𝜂
𝑥
= −𝜉𝑢 + 𝐵

𝑢
,

𝑢
󸀠0

: 𝜂𝑢 + 𝐵
𝑥
= 0.

(61)

System (61) yields

𝐵 =

1

2

𝑐
1
𝑢
2

+ 𝑐
2
𝑢 cos𝑥 − 𝑐

3
𝑢 sin𝑥

−

1

2

𝑐
4
𝑢
2 sin 2𝑥 − 1

2

𝑐
5
𝑢
2 cos 2𝑥,

𝜉 =

1

4

𝑐
1
+ 𝑐
4
sin 2𝑥 + 𝑐

5
cos 2𝑥,

𝜂 = 𝑐
2
sin𝑥 + 𝑐

3
cos𝑥 + 𝑢 (𝑐

4
cos 2𝑥 − 𝑐

5
sin 2𝑥) .

(62)

Formula (16) with 𝜉, 𝜂, and 𝐵 from (62) yields the first
integrals (50). Hence the first integrals in each case are𝐷

𝑥
𝐼 =

𝑊(−𝑢
󸀠󸀠

− 𝑢) = 0 with respective characteristic 𝑊. Here the
partial Noether’s approach yields all nontrivial first integrals
as obtained by Noether’s approach.The difference here lies in
the forms of 𝐵 and 𝐿which are distinct from the ones used in
the Noether approach.

4.5. Noether Approach for a System and Its Adjoint. The
adjoint equation for (42) is

𝐸
∗

𝛼
(𝑥, 𝑢, V, 𝑢󸀠, V󸀠, 𝑢󸀠󸀠, V󸀠󸀠) ≡

𝛿

𝛿𝑢

[V (𝑢󸀠󸀠 + 𝑢)] = 0 (63)

and this yields

V󸀠󸀠 + V = 0. (64)

Let V = 𝑄(𝑥, 𝑢), then V󸀠 = 𝑄
𝑥
+ 𝑄
𝑢
𝑢
󸀠, and V󸀠󸀠 = 𝑄

𝑥𝑥
+

2𝑄
𝑥𝑢
+ 𝑄
𝑢𝑢
(𝑢
󸀠

)

2

+ 𝑄
𝑢
𝑢
󸀠󸀠. Substituting these expressions of
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V and V󸀠󸀠 into (64) and equating the coefficients of 𝑢 𝑢󸀠 and
𝑢
󸀠󸀠 to zero, one obtains V = 𝑢 + 𝑐

1
cos𝑥 + 𝑐

2
sin𝑥. Thus, (42)

is nonlinearly self-adjoint.
The Lagrangian for the system consisting of (42) and (64)

is

𝐿 = V (𝑢󸀠󸀠 + 𝑢) . (65)

The Lagrangian 𝐿 satisfies

𝛿𝐿

𝛿𝑢

= V󸀠󸀠 + V = 0,
𝛿𝐿

𝛿V
= 𝑢
󸀠󸀠

+ 𝑢 = 0. (66)

The formula for first integrals from (26) is

𝐼 = 𝜉𝐿 +𝑊[

𝜕𝐿

𝜕𝑢
󸀠
− 𝐷
𝑥
(

𝜕𝐿

𝜕𝑢
󸀠󸀠
)] + 𝐷

𝑥
(𝑊)

𝜕𝐿

𝜕𝑢
󸀠󸀠
. (67)

Equation (67) with 𝐿 from (65) results in

𝐼 = 𝜉V (𝑢󸀠󸀠 + 𝑢) − V󸀠𝑊+ V𝐷
𝑥
(𝑊) , 𝑊 = 𝜂 − 𝜉𝑢

󸀠

. (68)

According to the conservation theorem, every Lie point, Lie-
Bäcklund, and nonlocal symmetry of the system of second-
order differential equation (42) yields a first integral for the
system consisting of (42) and the adjoint equation (64). For
the Lie symmetry𝑋

1
= 𝜕/𝜕𝑥, the first integrals are

𝐼 = 𝑢V + 𝑢󸀠V󸀠, (69)

where V is the solution of adjoint equation (64). Note that V =
𝑢 yields 𝐼

1
and 𝐼
2
, 𝐼
3
can be obtained from the substitution

V = sin𝑥 and V = cos𝑥, respectively. One can use the other
Lie symmetries given in (51) to derive the first integrals but
one requires the solution of adjoint equation to construct first
integrals. In order to illustrate this fact, let us consider the
generator

𝑋 = 𝑢

𝜕

𝜕𝑢

. (70)

It is easy to check that (70) is not a Noether symmetry
generator. Substituting 𝜉 = 0 and 𝜂 = 𝑢 into (68), one arrives
at

𝐼 = −𝑢V󸀠 + 𝑢󸀠V. (71)

The substitution V = 𝑢 in (71) provides the trivial first integral
𝐼 = 0. However, setting V = cos𝑥 and V = sin𝑥, respectively,
into (71), then the first integrals 𝐼

2
and 𝐼
3
are obtained again.

4.6. Characteristic Method. For (42) assume the character-
istics 𝑄(𝑥, 𝑢, 𝑢󸀠) and first integrals of form 𝐼(𝑥, 𝑢, 𝑢

󸀠

); then
formula (27) yields

𝐼
𝑥
+ 𝑢
󸀠

𝐼
𝑢
+ 𝑢
󸀠󸀠

𝐼
󸀠

𝑢
= 𝑄 (𝑢

󸀠󸀠

+ 𝑢) . (72)

Equation (72), after separating, with respect to 𝑢󸀠󸀠 gives

𝐼
󸀠

𝑢
= 𝑄,

𝐼
𝑥
+ 𝑢
󸀠

𝐼
𝑢
= 𝑄 + 𝑢.

(73)

Equations (73) finally result in (46) and, hence, following the
same procedure as we did for the direct method, five first
integrals (50) are obtained.

4.7. Variational Approach. For the variational approach with
multiplier of form 𝑄 = 𝑄(𝑥, 𝑢, 𝑢

󸀠

), we have

𝛿

𝛿𝑢

[𝑄 (𝑥, 𝑢, 𝑢
󸀠

) (𝑢
󸀠󸀠

+ 𝑢)] = 0. (74)

Equation (74), after expansion, takes the following form:

𝑄 + 𝑄
𝑢
(𝑢
󸀠󸀠

+ 𝑢) − 𝑄
𝑢
󸀠 (𝑢
󸀠󸀠󸀠

+ 𝑢
󸀠

)

− (𝑢
󸀠󸀠

+ 𝑢) (𝑄
𝑢
󸀠
𝑥
+ 𝑢
󸀠

𝑄
𝑢𝑢
󸀠 + 𝑢
󸀠󸀠

𝑄
𝑢
󸀠
𝑢
󸀠) + 𝑄

𝑥𝑥

+ 𝑢
󸀠

𝑄
𝑥𝑢
+ 𝑢
󸀠󸀠

𝑄
𝑥𝑢
󸀠 + 𝑄
𝑢
𝑢
󸀠󸀠

+ 𝑢
󸀠

𝑄
𝑢𝑥
+ 𝑢
󸀠2

𝑄
𝑢𝑢

+ 𝑢
󸀠

𝑢
󸀠󸀠

𝑄
𝑢𝑢
󸀠 + 𝑢
󸀠󸀠󸀠

𝑄
𝑢
󸀠 + 𝑢
󸀠󸀠

𝑄
𝑢
󸀠
𝑥
+ 𝑢
󸀠󸀠

𝑢
󸀠

𝑄
𝑢𝑢
󸀠 + 𝑢
󸀠󸀠
2

𝑄
𝑢
󸀠
𝑢
󸀠

= 0.

(75)

Separation of (75) with respect to 𝑢󸀠󸀠 yields

𝑢
󸀠

𝑄
𝑢𝑢
󸀠 − 𝑢𝑄

𝑢
󸀠
𝑢
󸀠 + 𝑄
𝑢
󸀠
⋅𝑥
+ 2𝑄
𝑢
= 0,

𝑄 + 𝑄
𝑥𝑥
+ 𝑢
󸀠2

𝑄
𝑢𝑢
+ 2𝑢
󸀠

𝑄
𝑢𝑥
+ 𝑢𝑄
𝑢
− 𝑢𝑄
𝑥𝑢
󸀠 − 𝑢𝑢

󸀠

𝑄
𝑢𝑢
󸀠 = 0.

(76)

The solution of (76) gives rise to the following character-
istics:

𝑄 = (𝑐
1
+ 𝑐
2
sin 2𝑥 + 𝑐

3
cos 2𝑥) 𝑢󸀠

+ [(𝑐
3
sin 2𝑥 − 𝑐

2
cos 2𝑥) 𝑢 + 𝑐

4
sin𝑥 + 𝑐

5
cos𝑥] .

(77)

A multiplier has the property

𝑄(𝑢
󸀠󸀠

+ 𝑢) = 𝐷
𝑥
𝐼. (78)

Equation (78) with multipliers from (77) and 𝐼 = 𝐼(𝑥, 𝑢, 𝑢
󸀠

)

yields the first integrals as given in (50).

4.8. Variational Approach on Space of Solutions of the Differ-
ential Equation. For (42), condition (29) results in

𝛿

𝛿𝑢

[𝑄(𝑥, 𝑢, 𝑢
󸀠

)(𝑢
󸀠󸀠

+ 𝑢)]

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑢
󸀠󸀠
+𝑢=0

= 0. (79)

Expanding (79), we have

𝑄 + 𝑄
𝑥𝑥
+ 2𝑢
󸀠

𝑄
𝑥𝑢
− 𝑢𝑄
𝑢
+ 𝑢
󸀠2

𝑄
𝑢𝑢
− 2𝑢𝑢

󸀠

𝑄
𝑢𝑢
󸀠

− 𝑢
󸀠

𝑄
𝑢
󸀠 − 2𝑢𝑄

𝑢
󸀠
𝑥
− 𝑢
2

𝑄
𝑢
󸀠
𝑢
󸀠 = 0

(80)

and this yields

𝑄 = (𝑐
1
+ 𝑐
2
sin 2𝑥 + 𝑐

3
cos 2𝑥) 𝑢󸀠

+ [(𝑐
3
sin 2𝑥 − 𝑐

2
cos 2𝑥) 𝑢 + 𝑐

4
sin𝑥 + 𝑐

5
cos𝑥] + 𝑐

6
𝑢,

(81)

where 𝑐
1
, . . . , 𝑐

6
are constants. The multipliers with respect to

constants 𝑐
1
, . . . , 𝑐

5
are the same as obtained in Section 4.7

and yield the first integrals obtained in (50). The multiplier
associated with 𝑐

6
is 𝑢 which does not correspond to any first

integral. It might correspond to an adjoint symmetry.
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4.9. Integrating FactorMethod for First Integrals. Applying the
results of Section 3.9 to our considered equation means to
follow closely the first example presented in [28].

Substituting 𝐸 = 𝑢
󸀠󸀠

+ 𝑢 into (33) and (36), it is,
respectively, obtained

Λ
𝑥𝑥
+ 2𝑢
󸀠

Λ
𝑥𝑢
− 2𝑢Λ

𝑥𝑢
󸀠 + (𝑢

󸀠

)

2

Λ
𝑢𝑢
− 2𝑢𝑢

󸀠

Λ
𝑢𝑢
󸀠

+ 𝑢
2

Λ
𝑢
󸀠
𝑢
󸀠 − 𝑢
󸀠

Λ
𝑢
󸀠 − 𝑢Λ

𝑢
+ Λ = 0,

(82)

Λ
𝑥𝑢
󸀠 + 𝑢
󸀠

Λ
𝑢𝑢
󸀠 − 𝑢Λ

𝑢
󸀠
𝑢
󸀠 + 2Λ

𝑢
= 0. (83)

Noticing that Λ = 𝑢
󸀠 is a solution of both (82) and (83),

one can take 𝑢̃ = 0 into (41). Therefore, from (39) and (38), it
is obtained 𝑆 + 𝑁 = 𝜆[(𝑢

󸀠

)
2

+ 𝑢
2

] and

𝜙 = ∫

1

0

𝜆 [(𝑢
󸀠

)

2

+ 𝑢
2

] 𝑑𝜆 =

(𝑢
󸀠

)

2

+ 𝑢
2

2

= 𝑐
1
.

(84)

5. Exact Solutions via First Integrals

The Noether symmetries associated with the first integrals
can be utilized to derive the exact solutions of ordinary
differential equations [34].

If 𝑋 is a Noether symmetry and 𝐼 is a first integral of (1)
corresponding to a first-order Lagrangian 𝐿 = 𝐿(𝑥, 𝑢[1]), then
the following properties are satisfied [34]:

𝑋
[1]

(𝐼
𝑗
) = 𝑆
1

𝑗
− 𝑆
2

𝑗
− 𝑆
3

𝑗
, 1 ≤ 𝑗 ≤ 𝑚, (85)

where

𝑆
1

𝑗
=

𝑚

∑

𝑖 ̸= 𝑗

𝜉
𝑖

𝜕𝑓
𝑗

𝜕𝑥
𝑖

− 𝜉
𝑗

𝑚

∑

𝑖 ̸= 𝑗

𝐷
𝑖
𝑓
𝑖
+

𝜕𝑓
𝑗

𝜕𝑢

𝑚

∑

𝑖 ̸= 𝑗

𝜉
𝑖
𝑢
𝑖
,

𝑆
2

𝑗
= 𝐿

[

[

𝑚

∑

𝑖 ̸= 𝑗

𝜉
𝑖

𝜕𝜉
𝑗

𝜕𝑥
𝑖

− 𝜉
𝑗

𝑚

∑

𝑖 ̸= 𝑗

𝐷
𝑖
𝜉
𝑖
+

𝜕𝜉
𝑗

𝜕𝑢

𝑚

∑

𝑖 ̸= 𝑗

𝜉
𝑖
𝑢
𝑖

]

]

,

𝑆
3

𝑗
=

𝜕𝐿

𝜕𝑢
𝑗

[𝑋
[1]

(𝜂

𝑚

∑

𝑖=1

𝜉
𝑖
𝑢
𝑖
) − (𝜂 −

𝑚

∑

𝑖=1

𝜉
𝑖
𝑢
𝑖
)Div 𝜉]

− (𝜂 −

𝑚

∑

𝑖=1

𝜉
𝑖
𝑢
𝑖
)

𝑚

∑

𝑖=1

𝜕𝐿

𝜕𝑢
𝑖

𝜕𝜁
𝑖

𝜕𝑢
𝑗

.

(86)

Proposition 2. Suppose 𝑋 is a symmetry of 𝐼
𝑗
= 𝐵
𝑗
, where

𝐵
𝑗
= 𝐵
𝑗
(𝑥, 𝑢); then it satisfies

𝑚

∑

𝑖=1

𝜉

𝜕𝐵
𝑗

𝜕𝑥
𝑖

+ 𝜂

𝜕𝐵
𝑗

𝜕𝑢

= 𝑆
1

𝑗
− 𝑆
2

𝑗
− 𝑆
3

𝑗
. (87)

Proposition 3. In (87) if 𝑚 = 1 and 𝑋[1](𝐼) = 0, then 𝑋 is a
point symmetry of reduced equation 𝐼(𝑥, 𝑢, 𝑢󸀠) = 𝑐, in which 𝑐
is an arbitrary constant.

Now we will compute the exact solutions of (42) using
its first integrals which are reduced forms of the equation
under consideration. The first integrals reduce an 𝑛th-order

ODE to (𝑛 − 1)th-order ODE. For scalar first-order ODE,
the first integrals transform to quadrature whereas for scalar
second-order ODE the first integrals result in the first-order
ODEs. Some of these reduced forms (first integrals) can be
solved directly. The other reduced form can be transformed
to quadrature by using the Noether symmetries with its
associated first integrals which yield the exact solutions. The
first three integrals 𝐼

1
, 𝐼
2
, and 𝐼

3
of (42) yield a solution

directly. Since 𝐷
𝑥
𝐼 = 0 which implies 𝐼 = 𝑐, the first integral

𝐼
1
in (50) can be written as

𝑢
2

2

+

𝑢
󸀠2

2

= 𝑐
1

(88)

which can also be expressed as

𝑑𝑢

√𝑐
1
− 𝑢
2

= ±𝑑𝑥. (89)

Equation (153) is a variable separable and yields

𝑢

√𝑐
1
− 𝑢
2

= tan (±𝑥 + 𝑐
2
) , (90)

and this comprises the exact solution of ODE (42).
A similar procedure is adapted to get the following exact

solution of (42) using 𝐼
2
or 𝐼
3
:

𝑢 = 𝑐
1
cos𝑥 + 𝑐

2
sin𝑥. (91)

Now we show how one can find the exact solution of (42)
using Noether symmetries associated with the first integral.
The Noether symmetry

𝑋 = sin 2𝑥 𝜕

𝜕𝑥

+ 𝑢 cos 2𝑥 𝜕

𝜕𝑢

(92)

is associated with the first integral 𝐼
4
in (50). The induced

equation 𝐼
4
= 𝑐
1
can be expressed as

𝑢
󸀠2

2

sin 2𝑥 − 𝑢𝑢󸀠 cos 2𝑥 − 𝑢
2

2

sin 2𝑥 = 𝑐
1
. (93)

Using (92) one can easily find the invariant

𝑢 = 𝐴 (𝑥)√sin 2𝑥, (94)

and it reduces (93) to

−𝐴
2

+ 𝐴
󸀠2sin2 (2𝑥) = 2𝑐

1
+ 𝐴
2

. (95)

Equation (95) is expressible as a variable separable and it
finally yields

𝐴 + √2𝑐
1
+ 𝐴
2
= 𝑐
2
√csc 2𝑥 − cot 2𝑥 (96)

or

𝐴 + √2𝑐
1
+ 𝐴
2
=

𝑐
2

√csc 2𝑥 − cot 2𝑥
. (97)
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The solution in (94) is an exact solution of (42) with𝐴which
can be determined from (96) or (97).

Similarly, the Noether symmetry 𝑋 = cos(2𝑥)(𝜕/𝜕𝑥) −
𝑢 sin(2𝑥)(𝜕/𝜕𝑢) associated with 𝐼

5
in (50) provides the exact

solution

𝑢 = 𝐵 (𝑥)√cos 2𝑥, (98)

where 𝐵(𝑥) satisfies

𝐵 + √2𝑐
1
+ 𝐵
2
= 𝑐
2
√sec 2𝑥 + tan 2𝑥 (99)

or

𝐵 + √2𝑐
1
+ 𝐵
2
=

𝑐
2

√sec 2𝑥 + tan 2𝑥
. (100)

6. Hamiltonian Functions and First Integrals

Suppose 𝑡 is the independent variable and (𝑞, 𝑝) =

(𝑞
1

, . . . , 𝑞
𝑛

, 𝑝
1
, . . . , 𝑝

𝑛
) are the phase space coordinates. The

derivatives of 𝑞𝑖, 𝑝
𝑖
with respect to 𝑡 are given by

𝑝̇
𝑖
= 𝐷 (𝑝

𝑖
) , ̇𝑞

𝑖
= 𝐷 (𝑞

𝑖
) , 𝑖 = 1, 2, . . . , 𝑛, (101)

where

𝐷 =

𝜕

𝜕𝑡

+ ̇𝑞
𝑖

𝜕

𝜕𝑞
𝑖

+ 𝑝̇
𝑖

𝜕

𝜕𝑝
𝑖

+ ⋅ ⋅ ⋅ (102)

is known as the total derivative operator with respect to 𝑡.
Here we present the basic operators needed in the sequel after
introducing the necessary notations.

The Euler operator, for each 𝛼, is

𝛿

𝛿𝑞
𝑖
=

𝜕

𝜕𝑞
𝑖
− 𝐷

𝜕

𝜕 ̇𝑞
𝑖
, 𝑖 = 1, 2, . . . , 𝑛, (103)

and the associated variational operator is

𝛿

𝛿𝑝
𝑖

=

𝜕

𝜕𝑝
𝑖

− 𝐷

𝜕

𝜕𝑝̇
𝑖

, 𝑖 = 1, 2, . . . , 𝑛. (104)

Applying operators (103) and (104) on

𝐿 (𝑡, 𝑞, ̇𝑞) = 𝑝
𝑖
̇𝑞
𝑖

− 𝐻 (𝑡, 𝑞, 𝑝) (105)

equated to zero results in the following canonical Hamilton
equations:

̇𝑞
𝑖

=

𝜕𝐻

𝜕𝑝
𝑖

,

𝑝̇
𝑖
= −

𝜕𝐻

𝜕𝑞
𝑖
, 𝑖 = 1, . . . , 𝑛.

(106)

Equations (106) are obtained using 𝛿𝐿/𝛿𝑞𝑖 = 0 and 𝛿𝐿/𝛿𝑝
𝑖
=

0. Equation (105) is the well-known Legendre transformation
which relates the Hamiltonian and Lagrangian, where 𝑝

𝑖
=

𝜕𝐿/𝜕 ̇𝑞
𝑖 and ̇𝑞

𝑖

= 𝜕𝐻/𝜕𝑝̇
𝑖
.

Let

𝑋 = 𝜉 (𝑡, 𝑞, 𝑝)

𝜕

𝜕𝑡

+ 𝜂
𝑖

(𝑡, 𝑞, 𝑝)

𝜕

𝜕𝑞
𝑖
+ 𝜁
𝑖
(𝑡, 𝑞, 𝑝)

𝜕

𝜕𝑝
𝑖

(107)

be the operator in the space (𝑡, 𝑞, 𝑝).The operator in (107) is a
generator of a point symmetry of the canonical Hamiltonian
system (106) if it satisfies [24]

̇𝜂
𝑖

− ̇𝑞
𝑖 ̇
𝜉 − 𝑋(

𝜕𝐻

𝜕𝑝
𝑖

) = 0,

̇
𝜁
𝑖
− 𝑝̇
𝑖

̇
𝜉 + 𝑋(

𝜕𝐻

𝜕𝑞
𝑖
) = 0, 𝑖 = 1, . . . , 𝑛

(108)

on the system (106).
In [24], the authors have studied the Hamiltonian sym-

metries in evolutionary or canonical form. The symmetry
properties of theHamiltonian action have been considered in
the space (𝑡, 𝑞, 𝑝) in [30, 31]. They presented the Hamiltonian
version of Noether’s theorem considering the general form of
the symmetries (107).

The following important results which are analogs of
Noether symmetries and the Noether theorem (see [24, 30,
44, 47] for a discussion) were established.

Theorem 4 (Hamilton action symmetries). A Hamiltonian
action

𝑝
𝑖
𝑑𝑞
𝑖

− 𝐻𝑑𝑡 = 0 (109)

is said to be invariant up to gauge 𝐵(𝑡, 𝑞, 𝑝) associated with a
group generated by (107) if

𝜁
𝑖

𝜕𝐻

𝜕𝑝
𝑖

+ 𝑝
𝑖
𝐷(𝜂
𝑖

) − 𝑋 (𝐻) − 𝐻𝐷 (𝜉) − 𝐷 (𝐵) = 0. (110)

Theorem 5 (Hamiltonian version of Noether’s theorem). The
canonicalHamilton system (106)which is invariant has the first
integral

𝐼 = 𝑝
𝑖
𝜂
𝑖

− 𝜉𝐻 − 𝐵 (111)

for some gauge function 𝐵 = 𝐵(𝑡, 𝑞, 𝑝) if and only if the
Hamiltonian action is invariant up to divergence with respect
to the operator𝑋 given in (107) on the solutions to (106).

6.1. First Integrals of Harmonic Oscillator in Hamiltonian
Framework. Let us transfer the preceding example into the
Hamiltonian framework and define

𝑞 = 𝑢, 𝑝 =

𝜕𝐿

𝜕𝑢̇

= 𝑢̇, 𝑥 = 𝑡. (112)

The Hamiltonian function for this problem is

𝐻(𝑡, 𝑝, 𝑞) = 𝑢̇

𝜕𝐿

𝜕𝑢̇

− 𝐿 =

1

2

(𝑝
2

+ 𝑞
2

) . (113)

The canonical Hamiltonian equations (106) for Hamiltonian
function (113) result in

̇𝑞 = 𝑝, 𝑝̇ = −𝑞. (114)
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The Hamiltonian operator determining equation (110), after
expansion, yields

𝑝 (𝜂
𝑡
+ ̇𝑞𝜂
𝑞
) − 𝜂𝑞 −

1

2

(𝑝
2

+ 𝑞
2

) (𝜉
𝑡
+ ̇𝑞𝜉
𝑞
) − 𝐵
𝑡
− ̇𝑞𝐵
𝑞
= 0,

(115)

in which we assume that 𝜉 = 𝜉(𝑡, 𝑞), 𝜂 = 𝜂(𝑡, 𝑞), and 𝐵 =

𝐵(𝑡, 𝑞). One can also assume these functions to be dependent
on 𝑝. We have chosen (𝑡, 𝑞) dependence to simplify the
calculations here and this leads to at least one Hamiltonian
Noether operator. Equation (115) with the help of (114) can be
written as

̇𝑞 (𝜂
𝑡
+ ̇𝑞𝜂
𝑞
) − 𝜂𝑞 −

1

2

( ̇𝑞
2

+ 𝑞
2

) (𝜉
𝑡
+ ̇𝑞𝜉
𝑞
) − 𝐵
𝑡
− ̇𝑞𝐵
𝑞
= 0.

(116)

One can separate (116) with respect to powers of derivatives
of ̇𝑞 and finally arrive at the following Hamiltonian Noether
operators and the gauge terms:

𝐵 = 𝑐
2
𝑞 cos 𝑡 − 𝑐

3
𝑞 sin 𝑡 − 𝑐

4
𝑞
2 sin 2𝑡 − 𝑐

5
𝑞
2 cos 2𝑡,

𝜉 = 𝑐
1
+ 𝑐
4
sin 2𝑡 + 𝑐

5
cos 2𝑡,

𝜂 = 𝑐
2
sin 𝑡 + 𝑐

3
cos 𝑡 + 𝑞 (𝑐

4
cos 2𝑡 − 𝑐

5
sin 2𝑡) .

(117)

The first integrals from formula (111) are

𝐼
1
=

𝑝
2

2

+

𝑞
2

2

,

𝐼
2
= −𝑝 sin 𝑡 + 𝑞 cos 𝑡,

𝐼
3
= 𝑝 cos 𝑡 + 𝑞 sin 𝑡,

𝐼
4
=

𝑝
2

2

sin 2𝑡 − 𝑞𝑝 cos 2𝑡 −
𝑞
2

2

sin 2𝑡,

𝐼
5
=

𝑝
2

2

cos 2𝑡 + 𝑞𝑝 sin 2𝑡 −
𝑞
2

2

cos 2𝑡.

(118)

It is worthy to notice here that no integration is required to
derive solutions of (114).

7. Applications to Some Models from
Real World

In this section we apply the considered techniques to some
equations arising from concrete problems, namely, the jerk
equation and free oscillations with two-degree-of-freedom
gyroscopic system with quadratic nonlinearities.

7.1. Jerk Equation. According to Gottlieb [48, 49], the most
general nonlinear jerk equation is

𝐸
1
= 𝑦
󸀠󸀠󸀠

+ 𝛼𝑦
󸀠3

+ 𝛽𝑦
2

𝑦
󸀠

+ 𝛾𝑦
󸀠

− 𝛿𝑦𝑦
󸀠

𝑦
󸀠󸀠

+ 𝜖𝑦
󸀠

𝑦
󸀠󸀠2

= 0,

(119)

where the prime denotes differentiation with respect to 𝑥 and
𝛼, 𝛽, 𝛾, 𝛿, 𝜖 are constants. In (119), at least one of 𝛽, 𝛿, 𝜖 should
be different from zero and if 𝜖 = 0, then 𝛿 ̸= 2𝛼 so that the jerk
equation is not a derivative of a second-order ODE [50].

7.1.1. First Integrals for Nonlinear Jerk Equation by Noether
Approach for a System and Its Adjoint. Let us look for first
integrals for (119) using Noether approach for a system and
its adjoint. The adjoint equation for (119) is

𝐸
∗

1
= V [−6𝛼𝑦󸀠(𝑦󸀠󸀠)

2

− 3𝛼(𝑦
󸀠

)

2

𝑦
󸀠󸀠󸀠

− 2𝜖𝑦
󸀠󸀠

𝑦
󸀠󸀠󸀠

−3𝛿𝑦
󸀠

𝑦
󸀠󸀠

+ 6𝜖𝑦
󸀠󸀠

𝑦
󸀠󸀠󸀠

+ 2𝜖𝑦
󸀠

𝑦
󸀠󸀠󸀠󸀠

]

+ V󸀠 [−3𝛼(𝑦󸀠)
2

𝑦
󸀠󸀠

− 𝛽𝑦
2

− 𝛾 + 𝛿𝑦𝑦
󸀠󸀠

− 𝜖(𝑦
󸀠󸀠

)

2

−2𝛿(𝑦
󸀠

)

2

− 2𝛿𝑦𝑦
󸀠󸀠

+ 4𝜖(𝑦
󸀠󸀠

)

2

+ 4𝜖𝑦
󸀠󸀠

𝑦
󸀠󸀠󸀠

]

+ V󸀠󸀠 [−𝛿𝑦𝑦󸀠 + 2𝜖𝑦󸀠𝑦󸀠󸀠] − V󸀠󸀠󸀠.

(120)

The Lagrangian for system 𝐸
1
= 0 and 𝐸∗

1
= 0 is 𝐿 = V𝐸

1
.

The system 𝐸
1
= 0 and 𝐸∗

1
= 0 possesses a first integral

𝐼 = 𝜉𝐿 +𝑊

𝛿𝐿

𝛿𝑦
󸀠
+ 𝐷 (𝑊)

𝛿𝐿

𝛿𝑦
󸀠󸀠
+ 𝐷
2

(𝑊)

𝛿𝐿

𝛿𝑦
󸀠󸀠
,

𝑊 = 𝜂 − 𝜉𝑦
󸀠

,

(121)

where

𝑋 = 𝜉

𝜕

𝜕𝑥

+ 𝜂

𝜕

𝜕𝑦

(122)

is any Lie point symmetry of (119). Now we use strictly self-
adjointness for eliminating the nonlocal variable V in the first
integral (121).

Using the self-adjoint condition

𝐸
∗

1

󵄨
󵄨
󵄨
󵄨V=𝑢 = 𝜆𝐸1, (123)

we conclude that 𝜆 = −1 and 𝜖 = 𝛼 = 𝛿 = 0, 𝛽 = 1, 𝛾 =

1. Then we conclude that the strictly self-adjoint subclass of
(119) is given by the family

𝑦
󸀠󸀠󸀠

+ 𝑦
2

𝑦
󸀠

+ 𝑦
󸀠

= 0. (124)

The only admitted Lie point symmetry generator of (124)
is

𝑋
1
=

𝜕

𝜕𝑥

. (125)

If we take 𝜖 = 𝛼 = 𝛿 = 0, 𝛽 = 1, 𝛾 = 0, (119) admits not only
(125), but also

𝑋
2
= 𝑥

𝜕

𝜕𝑥

− 𝑦

𝜕

𝜕𝑦

. (126)

The Lie point symmetry generator (125) provides the
trivial first integral 𝐼 = 0. However, from (126) one can
construct a nontrivial one. In fact, using (126), we obtain
𝑊 = −𝑦 − 𝑥𝑦

󸀠. Substituting this expression for 𝑊, 𝜉 = 𝑥,
and 𝜂 = −𝑦 into (121) and setting V = 𝑦, after reckoning, we
have

𝐼 = 4𝑦𝑦
󸀠󸀠

− 2𝑦
󸀠2

+ 𝑦
4

. (127)
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7.1.2. First Integrals for Nonlinear Jerk Equation by Multipliers
Approach. Now we will derive first integrals for nonlinear
jerk equation by multipliers approach. Assume multipliers of
form 𝑄(𝑥, 𝑦, 𝑦

󸀠

). The multipliers determining equation (29)
becomes

𝛿

𝛿𝑦

[𝑄 (𝑦
󸀠󸀠󸀠

+ 𝛼𝑦
󸀠3

+ 𝛽𝑦
2

𝑦
󸀠

+ 𝛾𝑦
󸀠

− 𝛿𝑦𝑦
󸀠

𝑦
󸀠󸀠

+ 𝜖𝑦
󸀠

𝑦
󸀠󸀠2

)]

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝐸
1
=0

= 0.

(128)

After expansion of (128), themultipliers and first integrals are
computed for specific values of parameters.

Case 1 (𝛼 = 0, 𝛽 = 0, 𝛾 = 1, 𝛿 = 0, 𝜖 = 1). Equation (119)
reduces to

𝑦
󸀠󸀠󸀠

+ 𝑦
󸀠

+ 𝑦
󸀠

𝑦
󸀠󸀠2

= 0. (129)

The multipliers and first integrals are

𝑄
1
(𝑥, 𝑦, 𝑦

󸀠

) = sin (𝑦) 𝑒(1/2)𝑦
󸀠2

,

𝑄
2
(𝑥, 𝑦, 𝑦

󸀠

) = 𝑒
(1/2)𝑦

󸀠2

cos (𝑦) ,

𝐼
1
= 𝑒
(1/2)𝑦

󸀠2

(𝑦
󸀠󸀠 sin (𝑦) − cos (𝑦)) ,

𝐼
2
= 𝑒
(1/2)𝑦

󸀠2

(𝑦
󸀠󸀠 cos (𝑦) + sin (𝑦)) .

(130)

Case 2 (𝛼 = 1, 𝛽 = 1, 𝛾 = 0, 𝛿 = 0, 𝜖 = 0). Equation (119)
reduces to

𝑦
󸀠󸀠󸀠

+ 𝑦
󸀠3

+ 𝑦
2

𝑦
󸀠

= 0. (131)

The multipliers and first integrals are

𝑄
1
(𝑥, 𝑦, 𝑦

󸀠

) = sin (√2𝑦) ,

𝑄
2
(𝑥, 𝑦, 𝑦

󸀠

) = cos (√2𝑦) ,

𝐼
1
= 𝑦
󸀠󸀠 sin (√2𝑦) − 1

2

𝑦
󸀠
2

√2 cos (√2𝑦)

−

1

2

√2𝑦
2 cos (√2𝑦) + 1

2

cos (√2𝑦)√2

+ 𝑦 sin (√2𝑦) ,

𝐼
2
= 𝑦
󸀠󸀠 cos (√2𝑦) + 1

2

𝑦
󸀠2
√2 sin (√2𝑦)

+

1

2

√2𝑦
2 sin (√2𝑦) − 1

2

sin (√2𝑦)√2

+ 𝑦 cos (√2𝑦) .

(132)

Case 3 (𝛼 = 1, 𝛽 = 1, 𝛾 = 1, 𝛿 = 0, 𝜖 = 0). Equation (119)
reduces to

𝑦
󸀠󸀠󸀠

+ 𝑦
󸀠

+ 𝑦
󸀠3

+ 𝑦
2

𝑦
󸀠

= 0. (133)

The multipliers and first integrals are

𝑄
1
(𝑥, 𝑦, 𝑦

󸀠

) = sin (√2𝑦) ,

𝑄
2
(𝑥, 𝑦, 𝑦

󸀠

) = cos (√2𝑦) ,

𝐼
1
= 𝑦
󸀠󸀠 sin (√2𝑦) − 1

2

𝑦
󸀠2
√2 cos (√2𝑦)

−

1

2

√2𝑦
2 cos (√2𝑦) + 𝑦 sin (√2𝑦) ,

𝐼
2
= 𝑦
󸀠󸀠 cos (√2𝑦) + 1

2

𝑦
󸀠
2

√2 sin (√2𝑦)

+

1

2

√2𝑦
2 sin (√2𝑦) + 𝑦 cos (√2𝑦) .

(134)

Case 4 (𝛼 = 0, 𝛽 = 0, 𝛾 = 1, 𝛿 = 1, 𝜖 = 0). Equation (119)
reduces to

𝑦
󸀠󸀠󸀠

+ 𝑦
󸀠

− 𝑦𝑦
󸀠

𝑦
󸀠󸀠

= 0. (135)

Equation (128) yields two multipliers

𝑄
1
(𝑥, 𝑦, 𝑦

󸀠

) = 𝑒
−(1/2)𝑦

2

erf (1
2

𝐼√2𝑦) ,

𝑄
2
(𝑥, 𝑦, 𝑦

󸀠

) = 𝑒
−(1/2)𝑦

2

.

(136)

The first integrals are given by

𝐼
1
=

1

2

1

√𝜋

(−𝐼𝑦
󸀠2
√2 + 2𝑒

−(1/2)𝑦
2

𝑦
󸀠󸀠

√𝜋 erf (1
2

𝐼√2𝑦)

+2 (∫ 𝑒
−(1/2)𝑦

2

erf (1
2

𝐼√2𝑦)𝑑𝑦)√𝜋) ,

𝐼
2
=

1

2

2𝑒
−(1/2)𝑦

2

𝑦
󸀠󸀠

√𝜋 + 𝜋√2 erf ((1/2)√2𝑦)
√𝜋

.

(137)

Case 5 (𝛼 = 1, 𝛽 = 1, 𝛾 = 1, 𝛿 = 1, 𝜖 = 0). Equation (119)
reduces to

𝑦
󸀠󸀠󸀠

+ 𝑦
󸀠

+ 𝑦
󸀠3

+ 𝑦
2

𝑦
󸀠

− 𝑦𝑦
󸀠

𝑦
󸀠󸀠

= 0. (138)

The multipliers and first integrals are

𝑄
1
(𝑥, 𝑦, 𝑦

󸀠

) = −√2√𝜋erfi(1
2

√2𝑦) 𝑒
−(1/2)𝑦

2

+ √2√𝜋erfi(1
2

√2𝑦) 𝑒
−(1/2)𝑦

2

𝑦
2

− 2𝑦,

𝑄
2
(𝑥, 𝑦, 𝑦

󸀠

) = 𝑒
−(1/2)𝑦

2

(−1 + 𝑦
2

) ,
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𝐼
1
= ∫(𝑒

−(1/2)𝑦
2

√2erfi(1
2

√2𝑦)𝑦
4

√𝜋 − 2𝑦
3

−√2√𝜋erfi(1
2

√2𝑦) 𝑒
−(1/2)𝑦

2

− 2𝑦) 𝑑𝑦

− 𝑦
󸀠
2

𝑒
−(1/2)𝑦

2

√2erfi(1
2

√2𝑦)𝑦√𝜋

− 𝑦
󸀠󸀠
√2√𝜋erfi(1

2

√2𝑦) 𝑒
−(1/2)𝑦

2

+ 𝑦
󸀠󸀠
√2√𝜋erfi(1

2

√2𝑦) 𝑒
−(1/2)𝑦

2

𝑦
2

+ 2𝑦
󸀠
2

− 2𝑦𝑦
󸀠󸀠

,

𝐼
2
= −𝑦
3

𝑒
−(1/2)𝑦

2

− 3𝑦𝑒
−(1/2)𝑦

2

+ √2√𝜋 erf (1
2

√2𝑦)

+ 𝑦
󸀠󸀠

𝑒
−(1/2)𝑦

2

𝑦
2

− 𝑦
󸀠󸀠

𝑒
−(1/2)𝑦

2

− 𝑦
󸀠2

𝑦𝑒
−(1/2)𝑦

2

.

(139)

Case 6 (𝜖 = 𝛼 = 𝛿 = 0, 𝛽 = 1, 𝛾 = 0). The multipliers and
first integrals for this case are

𝑄
1
= 1, 𝑄

2
= 𝑦,

𝐼
1
= 𝑦
󸀠󸀠

+

𝑦
3

3

(140)

and 𝐼
2
is the same as the first integral (127) derived byNoether

approach for system and its adjoint.

7.1.3. Reduction of Order and Implicit Solution to Jerk Equa-
tion. We now utilize first integrals to compute the exact
solution of the jerk equation (119).

We firstly consider the first integrals 𝐼
1
and 𝐼
2
obtained

in Case 2. Setting 𝐼
1
= 𝑐
1
and 𝐼

2
= 𝑐
2
, straightforward

calculations yield

𝑦
󸀠󸀠

+ 𝑦 = 𝑐
1
sin (√2𝑦) + 𝑐

2
cos (√2𝑦) . (141)

The routine calculations show that (141) finally results in

± ∫

1

√1 − 𝑦
2
− 𝑐
1
cos (√2𝑦)√2 + 𝑐

2
sin (√2𝑦)√2

𝑑𝑦

= 𝑥 + 𝑐
3
,

(142)

which satisfies 𝐼
1
= 𝑐
1
, 𝐼
2
= 𝑐
2
, and

𝑦
󸀠󸀠󸀠

+ 𝑦
󸀠3

+ 𝑦
2

𝑦
󸀠

= 0. (143)

Now we obtain an implicit solution to

𝑦
󸀠󸀠󸀠

+ 𝑦
󸀠

+ 𝑦
󸀠

𝑦
󸀠󸀠2

= 0 (144)

using the first integrals given in Case 1. Again, assuming that
𝐼
1
= 𝑐
1
and 𝐼
2
= 𝑐
2
, where 𝑐

1
and 𝑐
2
are arbitrary constants

and 𝐼
1
and 𝐼
2
are the first integrals established in Case 1, we

finally arrive at

𝑐
1
sin𝑦 + 𝑐

2
cos𝑦 = 𝑒(𝑦

󸀠

)

2

/2

𝑦
󸀠󸀠

. (145)

From (145), we obtain

∫

1

√2 ln (−𝑐
1
cos𝑦 + 𝑐

2
sin𝑦)

𝑑𝑦 = 𝑥 + 𝑐
3
, (146)

which comprises the solution of jerk equation for Case 1.

7.2. First Integrals for aGyroscopic SystemwithQuadratic Non-
linearities. Consider the free oscillations of a two-degree-of-
freedom gyroscopic systemwith quadratic nonlinearities [51]

𝑦
󸀠󸀠

+ 𝑧
󸀠

+ 2𝑦 = 2𝑦𝑧,

𝑧
󸀠󸀠

− 𝑦
󸀠

+ 2𝑧 = 𝑦
2

.

(147)

The system (147) satisfies the partial Euler-Lagrange equa-
tions 𝛿𝐿/𝛿𝑦 = 𝑧

󸀠

+ 2𝑦 − 2𝑦𝑧 and 𝛿𝐿/𝛿𝑧 = −𝑦
󸀠

+ 2𝑧 − 𝑦
2

and has a partial Lagrangian

𝐿 =

1

2

(𝑦
󸀠2

+ 𝑧
󸀠2

) . (148)

The partial Noether operator 𝑋 of system (147) correspond-
ing to the partial Lagrangian (148) satisfies

[𝜂
1

𝑥
+ 𝑦
󸀠

𝜂
1

𝑦
+ 𝑧
󸀠

𝜂
1

𝑧
− 𝑦
󸀠

(𝜉
𝑥
+ 𝑦
󸀠

𝜉
𝑦
+ 𝑧
󸀠

𝜉
𝑧
)] 𝑦
󸀠

+ [𝜂
2

𝑥
+ 𝑦
󸀠

𝜂
2

𝑦
+ 𝑧
󸀠

𝜂
2

𝑧
− 𝑧
󸀠

(𝜉
𝑥
+ 𝑦
󸀠

𝜉
𝑦
+ 𝑧
󸀠

𝜉
𝑧
)] 𝑧
󸀠

+ (𝜉
𝑥
+ 𝑦
󸀠

𝜉
𝑦
+ 𝑧
󸀠

𝜉
𝑧
) [

𝑦
󸀠2

2

+

𝑧
󸀠2

2

]

= (𝜂
1

− 𝑦
󸀠

𝜉) [𝑧
󸀠

+ 2𝑦 − 2𝑦𝑧]

+ (𝜂
2

− 𝑧
󸀠

𝜉) [−𝑦
󸀠

+ 2𝑧 − 𝑦
2

] + 𝐵
𝑥
+ 𝑦
󸀠

𝐵
𝑦
+ 𝑧
󸀠

𝐵
𝑧
.

(149)

Equation (149) splits into the following by comparing the
coefficients of powers of 𝑦󸀠 and 𝑧󸀠:

𝜉
𝑦
= 0, 𝜉

𝑧
= 0, (150)

𝜂
1

𝑦
−

1

2

𝜉
𝑥
= 0, 𝜂

2

𝑧
−

1

2

𝜉
𝑥
= 0, 𝜂

1

𝑧
+ 𝜂
2

𝑦
= 0, (151)

𝜂
1

𝑥
= −2𝑦 (1 − 𝑧) 𝜉 − 𝜂

2

+ 𝐵
𝑦
, (152)

𝜂
2

𝑥
= − (2𝑧 − 𝑦

2

) 𝜉 + 𝜂
1

+ 𝐵
𝑧
, (153)

𝜂
1

(2𝑦 − 2𝑦𝑧) + 𝜂
2

(2𝑧 − 𝑦
2

) + 𝐵
𝑥
= 0. (154)

Thus (150)–(154) finally yield

𝜉 = −2𝑐
1
, 𝜂

1

= 0, 𝜂
2

= 0,

𝐵 = −2𝑐
1
(𝑦
2

+ 𝑧
2

) + 2𝑐
1
𝑦
2

𝑧.

(155)

Choosing 𝑐
1
= 1, we find that the partial Noether operator

and gauge term of system (147) are

𝑋 = −2

𝜕

𝜕𝑥

, 𝐵 = −2 (𝑦
2

+ 𝑧
2

) + 2𝑦
2

𝑧. (156)
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The only first integral for the two-degree-of-freedom
gyroscopic system by formula (16) is

𝐼 = −2 (𝑦
2

+ 𝑧
2

) + 2𝑦
2

𝑧 − 𝑦
󸀠2

− 𝑧
󸀠2

. (157)

8. Concluding Remarks

The first integrals for simple harmonic oscillator were con-
structed using different approaches. All different approaches
to compute first integrals for ordinary differential equa-
tions and systems of ordinary differential equations were
explained with the ample example. The systematic way to
compute the first integrals is by Noether’s approach but it
depends upon the existence of a standard Lagrangian. The
Noether symmetries and the corresponding first integrals
were constructed for simple harmonic oscillator. In the
absence of a standard Lagrangian one can use the partial
Noether approach which works with or without Lagrangian
and the framework for this approach is similar to the Noether
approach. The direct method and its use with the symmetry
condition were explained in detail. We commented on some
other approaches: the characteristic method, the multiplier
approach for arbitrary functions as well as on the solution
space, and the direct construction formula approach based
on the knowledge of characteristics ormultipliers whichwork
without regard to a standard Lagrangian. The multipliers or
characteristics can be easily constructed taking the varia-
tional derivative of 𝐷

𝑖
𝑇
𝑖

= 𝑄
𝛼

𝐸
𝛼
not only for solutions but

also for arbitrary functions. We have shown how one can
compute the first integrals for ordinary differential equations
using the Hamiltonian version of Noether theorem.

Furthermore, some solutions of ordinary differential
equations using first integrals with its associated Noether
symmetries were obtained.The first integrals are the reduced
formof the given differential equation. Some of these reduced
forms can be solved directly whereas the other form can be
used to further reduce the order of a differential equation.
The harmonic oscillator yielded five first integrals. Three first
integrals were used to compute the solutions directly. Two
first integrals were written as the first-order equations and the
Noether symmetries were used to find the invariants which
completely transform the reduced equation to quadrature.

First integrals for nonlinear jerk equation were derived
by using Ibragimov’s and multipliers’ approach. Then using
these first integrals, some exact solutions of jerk equation
for different cases were also established. The partial Noether
approach is used to derive the first integrals of the free
oscillations of a two-degree-of-freedom gyroscopic system
with quadratic nonlinearities.
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