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First, we define cyclic (𝜙)-contractions of different types in a uniform space.Then, we apply these concepts of cyclic (𝜙)-contractions
to establish certain fixed and common point theorems on a Hausdorff uniform space. Some more general results are obtained as
corollaries. Moreover, some examples are provided to demonstrate the usability of the proved theorems.

1. Introduction

Let𝑋 be a nonempty set. A nonempty family, 𝜗, of subsets of
𝑋 × 𝑋 is called the uniform structure of 𝑋 if it satisfies the
following properties:

(i) if 𝐺 is in 𝜗, then 𝐺 contains the diagonal {(𝑥, 𝑥) | 𝑥 ∈
𝑋};

(ii) if 𝐺 is in 𝜗 and𝐻 is a subset of𝑋×𝑋 which contains
𝐺, then𝐻 is in 𝜗;

(iii) if 𝐺 and𝐻 are in 𝜗, then 𝐺 ∩ 𝐻 is in 𝜗;
(iv) if 𝐺 is in 𝜗, then there exists 𝐻 in 𝜗, such that,

whenever (𝑥, 𝑦) and (𝑦, 𝑧) are in 𝐻, then (𝑥, 𝑧) is in
𝐺;

(v) if 𝐺 is in 𝜗, then {(𝑦, 𝑥) | (𝑥, 𝑦) ∈ 𝐺} is also in 𝜗.

The pair (𝑋, 𝜗) is called a uniform space and the element of
𝜗 is called entourage or neighbourhood or surrounding. The
pair (𝑋, 𝜗) is called a quasi-uniform space (see, e.g., [1, 2]) if
property (v) is omitted.

Existence and uniqueness of fixed points for various
contractive mappings in the setting of uniform spaces have
been investigated by several authors; see, for example, [3–12]
and the references therein.

Recently, an interesting and remarkable notion of cyclic
mapping was introduced and studied by Kirk et al. [13].
Following this paper, a number of authors introduced con-
tractivemapping via the cyclicmappings and reported certain
fixed point results in the setting of different type of spaces; see,
for example, [13–17].

In this paper, we will give the characterization of cyclic
mapping in the context of uniform spaces and, further, prove
the existence and uniqueness of fixed and common fixed
points of such mappings via 𝐴-distance and 𝐸-distance,
introduced by Aamri and El Moutawakil [18].

For the sake of completeness, we recollect some basic
definitions and fundamental results. Let Δ = {(𝑥, 𝑥) | 𝑥 ∈ 𝑋}
be the diagonal of a nonempty set 𝑋. For 𝑉,𝑊 ∈ 𝑋 × 𝑋, we
will use the following setting in the sequel:

𝑉 ∘𝑊

= {(𝑥, 𝑦) | there exists 𝑧 ∈ 𝑋 : (𝑥, 𝑧) ∈ 𝑊, (𝑧, 𝑦) ∈ 𝑉} ,

𝑉
−1

= {(𝑥, 𝑦) | (𝑦, 𝑥) ∈ 𝑉} .

(1)

For subset 𝑉 ∈ 𝜗, a pair of points 𝑥 and 𝑦 are said to be 𝑉-
close if (𝑥, 𝑦) ∈ 𝑉 and (𝑦, 𝑥) ∈ 𝑉. Moreover, a sequence {𝑥

𝑛

}
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in 𝑋 is called a Cauchy sequence for 𝜗, if for any 𝑉 ∈ 𝜗 there
exists 𝑁 ≥ 1 such that 𝑥

𝑛

and 𝑥
𝑚

are 𝑉-close for 𝑛,𝑚 ≥ 𝑁.
For (𝑋, 𝜗), there is a unique topology 𝜏(𝜗) on𝑋 generated by
𝑉(𝑥) = {𝑦 ∈ 𝑋 | (𝑥, 𝑦) ∈ 𝑉}, where 𝑉 ∈ 𝜗.

A sequence {𝑥
𝑛

} in𝑋 is convergent to 𝑥 for 𝜗, denoted by
lim
𝑛→∞

𝑥
𝑛

= 𝑥, if for any 𝑉 ∈ 𝜗 there exists 𝑛
0

∈ N such that
𝑥
𝑛

∈ 𝑉(𝑥) for every 𝑛 ≥ 𝑛
0

. A uniform space (𝑋, 𝜗) is called
Hausdorff if the intersection of all the 𝑉 ∈ 𝜗 is equal to Δ of
𝑋, that is, if (𝑥, 𝑦) ∈ 𝑉 for all𝑉 ∈ 𝜗 implies 𝑥 = 𝑦. If𝑉 = 𝑉−1,
then we say that a subset 𝑉 ∈ 𝜗 is symmetrical. Throughout
the paper, we assume that each 𝑉 ∈ 𝜗 is symmetrical. For
more details, see, for example, [1, 18–21].

Now, we recall the notions of 𝐴-distance and 𝐸-distance.

Definition 1 (see, e.g., [18, 19]). Let (𝑋, 𝜗) be a uniform space.
A function 𝑝 : 𝑋 × 𝑋 → [0,∞) is said to be an 𝐴-distance
if for any 𝑉 ∈ 𝜗 there exists 𝛿 > 0 such that if 𝑝(𝑧, 𝑥) ≤ 𝛿 and
𝑝(𝑧, 𝑦) ≤ 𝛿 for some 𝑧 ∈ 𝑋, then (𝑥, 𝑦) ∈ 𝑉.

Definition 2 (see, e.g., [18, 19]). Let (𝑋, 𝜗) be a uniform space.
A function 𝑝 : 𝑋×𝑋 → [0,∞) is said to be an 𝐸-distance if

(𝑝
1

) 𝑝 is an 𝐴-distance,
(𝑝
2

) 𝑝(𝑥, 𝑦) ≤ 𝑝(𝑥, 𝑧) + 𝑝(𝑧, 𝑦), ∀𝑥, 𝑦, 𝑧 ∈ 𝑋.

Example 3 (see, e.g., [18, 19]). Let (𝑋, 𝜗) be a uniform space
and let 𝑑 be a metric on 𝑋. It is evident that (𝑋, 𝜗

𝑑

) is a
uniform space, where 𝜗

𝑑

is the set of all subsets of 𝑋 × 𝑋
containing a “band” 𝐵

𝜖

= {(𝑥, 𝑦) ∈ 𝑋2 | 𝑑(𝑥, 𝑦) < 𝜖} for
some 𝜖 > 0. Moreover, if 𝜗 ⊆ 𝜗

𝑑

, then 𝑑 is an 𝐸-distance on
(𝑋, 𝜗).

Lemma 4 (see, e.g., [18, 19]). Let (𝑋, 𝜗) be a Hausdorff
uniform space and let 𝑝 be an 𝐴-distance on X. Let {𝑥

𝑛

} and
{𝑦
𝑛

} be sequences in 𝑋 and {𝛼
𝑛

} and let {𝛽
𝑛

} be sequences in
[0,∞) converging to 0. Then, for 𝑥, 𝑦, 𝑧 ∈ 𝑋, the following
hold.

(a) If 𝑝(𝑥
𝑛

, 𝑦) ≤ 𝛼
𝑛

and 𝑝(𝑥
𝑛

, 𝑧) ≤ 𝛽
𝑛

for all 𝑛 ∈ N, then
𝑦 = 𝑧. In particular, if 𝑝(𝑥, 𝑦) = 0 and 𝑝(𝑥, 𝑧) = 0,
then 𝑦 = 𝑧.

(b) If 𝑝(𝑥
𝑛

, 𝑦
𝑛

) ≤ 𝛼
𝑛

and 𝑝(𝑥
𝑛

, 𝑧) ≤ 𝛽
𝑛

for all 𝑛 ∈ N, then
{𝑦
𝑛

} converges to 𝑧.
(c) If 𝑝(𝑥

𝑛

, 𝑥
𝑚

) ≤ 𝛼
𝑛

for all 𝑛,𝑚 ∈ N with 𝑚 > 𝑛, then
{𝑥
𝑛

} is a Cauchy sequence in (𝑋, 𝜗).

Let 𝑝 be an 𝐴-distance. A sequence in a uniform space
(𝑋, 𝜗)with an𝐴-distance is said to be a 𝑝-Cauchy if for every
𝜖 > 0 there exists 𝑛

0

∈ N such that 𝑝(𝑥
𝑛

, 𝑥
𝑚

) < 𝜖 for all
𝑛,𝑚 ≥ 𝑛

0

.

Definition 5 (see, e.g., [18, 19]). Let (𝑋, 𝜗) be a uniform space
and let 𝑝 be an 𝐴-distance on𝑋.

(1) 𝑋 is 𝑆-complete if for every 𝑝-Cauchy sequence {𝑥
𝑛

}
there exists 𝑥 in𝑋 with lim

𝑛→∞

𝑝(𝑥
𝑛

, 𝑥) = 0.
(2) 𝑋 is 𝑝-Cauchy complete if for every 𝑝-Cauchy

sequence {𝑥
𝑛

} there exists 𝑥 in𝑋with lim
𝑛→∞

𝑥
𝑛

= 𝑥
with respect to 𝜏(𝜗).

Remark 6. Let (𝑋, 𝜗) be a Hausdorff uniform space which is
𝑆-complete. If a sequence {𝑥

𝑛

} is a 𝑝-Cauchy sequence, then
we have lim

𝑛→∞

𝑝(𝑥
𝑛

, 𝑥) = 0. Regarding Lemma 4(b), we
derive that lim

𝑛→∞

𝑥
𝑛

= 𝑥 with respect to the topology 𝜏(𝜗)
and hence 𝑆-completeness implies 𝑝-Cauchy completeness.

Definition 7. Let (𝑋, 𝜗) be a Hausdorff uniform space and
let 𝑝 be an 𝐴-distance on 𝑋. Two self-mappings 𝑓 and 𝑔 of
𝑋 are said to be weak compatible if they commute at their
coincidence points; that is, 𝑓𝑥 = 𝑔𝑥 implies that 𝑓𝑔𝑥 = 𝑔𝑓𝑥.

We denote by F the class of functions 𝜙 : [0,∞) →
[0,∞) nondecreasing and continuous satisfying 𝜙(𝑡) > 0 for
𝑡 ∈ (0,∞) and 𝜙(0) = 0.

Definition 8 (see [17]). A function 𝜙 : [0,∞) → [0,∞) is
called a comparison function if it satisfies the following:

(i) 𝜙 is increasing; that is, 𝑡
1

≤ 𝑡
2

implies 𝜙(𝑡
1

) ≤ 𝜙(𝑡
2

),
for 𝑡
1

, 𝑡
2

∈ [0,∞);
(ii) {𝜙𝑛(𝑡)}

𝑛∈N converges to 0 as 𝑛 → ∞, for all 𝑡 ∈
[0,∞).

Definition 9 (see [22]). A function 𝜙 : [0,∞) → [0,∞) is
called a (𝑐)-comparison function if

(i) 𝜙 is increasing,
(ii) there exist 𝑘

0

∈ N, 𝑎 ∈ (0, 1) and a convergent series
of nonnegative terms ∑∞

𝑘=1

V
𝑘

such that

𝜙
𝑘+1

(𝑡) ≤ 𝑎𝜙
𝑘

(𝑡) + V
𝑘

, (2)

for 𝑘 ≥ 𝑘
0

and any 𝑡 ∈ [0,∞).

Let C be the collection of all (𝑐)-comparison functions
𝜙 : [0,∞) → [0,∞) defined in Definition 9.

Lemma 10 (see [22]). If 𝜙 : [0,∞) → [0,∞) is a (𝑐)-
comparison function, then the following hold:

(i) 𝜙 is comparison function,
(ii) 𝜙(𝑡) < 𝑡, for any 𝑡 ∈ [0,∞),
(iii) 𝜙 is continuous at 0,

(iv) the series ∑∞
𝑘=0

𝜙𝑘(𝑡) converges for any 𝑡 ∈ [0,∞).

In 1922, Banach proved that every contraction in a com-
plete metric space has a unique fixed point. This celebrated
result has been generalized and improved bymany authors in
the context of different abstract spaces for various operators
(see [1–28] and the references therein). Recently, fixed point
theorems for operators 𝑇 defined on a complete metric space
𝑋 with a cyclic representation of 𝑋 with respect to 𝑇 have
appeared in the literature (see, e.g., [13–17]). Now, we present
a modification of themain result of [16]. For this, we need the
following definitions.

Definition 11 (see [13]). Let𝑋 be a nonempty set,𝑚 a positive
integer, and 𝑇 : 𝑋 → 𝑋 a mapping. 𝑋 = ⋃

𝑚

𝑖=1

𝐴
𝑖

is said to
be a cyclic representation of𝑋 with respect to 𝑇 if
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(i) 𝐴
𝑖

, 𝑖 = 1, 2, . . . , 𝑚, are nonempty sets;
(ii) 𝑇(𝐴

1

) ⊂ 𝐴
2

, . . . , 𝑇(𝐴
𝑚−1

) ⊂ 𝐴
𝑚

, 𝑇(𝐴
𝑚

) ⊂ 𝐴
1

.

Definition 12. Let (𝑋, 𝑑) be a metric space, 𝑚 a positive
integer, 𝐴

1

, 𝐴
2

, . . . , 𝐴
𝑚

nonempty subsets of 𝑋, and 𝑋 =
⋃
𝑚

𝑖=1

𝐴
𝑖

. An operator 𝑇 : 𝑋 → 𝑋 is a cyclic (𝜙)-contraction
if

(i) 𝑋 = ⋃
𝑚

𝑖=1

𝐴
𝑖

is a cyclic representation of 𝑋 with
respect to 𝑇,

(ii) 𝑑(𝑇𝑥, 𝑇𝑦) ≤ 𝜙(𝑑(𝑥, 𝑦)), for any 𝑥 ∈ 𝐴
𝑖

, 𝑦 ∈ 𝐴
𝑖+1

,
𝑖 = 1, 2, . . . , 𝑚, where 𝐴

𝑚+1

= 𝐴
1

and 𝜙 ∈ F.

The main result of [14] is the following.

Theorem 13 (Theorem 6 of [14]). Let (𝑋, 𝑑) be a complete
metric space, m a positive integer, 𝐴

1

, 𝐴
2

, . . . , 𝐴
𝑚

nonempty
subsets of 𝑋, and 𝑋 = ⋃

𝑚

𝑖=1

𝐴
𝑖

. Let 𝑇 : 𝑋 → 𝑋 be a cyclic
(𝜙 −𝜓)-contraction with 𝜙, 𝜓 ∈ F. Then, 𝑇 has a unique fixed
point 𝑧 ∈ ⋂𝑚

𝑖=1

𝐴
𝑖

.

Themain aimof this paper is to prove results similar to the
abovementioned theorems in uniform spaces and to present
modifications of Theorem 2.1 [16], Theorems 3.1-3.2 in [18],
and other related results.

2. Main Result

First, we present the following definition.

Definition 14. Let (𝑋, 𝜗) be a uniform space, 𝑚 a positive
integer, 𝐴

1

, 𝐴
2

, . . . , 𝐴
𝑚

nonempty subsets of 𝑋, and 𝑋 =
⋃
𝑚

𝑖=1

𝐴
𝑖

. An operator 𝑇 : 𝑋 → 𝑋 is a cyclic (𝜙)-contraction
if

(i) 𝑋 = ⋃
𝑚

𝑖=1

𝐴
𝑖

is a cyclic representation of 𝑋 with
respect to 𝑇,

(ii) for any 𝑥 ∈ 𝐴
𝑖

, 𝑦 ∈ 𝐴
𝑖+1

, 𝑖 = 1, 2, . . . , 𝑚,

𝑝 (𝑇𝑥, 𝑇𝑦) ≤ 𝜙 (𝑝 (𝑥, 𝑦)) , (3)

where 𝐴
𝑚+1

= 𝐴
1

and 𝜙 ∈ C.

Our main result is the following.

Theorem 15. Let (𝑋, 𝜗) be an 𝑆-complete Hausdorff uniform
space such that 𝑝 is an 𝐸-distance on 𝑋, 𝑚 a positive integer,
and𝐴

1

, 𝐴
2

, . . . , 𝐴
𝑚

nonempty closed subsets of𝑋 with respect
to the topological space (𝑋, 𝜏(𝜗)), and 𝑋 = ⋃

𝑚

𝑖=1

𝐴
𝑖

. Let 𝑇 :
𝑋 → 𝑋 be a cyclic (𝜙)-contraction.Then,𝑇 has a unique fixed
point 𝑥 ∈ ⋂𝑚

𝑖=1

𝐴
𝑖

.

Proof. We first show that the fixed point of 𝑇 is unique (if it
exists). Suppose, on the contrary, that 𝑦, 𝑧 ∈ 𝑋 with 𝑦 ̸= 𝑧 are
fixed points of 𝑇. The cyclic character of 𝑇 and the fact that
𝑦, 𝑧 ∈ 𝑋 are fixed points of𝑇 imply that 𝑦, 𝑧 ∈ ⋂𝑚

𝑖=1

𝐴
𝑖

. Using
the contractive condition, we obtain

𝑝 (𝑦, 𝑧) = 𝑝 (𝑇𝑦, 𝑇𝑧) ≤ 𝜙 (𝑝 (𝑦, 𝑧)) < 𝑝 (𝑦, 𝑧) (4)

and from the last inequality

𝑝 (𝑦, 𝑧) = 0. (5)

Similarly, we can show that 𝑝(𝑦, 𝑦) = 0 and, consequently,
𝑦 = 𝑧.

Now, we prove the existence of a fixed point. Note that
𝑝 is not symmetric. To show that the sequence {𝑥

𝑛

} is
Cauchy, we will show that both lim

𝑛→∞

𝑝(𝑥
𝑛

, 𝑥
𝑛+𝑞

) = 0 and
lim
𝑛→∞

𝑝(𝑥
𝑛+𝑞

, 𝑥
𝑛

) = 0, for any 𝑞 > 1.
For this aim, take 𝑥

0

∈ 𝑋 and consider the sequence given
by

𝑥
𝑛+1

= 𝑇𝑥
𝑛

, 𝑛 = 0, 1, 2, . . . . (6)

If there exists 𝑛
0

∈ N such that 𝑥
𝑛0+1

= 𝑥
𝑛0
, then the proof is

completed. In this case, 𝑥
𝑛0
is the required fixed point of 𝑇.

Throughout the proof, we assume that

𝑥
𝑛+1

̸= 𝑥
𝑛

for any 𝑛 = 0, 1, 2, . . . . (7)

Notice that for any 𝑛 > 0 there exists 𝑖
𝑛

∈ {1, 2, . . . , 𝑚} such
that 𝑥

𝑛−1

∈ 𝐴
𝑖𝑛
and 𝑥

𝑛

∈ 𝐴
𝑖𝑛+1

, since𝑋 = ⋃
𝑚

𝑖=1

𝐴
𝑖

. Due to the
fact that 𝑇 is a cyclic (𝜙)-contraction, we have

𝑝 (𝑥
𝑛

, 𝑥
𝑛+1

) = 𝑝 (𝑇𝑥
𝑛−1

, 𝑇𝑥
𝑛

) ≤ 𝜙 (𝑝 (𝑥
𝑛−1

, 𝑥
𝑛

)) , (8)

by taking 𝑥 = 𝑥
𝑛

and 𝑦 = 𝑥
𝑛+1

in (3). From (8) and taking the
monotonicity of 𝜙 into account, we derive by induction that

𝑝 (𝑥
𝑛

, 𝑥
𝑛+1

) ≤ 𝜙
𝑛

(𝑝 (𝑥
0

, 𝑥
1

)) for any 𝑛 = 1, 2, . . . .

(9)

As 𝑝 is an 𝐸-distance, we obtain that

𝑝 (𝑥
𝑛

, 𝑥
𝑚

) ≤ 𝑝 (𝑥
𝑛

, 𝑥
𝑛+1

) + ⋅ ⋅ ⋅ + 𝑝 (𝑥
𝑚−1

, 𝑥
𝑚

) , (10)

so for 𝑞 ≥ 1 we have that

𝑝 (𝑥
𝑛

, 𝑥
𝑛+𝑞

) ≤ 𝜙
𝑛

(𝑝 (𝑥
0

, 𝑥
1

)) + ⋅ ⋅ ⋅ + 𝜙
𝑛+𝑞−1

(𝑝 (𝑥
0

, 𝑥
1

)) .

(11)

In the sequel, we will prove that {𝑥
𝑛

} is a 𝑝-Cauchy sequence.
Denoting

𝑆
𝑛

=
𝑛

∑
𝑘=0

𝜙
𝑘

(𝑝 (𝑥
0

, 𝑥
1

)) , 𝑛 ≥ 0, (12)

implies that

𝑝 (𝑥
𝑛

, 𝑥
𝑛+𝑞

) ≤ 𝑆
𝑛+𝑞−1

− 𝑆
𝑛−1

. (13)

As 𝜙 is a (𝑐)-comparison function, supposing 𝑝(𝑥
0

, 𝑥
1

) > 0,
by Lemma 10, (iv), it follows that

∞

∑
𝑘=0

𝜙
𝑘

(𝑝 (𝑥
0

, 𝑥
1

)) < ∞, (14)

so there is 𝑆 ∈ [0,∞) such that

lim
𝑛→∞

𝑆
𝑛

= 𝑆. (15)
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Then, by (13) we obtain that

lim
𝑛→∞

𝑝 (𝑥
𝑛

, 𝑥
𝑛+𝑞

) = 0. (16)

By repeating the same arguments in the proof of (16), we
conclude that

lim
𝑛→∞

𝑝 (𝑥
𝑛+𝑞

, 𝑥
𝑛

) = 0. (17)

Consequently, we get that the sequence {𝑥
𝑛

}
𝑛≥0

is a 𝑝-
Cauchy in the 𝑆-complete space 𝑋 = ⋃

𝑚

𝑖=1

𝐴
𝑖

. Thus, there
exists 𝑥 ∈ 𝑋 such that lim

𝑛→∞

𝑥
𝑛

= 𝑥. In what follows we
prove that𝑥 is a fixed point of𝑇. In fact, since lim

𝑛→∞

𝑥
𝑛

= 𝑥,
as 𝑋 = ⋃

𝑚

𝑖=1

𝐴
𝑖

is a cyclic representation of 𝑋 with respect
to 𝑇, the sequence {𝑥

𝑛

} has infinite terms in each 𝐴
𝑖

for
𝑖 ∈ {1, 2, . . . , 𝑚}.

Since 𝐴
𝑖

is closed for every 𝑖, it follows that 𝑥 ∈ ⋂
𝑚

𝑖=1

𝐴
𝑖

;
thus we take a subsequence 𝑥

𝑛𝑘
of {𝑥
𝑛

}with 𝑥
𝑛𝑘
∈ 𝐴
𝑖−1

. Using
the contractive condition, we can obtain

𝑝 (𝑥, 𝑇𝑥) ≤ 𝑝 (𝑥, 𝑥
𝑛𝑘+1

) + 𝑝 (𝑥
𝑛𝑘+1

, 𝑇𝑥)

= 𝑝 (𝑥, 𝑥
𝑛𝑘+1

) + 𝑝 (𝑇𝑥
𝑛𝑘
, 𝑇𝑥)

≤ 𝑝 (𝑥, 𝑥
𝑛𝑘+1

) + 𝜙 (𝑝 (𝑥
𝑛𝑘
, 𝑥))

(18)

and since 𝑥
𝑛𝑘

→ 𝑥 and 𝜙 belong toC, letting 𝑘 → ∞ in the
last inequality, we have 𝑝(𝑥, 𝑇𝑥) = 0. Analogously, we can
derive that 𝑝(𝑥, 𝑥) = 0 and, therefore, 𝑥 is a fixed point of 𝑇.
This finishes the proof.

Corollary 16. Let (𝑋, 𝜗) be an 𝑆-complete Hausdorff uniform
space such that 𝑝 is an 𝐸-distance on 𝑋, 𝑚 a positive integer,
𝐴
1

, 𝐴
2

, . . . , 𝐴
𝑚

nonempty closed subsets of 𝑋 with respect to
the topological space (𝑋, 𝜏(𝜗)), and 𝑋 = ⋃

𝑚

𝑖=1

𝐴
𝑖

. Let operator
𝑇 : 𝑋 → 𝑋 satisfy

(i) 𝑝(𝑇𝑥, 𝑇𝑦) ≤ 𝑘𝑝(𝑥, 𝑦), for any 𝑥 ∈ 𝐴
𝑖

, 𝑦 ∈ 𝐴
𝑖+1

, 𝑖 =
1, 2, . . . , 𝑚, where 𝐴

𝑚+1

= 𝐴
1

and 0 < 𝑘 < 1.

Then, 𝑇 has a unique fixed point 𝑧 ∈ ⋂𝑚
𝑖=1

𝐴
𝑖

.

Proof. ByTheorem 15, it is enough to set 𝜙(𝑡) = 𝑘𝑡.

Corollary 17 (cf. [16]). Let (𝑋, 𝑑) be a complete metric space,
𝑚 a positive integer, 𝐴

1

, 𝐴
2

, . . . , 𝐴
𝑚

nonempty closed subsets
of 𝑋, and 𝑋 = ⋃

𝑚

𝑖=1

𝐴
𝑖

. Let 𝑇 : 𝑋 → 𝑋 be a cyclic (𝜙)-
contraction. Then, 𝑇 has a unique fixed point 𝑧 ∈ ⋂𝑚

𝑖=1

𝐴
𝑖

.

Proof. ByTheorem 15, it is enough to set 𝜗 = {𝑈
𝜖

| 𝜖 > 0}.

Corollary 18 (cf. [13]). Let (𝑋, 𝑑) be a complete metric space,
𝑚 a positive integer, 𝐴

1

, 𝐴
2

, . . . , 𝐴
𝑚

nonempty closed subsets
of𝑋, and𝑋 = ⋃

𝑚

𝑖=1

𝐴
𝑖

a cyclic representation of𝑋with respect
to 𝑇. Let 𝑇 : 𝑋 → 𝑋 satisfy

𝑝 (𝑇𝑥, 𝑇𝑦) ≤ 𝑘𝑝 (𝑥, 𝑦) , (19)

for any 𝑥 ∈ 𝐴
𝑖

, 𝑦 ∈ 𝐴
𝑖+1

, 𝑖 = 1, 2, . . . , 𝑚, where 𝑘 ∈ (0, 1) and
𝐴
𝑚+1

= 𝐴
1

. Then, 𝑇 has a unique fixed point 𝑧 ∈ ⋂𝑚
𝑖=1

𝐴
𝑖

.

Definition 19. Let (𝑋, 𝜗) be a uniform space, 𝑚 a positive
integer, 𝐴

1

, 𝐴
2

, . . . , 𝐴
𝑚

nonempty subsets of 𝑋, and 𝑇, 𝑔 :
𝑋 → 𝑋 self-mappings. An operator 𝑇 is a cyclic (𝜙)-𝑔-
contraction if

(i) 𝑔𝑋 = ⋃
𝑚

𝑖=1

𝑔𝐴
𝑖

is a cyclic representation of 𝑋 with
respect to 𝑇,

(ii) 𝑝(𝑇𝑥, 𝑇𝑦) ≤ 𝜙(𝑝(𝑔𝑥, 𝑔𝑦)), for any 𝑥 ∈ 𝐴
𝑖

, 𝑦 ∈ 𝐴
𝑖+1

,
𝑖 = 1, 2, . . . , 𝑚, where 𝐴

𝑚+1

= 𝐴
1

and 𝜙 ∈ C.

Inspired by [28], we now prove a common fixed point
theorem as an application of our Theorem 15.

Theorem 20. Let (𝑋, 𝜗) be a uniform space, 𝑇, 𝑔 : 𝑋 → 𝑋
self-maps such that 𝑇 is cyclic (𝜙)-𝑔-contraction, and 𝑔𝑋𝑆-
complete Hausdorff uniform space together with 𝑝 being an 𝐸-
distance on𝑋. Suppose that 𝑔𝐴

1

, 𝑔𝐴
2

, . . . , 𝑔𝐴
𝑚

are nonempty
closed subsets of 𝑔𝑋 with respect to the uniform topology and
𝑇𝑋 ⊂ 𝑔𝑋 = ⋃

𝑚

𝑖=1

𝑔𝐴
𝑖

. Then, 𝑇 and 𝑔 have a unique
coincidence point. Moreover, if 𝑇 and 𝑔 are weakly compatible,
then they have a unique common fixed point 𝑧 ∈ ⋂𝑚

𝑖=1

𝑔𝐴
𝑖

.

Proof. As 𝑔 : 𝑋 → 𝑋, so there exists 𝐸 ⊂ 𝑋 such that 𝑔𝐸 =
𝑔𝑋 and 𝑔 : 𝐸 → 𝑋 is one-to-one. Now, since 𝑇𝑋 ⊂ 𝑔𝑋,
we define mappings ℎ : 𝑔𝐸 → 𝑔𝐸 by ℎ(𝑔𝑥) = 𝑇𝑥. Since 𝑔
is one-to-one on 𝐸, so ℎ is well defined. As 𝑇 is cyclic (𝜙)-𝑔-
contraction, so

𝑝 (𝑇𝑥, 𝑇𝑦) ≤ 𝜙 (𝑝 (𝑔𝑥, 𝑔𝑦)) , (20)

for any 𝑔𝑥 ∈ 𝑔𝐴
𝑖

, 𝑔𝑦 ∈ 𝑔𝐴
𝑖+1

, 𝑖 = 1, 2, . . . , 𝑚. Thus,

𝑝 (ℎ (𝑔𝑥) , ℎ (𝑔𝑦)) = 𝑝 (𝑇𝑥, 𝑇𝑦) ≤ 𝜙 (𝑝 (𝑔𝑥, 𝑔𝑦)) ,

(21)

for any 𝑔𝑥 ∈ 𝑔𝐴
𝑖

, 𝑔𝑦 ∈ 𝑔𝐴
𝑖+1

, 𝑖 = 1, 2, . . . , 𝑚, which
implies that ℎ is cyclic (𝜙)-contraction on 𝑔𝑋. Hence, all the
conditions ofTheorem 15 are satisfied by ℎ, so ℎ has a unique
fixed point 𝑧 = 𝑔𝑥 in 𝑔𝑋. That is, 𝑔𝑥 = 𝑧 = ℎ(𝑧) = ℎ(𝑔𝑥) =
𝑇𝑥, so 𝑇 and 𝑔 have a unique coincidence point as required.
Moreover, if 𝑇 and 𝑔 are weakly compatible, then they have a
unique common fixed point.

Corollary 21 (cf. Theorem 3.2 [18]). Let (𝑋, 𝜗) be a uniform
space, 𝑇, 𝑔 : 𝑋 → 𝑋 self-maps such that 𝑇 is (𝜙)-
𝑔-contraction, and 𝑔𝑋𝑆-complete Hausdorff uniform space
together with 𝑝 being an 𝐸-distance on 𝑋. Suppose that 𝑇𝑋 ⊂
𝑔𝑋 and 𝑇 and 𝑔 are commuting. Then, 𝑇 and 𝑔 have a unique
common fixed point 𝑧 ∈ 𝑋.

Proof. Take 𝐴
𝑖

= 𝑋 for all 𝑖 = 1, . . . , 𝑚 in Theorem 20.

Example 22. Let (𝑋, 𝑑) be a metric space, where𝑋 = {1/𝑛} ∪
{0} and 𝑑 = | , |. Set 𝐴

1

= {1/3𝑛} ∪ {0, 1}, 𝐴
2

= {1/(3𝑛 + 1)} ∪
{0, 1}, and 𝐴

3

= {1/(3𝑛 + 2)} ∪ {0, 1}. Define 𝜗 = {𝑈
𝜖

| 𝜖 > 0}.
It is easy to see that (𝑋, 𝜗) is a uniform space. If we define 𝜙 :
[0,∞) → [0,∞) by 𝜙(𝑡) = 𝑘𝑡 for 0 < 𝑘 < 1 and 𝑇 : 𝑋 → 𝑋
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by 𝑇(0) = 𝑇(1) = 0 and 𝑇(1/𝑛) = 1/(4𝑛 + 1), then for every
𝑥, 𝑦 ̸= 0, 1 we have

𝑑 (𝑇𝑥, 𝑇𝑦) = 𝑑 (
1

4𝑛 + 1
,

1

4𝑚 + 1
)

=
|4 (𝑚 − 𝑛)|

|4𝑛 + 1| |4𝑚 + 1|
≤
|𝑚 − 𝑛|

4𝑛 ⋅ 𝑚

≤
1

4



1

𝑛
−
1

𝑚


=
1

4
𝑑 (𝑥, 𝑦) .

(22)

Also, for 𝑥, 𝑦 = 0, 1 the above inequality obviously holds.
This shows that the contractive condition of Corollary 16 is
satisfied and 0 is fixed point 𝑇.

Definition 23. Let (𝑋, 𝜗) be a uniform space, let 𝑓, 𝑔 : 𝑋 →
𝑋 be two mappings, and let 𝐴 and 𝐵 be nonempty closed
subsets of 𝑋. The 𝑋 = 𝐴 ∪ 𝐵 is said to be a cyclic
representation of𝑋with respect to the pair (𝑓, 𝑔) if 𝑓(𝐴) ⊂ 𝐵
and 𝑔(𝐵) ⊂ 𝐴.

Definition 24. Let (𝑋, 𝜗) be a uniform space, 𝐴, 𝐵 nonempty
subsets of 𝑋, and 𝑋 = 𝐴 ∪ 𝐵. Two self-maps 𝑓, 𝑔 : 𝑋 → 𝑋
are called cyclic (𝜙)-contraction pair if

(i) 𝑋 = 𝐴∪𝐵 is a cyclic representation of𝑋 with respect
to the pair (𝑓, 𝑔),

(ii) max{𝑝(𝑓𝑥, 𝑔𝑦), 𝑝(𝑔𝑦, 𝑓𝑥)} ≤
𝜙(max{𝑝(𝑥, 𝑓𝑥), 𝑝(𝑦, 𝑔𝑦)}), for any 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵,
where 𝜙 ∈ C.

Theorem 25. Let (𝑋, 𝜗) be an 𝑆-complete Hausdorff uniform
space such that 𝑝 is an 𝐸-distance on 𝑋 and let 𝐴, 𝐵 be
nonempty closed subsets of 𝑋 with respect to the topological
space (𝑋, 𝜏(𝜗)) and 𝑋 = 𝐴 ∪ 𝐵. Suppose that 𝑓, 𝑔 : 𝑋 → 𝑋
are cyclic (𝜙)-contraction pair. Then, 𝑓 and 𝑔 have a unique
common fixed point 𝑥 ∈ 𝐴 ∩ 𝐵.

Proof. Take 𝑥
0

∈ 𝑋 and consider the sequence given by

𝑓𝑥
2𝑛

= 𝑥
2𝑛+1

, 𝑔𝑥
2𝑛+1

= 𝑥
2𝑛+2

, 𝑛 = 0, 1, 2, . . . .

(23)

Since 𝑋 = 𝐴 ∪ 𝐵, for any 𝑛 > 0, 𝑥
2𝑛

∈ 𝐴, and 𝑥
2𝑛+1

∈ 𝐵, and
(𝑓, 𝑔) are cyclic (𝜙)-contraction pair, we have

𝑝 (𝑥
2𝑛+1

, 𝑥
2𝑛+2

) = 𝑝 (𝑓𝑥
2𝑛

, 𝑔𝑥
2𝑛+1

)

≤ max {𝑝 (𝑓𝑥
2𝑛

, 𝑔𝑥
2𝑛+1

) , 𝑝 (𝑔𝑥
2𝑛+1

, 𝑓𝑥
2𝑛

)}

≤ 𝜙 (max {𝑝 (𝑥
2𝑛

, 𝑓𝑥
2𝑛

) , 𝑝 (𝑥
2𝑛+1

, 𝑔𝑥
2𝑛+1

)})

= 𝜙 (max {𝑝 (𝑥
2𝑛

, 𝑥
2𝑛+1

) , 𝑝 (𝑥
2𝑛+1

, 𝑥
2𝑛+2

)}) .

(24)

Hence,

𝑝 (𝑥
2𝑛+1

, 𝑥
2𝑛+2

) ≤ 𝜙 (𝑝 (𝑥
2𝑛

, 𝑥
2𝑛+1

)) . (25)

Similarly, we have

𝑝 (𝑥
2𝑛

, 𝑥
2𝑛+1

) = 𝑝 (𝑔𝑥
2𝑛−1

, 𝑓𝑥
2𝑛

)

≤ max {𝑝 (𝑓𝑥
2𝑛

, 𝑔𝑥
2𝑛−1

) , 𝑝 (𝑔𝑥
2𝑛−1

, 𝑓𝑥
2𝑛

)}

≤ 𝜙 (max {𝑝 (𝑥
2𝑛

, 𝑥
2𝑛+1

) , 𝑝 (𝑥
2𝑛−1

, 𝑥
2𝑛

)}) .

(26)

Hence,

𝑝 (𝑥
2𝑛

, 𝑥
2𝑛+1

) ≤ 𝜙 (𝑝 (𝑥
2𝑛−1

, 𝑥
2𝑛

)) . (27)

From inequalities (25) and (27) and taking into account
the monotonicity of 𝜙, we get by induction that

𝑝 (𝑥
𝑛

, 𝑥
𝑛+1

) ≤ 𝜙
𝑛

(𝑝 (𝑥
0

, 𝑥
1

)) for any 𝑛 = 1, 2, . . . .

(28)

Since 𝑝 is an 𝐸-distance, we find that

𝑝 (𝑥
𝑛

, 𝑥
𝑚

) ≤ 𝑝 (𝑥
𝑛

, 𝑥
𝑛+1

) + ⋅ ⋅ ⋅ + 𝑝 (𝑥
𝑚−1

, 𝑥
𝑚

) , (29)

so for 𝑞 ≥ 1 we have that

𝑝 (𝑥
𝑛

, 𝑥
𝑛+𝑞

) ≤ 𝜙
𝑛

(𝑝 (𝑥
0

, 𝑥
1

)) + ⋅ ⋅ ⋅ + 𝜙
𝑛+𝑞−1

(𝑝 (𝑥
0

, 𝑥
1

)) .

(30)

In the sequel, we will prove that {𝑥
𝑛

} is a 𝑝-Cauchy sequence.
Denote

𝑆
𝑛

=
𝑛

∑
𝑘=0

𝜙
𝑘

(𝑝 (𝑥
0

, 𝑥
1

)) , 𝑛 ≥ 0. (31)

By relation (31), we have

𝑝 (𝑥
𝑛

, 𝑥
𝑛+𝑞

) ≤ 𝑆
𝑛+𝑞−1

− 𝑆
𝑛−1

. (32)

Regarding 𝜙 ∈ C together with Lemma 10(iv), we get that

∞

∑
𝑘=0

𝜙
𝑘

(𝑝 (𝑥
0

, 𝑥
1

)) < ∞, (33)

since 𝑝(𝑥
0

, 𝑥
1

) > 0. Thus, there is 𝑆 ∈ [0,∞) such that

lim
𝑛→∞

𝑆
𝑛

= 𝑆. (34)

Then, by (32) we obtain that

𝑝 (𝑥
𝑛

, 𝑥
𝑛+𝑞

) → 0 as 𝑛 → ∞. (35)

In an analogous way, we derive that

𝑝 (𝑥
𝑛+𝑞

, 𝑥
𝑛

) → 0 as 𝑛 → ∞. (36)

Hence, we get that {𝑥
𝑛

}
𝑛≥0

is a 𝑝-Cauchy sequence in the
𝑆-complete space 𝑋 = 𝐴 ∪ 𝐵. So there exists 𝑥 ∈ 𝑋
such that lim

𝑛→∞

𝑓𝑥
2𝑛

= lim
𝑛→∞

𝑔𝑥
2𝑛+1

= 𝑥. In what
follows, we prove that 𝑥 is a fixed point of 𝑓, 𝑔. In fact, since
lim
𝑛→∞

𝑓𝑥
2𝑛

= lim
𝑛→∞

𝑔𝑥
2𝑛+1

= 𝑥 and as 𝑋 = 𝐴 ∪ 𝐵 is a
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cyclic representation of 𝑋 with respect to 𝑓, 𝑔, the sequence
{𝑥
𝑛

} has infinite terms in each 𝐴, 𝐵.
Since 𝐴, 𝐵 are closed, it follows that 𝑥 ∈ 𝐴 ∩ 𝐵; thus we

take subsequences 𝑥
2𝑛

, 𝑥
2𝑛+1

of {𝑥
𝑛

}with 𝑥
2𝑛

∈ 𝐴 and 𝑥
2𝑛+1

∈
𝐵. Using the contractive condition, we can obtain

𝑝 (𝑥, 𝑓𝑥) ≤ 𝑝 (𝑥, 𝑥
2𝑛+2

) + 𝑝 (𝑥
2𝑛+2

, 𝑓𝑥)

= 𝑝 (𝑥, 𝑥
2𝑛+2

) + 𝑝 (𝑔𝑥
2𝑛+1

, 𝑓𝑥)

≤ 𝑝 (𝑥, 𝑥
2𝑛+2

) +max {𝑝 (𝑔𝑥
2𝑛+1

, 𝑓𝑥) ,

𝑝 (𝑓𝑥, 𝑔𝑥
2𝑛+1

)}

≤ 𝑝 (𝑥, 𝑥
2𝑛+2

) + 𝜙 (max {𝑝 (𝑥, 𝑓𝑥) ,

𝑝 (𝑥
2𝑛+1

, 𝑥
2𝑛+2

)}) ,

(37)

and since 𝑥
𝑛

→ 𝑥 and 𝜙 belong toC, letting 𝑛 → ∞ in the
last inequality, we have 𝑝(𝑥, 𝑓𝑥) ≤ 𝜙(𝑝(𝑥, 𝑓𝑥)) < 𝑝(𝑥, 𝑓𝑥);
hence𝑝(𝑥, 𝑓𝑥) = 0. Similarly, we can show that 𝑝(𝑥, 𝑥) = 0
and, therefore, 𝑥 is a fixed point of 𝑓. Similarly, we can show
that 𝑥 is a fixed point of 𝑔. Finally, in order to prove the
uniqueness of the fixed point, we have 𝑦, 𝑧 ∈ 𝑋 with 𝑦 and
𝑧 fixed points of 𝑓, 𝑔. The cyclic character of 𝑓, 𝑔 and the fact
that 𝑦, 𝑧 ∈ 𝑋 are fixed points of 𝑓, 𝑔 imply that 𝑦, 𝑧 ∈ 𝐴 ∩ 𝐵.
Using the contractive condition, we obtain

𝑝 (𝑦, 𝑧) = 𝑝 (𝑓𝑦, 𝑔𝑧) ≤ max {𝑝 (𝑓𝑦, 𝑔𝑧) , 𝑝 (𝑔𝑧, 𝑓𝑦)}

≤ 𝜙 (max {𝑝 (𝑦, 𝑓𝑦) , 𝑝 (𝑧, 𝑔𝑧)}) = 0,

(38)

and from the last inequality we get

𝑝 (𝑦, 𝑧) = 0. (39)

Using the same arguments above, we can show that 𝑝(𝑦, 𝑦) =
0 and, consequently, 𝑦 = 𝑧. This finishes the proof.

Corollary 26. Let (𝑋, 𝑑) be a complete metric space and 𝐴, 𝐵
nonempty closed subsets of 𝑋 and 𝑋 = 𝐴 ∪ 𝐵. Let f, 𝑔 : 𝑋 →
𝑋 be cyclic (𝜙)-contraction pair. Then, 𝑓 and 𝑔 have a unique
common fixed point 𝑧 ∈ 𝐴 ∩ 𝐵.

Proof. By Theorem 25, it is enough to set 𝜗 = {𝑈
𝜖

| 𝜖 > 0}.

Corollary 27. Let (𝑋, 𝜗) be an 𝑆-complete Hausdorff uniform
space such that 𝑝 is an 𝐸-distance on 𝑋 and let 𝐴, 𝐵 be
nonempty closed subsets of 𝑋 with respect to the topological
space (𝑋, 𝜏(𝜗)) and 𝑋 = 𝐴 ∪ 𝐵. Suppose that the maps 𝑓, 𝑔 :
𝑋 → 𝑋 satisfy the following inequality:

(i) max{𝑝(𝑓𝑥, 𝑔𝑦), 𝑝(𝑔𝑦, 𝑓𝑥)} ≤
𝑘max{𝑝(𝑥, 𝑓𝑥), 𝑝(𝑦, 𝑔𝑦)}, for any 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵,
where 0 < 𝑘 < 1.

Then, 𝑓, 𝑔 have a unique common fixed point 𝑧 ∈ 𝐴 ∩ 𝐵.

Proof. ByTheorem 25, it is enough to set 𝜙(𝑡) = 𝑘𝑡.

Example 28. Let (𝑋, 𝑝) be a partial metric space, where 𝑋 =
{1/𝑛} ∪ {0, 1} and 𝑝(𝑥, 𝑦) = max{𝑥, 𝑦}. Set𝐴 = {1/2𝑛} ∪ {0, 1}
and 𝐵 = {1/(2𝑛 + 1)} ∪ {0, 1}. Define 𝜗 = {𝑈

𝜖

| 𝜖 > 0}, where
𝑈
𝜖

= {(𝑥, 𝑦) ∈ 𝑋2 : 𝑝(𝑥, 𝑦) < 𝑝(𝑥, 𝑥)+𝜖}. It is easy to see that
(𝑋, 𝜗) is a uniform space. If we define 𝜙 : [0,∞) → [0,∞)
by 𝜙(𝑡) = 𝑘𝑡 for 0 < 𝑘 < 1 and 𝑓 : 𝑋 → 𝑋 by 𝑓(1/2𝑛) =
1/(4𝑛 + 1), 𝑓(0) = 𝑓(1) = 0, and 𝑔(1/(2𝑛 + 1)) = 1/(4𝑛 + 2),
𝑔(0) = 𝑔(1) = 0. Then, for every 𝑥, 𝑦 ̸= 0, 1 we have

max {𝑝 (𝑓𝑥, 𝑔𝑦) , 𝑝 (𝑔𝑦, 𝑓𝑥)}

= max {𝑝( 1

4𝑛 + 1
,

1

4𝑚 + 2
) ,

𝑝 (
1

4𝑚 + 2
,

1

4𝑛 + 1
)}

= max { 1

4𝑛 + 1
,

1

4𝑚 + 2
}

≤
1

2
max { 1

2𝑛
,

1

2𝑚 + 1
}

=
1

2
max {𝑝 (𝑥, 𝑓𝑥) , 𝑝 (𝑦, 𝑔𝑦)} ,

(40)

for any 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵. Also, for 𝑥, 𝑦 = 0, 1 the above inequality
obviously holds. This shows that the contractive condition of
Corollary 27 is satisfied and 0 is a common fixed point of 𝑓
and 𝑔.
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Topologie générale. Chapitre 1: Structures Topologiques. Chapitre
2: Structures Uniformes, vol. 1142 of Actualités Scientifiques et
Industrielles, Hermann, Paris, France, 1965.

[2] E. Zeidler, Nonlinear Functional Analysis and its Applications,
vol. 1, Springer, New York, NY, USA, 1986.

[3] V. Berinde, Iterative Approximation of Fixed Points, Springer,
Berlin, Germany, 2007.

[4] J. Jachymski, “Fixed point theorems for expansive mappings,”
Mathematica Japonica, vol. 42, no. 1, pp. 131–136, 1995.

[5] O. Kada, T. Suzuki, and W. Takahashi, “Nonconvex minimiza-
tion theorems and fixed point theorems in complete metric
spaces,”Mathematica Japonica, vol. 44, no. 2, pp. 381–391, 1996.

[6] M. Cherichi and B. Samet, “Fixed point theorems on ordered
gauge spaces with applications to nonlinear integral equations,”
Fixed Point Theory and Applications, vol. 2012, article 13, 2012.



Abstract and Applied Analysis 7

[7] M. O. Olatinwo, “Some common fixed point theorems for
selfmappings in uniform space,” Acta Mathematica, vol. 23, no.
1, pp. 47–54, 2007.

[8] I. Altun andM. Imdad, “Some fixed point theorems on ordered
uniform spaces,” Filomat, vol. 23, pp. 15–22, 2009.

[9] E. Tarafdar, “An approach to fixed-point theorems on uniform
spaces,” Transactions of the AmericanMathematical Society, vol.
191, pp. 209–225, 1974.

[10] B. E. Rhoades, “A comparison of various definitions of con-
tractive mappings,” Transactions of the American Mathematical
Society, vol. 226, pp. 257–290, 1977.

[11] I. A. Rus, Generalized Contractions and Applications, Cluj
University Press, Cluj-Napoca, Romania, 2001.

[12] S. Z. Wang, B. Y. Li, Z. M. Gao, and K. Iséki, “Some fixed point
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