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We prove that every map satisfying the g-weakly C-contractive inequality in partial metric space has a unique coincidence point.
Our results generalize several well-known existing results in the literature.

1. Introduction and Preliminaries

The Banach contraction principle is the source of metric
fixed point theory. This principle had been extended by many
authors in different directions (see [1]).

Chatterjea [2] introduced the following contraction
which has been named later as C-contraction.

Definition 1 (see [2]). Let (X,d) be a metric space and f :
X — X amapping. Then f is called a C-contraction if there
exists k € [0, 1/2) such that

d(fx, fy) < k(d(x, fy) +d (fx, y)) o
holds for all x, y € X.

Under this kind of contractive inequality, Chatterjea [2]
established the following fixed point result.

Theorem 2 (see [2]). Every C-contraction in a complete metric
space has a unique fixed point.

As a generalization of C-contractive mapping, Choud-
hury [3] introduced the concept of weakly C-contractive
mapping and proved that every weakly C-contractive map-
ping in a complete metric space has a unique fixed point.

Definition 3 (see [3]). Let (X, d) be a metric space and f :
X — X amapping. Then f is called a weakly C-contractive
if f satisfies

a(fx fy) < 5 (d(x ) +d (f59))
—¢(d(x fy),d(fx )

)

for all x, y € X, where ¢ : [0,00) x [0,00) — [0,00) is a
continuous mapping such that ¢ (t,s) = 0 if and only if t =
s=0.

Under this kind of contraction, Choudhury [3] estab-
lished the following fixed point result.

Theorem 4 (see [3, Theorem 2.1]). Every weakly C-con-
traction in a complete metric space has a unique fixed point.

Recently, Harjani et al. [4] studied some fixed point results
for weakly C-contractive mappings in a complete metric
space endowed with a partial order. Moreover, Shatanawi [5]
proved some fixed point and coupled fixed point theorems
for a nonlinear weakly C-contraction type mapping in metric
and ordered metric spaces.

In another aspect, the notion of a partial metric space has
been introduced by Matthews [6] in 1994 as a generalization
of the usual metric in such a way that each object does
not necessarily have to have a zero distance from itself.
A motivation behind introducing the concept of a partial
metric was to obtain appropriate mathematical models in
the theory of computation and, in particular, to give a
modified version of the Banach contraction principle (see,
e.g., [7,8]). Subsequently, several authors studied the problem
of existence and uniqueness of a fixed point for mappings
satisfying different contractive conditions on partial metric
spaces (e.g., [9-13]).

We recall some definitions and properties of partial
metric spaces.


http://dx.doi.org/10.1155/2014/975728

Definition 5. A partial metric on a nonempty set X is a
function p: X x X — R such thatforallx, y,z € X,

(pD) x =y & p(x,x) = p(x, y) = p(y, y)s
(p2) p(x,x) < p(x, y);
(p3) plx, y) = p(y,x);
(p4) p(x,z) < p(x, y) + p(y,2) = p(y, ).

A partial metric space is a pair (X, p) such that X is
nonempty set and p is a partial metric on X.

From the above definition, if p(x, y) = 0, then x = y. But
if x = y, p(x, y) may not be 0 in general. A famous example
of a partial metric space is the pair (R, p), where p : R x
R™ — R" is defined as p(x, y) = max{x, y}. For some more
examples of partial metric spaces, we refer to [8, 12].

Each partial metric p on X generates a T, topology 7, on
X which has as a base the family of open p-balls: {B,(x,€) :
x € X, € > 0}, where Bp(x, €) =1{y e X: plxy) <
p(x,x) + €} forall x € X and e > 0. A sequence {x,} in X
converges to a point x € X, with respect to 7, if and only if
p (x,x) = lim, ,  p(x, x,). A sequence {x,} in X is called
Cauchy sequence if lim,,,,, _, o, p(x,,, x,,,) exists and is finite.

Definition 6 (see [6,13]). Let (X, p) be a partial metric space.
Then,

(i) a sequence {x,} in a partial metric space (X, p)
converges to a point x € X if and only if p(x,x) =
lim, _, . p(x, x,);

(ii) a sequence {x,} in a partial metric space (X, p) is
called a Cauchy sequence if there exists (and is finite)
limn,m — oop(xw xm);

(iii) a partial metric space (X, p) is said to be complete if
every Cauchy sequence {x,,} in X converges to a point
x € X;thatis, p(x,x) =lim,,, , ., p(x,, x,,).

If p is a partial metric on X, then the function p* : X x
X — R given by

P (xy)=2p(xy)-pxx)-p(y.y) 3)

is a metric on X.

Lemma 7 (see [6, 13]). Let (X, p) be a partial metric space.
Then,

(a) {x,,} is a Cauchy sequence in (X, p) if and only if it is a
Cauchy sequence in the metric space (X, p*);

(b) (X, p) is complete if and only if the metric space (X, p°)
is complete. Furthermore, lim,, _, o, p*(x,,, x) = 0 if and

only if

plx) = lim p(xux)= lm p(x,.%,). (4

Moreover, Bhaskar and Lakshmikantham [14] presented
coupled fixed point theorems for contractions in partially
ordered metric spaces. This concept attracted many math-
ematician and for more related work on coupled fixed and
coincidence points results we refer the readers to recent works
in [4, 9,10, 15-19].
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Definition 8. Let f, g : X — X be two mappings. One says
that x € X is a coincidence point of f and g if f(x) = g(x).

In this paper, we extend the concept of a weakly C-
contractive mapping to the context of partial metric space
and define g-weakly C-contractive map. Moreover, we prove
that every g-weakly C-contractive mapping in a complete
partial metric space has a unique coincidence point. Our
result generalizes several well-known results in the literature.

2. Unique Coincidence and Fixed
Point Theorem

Definition 9. Let (X, p) bea partial metric spaceand g : X —
X a map. Then, the mapping f : X — X is said to be g-
weakly C-contractive if

P f3) < 5 (p(g% 1) + p (. 9)
-6 (p (9% f), p(fx. 97))

for all x, y, u, v € X, where ¢ : [0,00) x [0,00) — [0, 00)
is a continuous mapping such that ¢(¢,s) = 0 if and only if
t=s=0.

(5)

Now we state and prove our main result.

Theorem 10. Let (X, p) be a complete partial metric space and
f: X — X ag-weakly C-contraction mapping. Suppose that
f(X) c g(X). Then, f and g have a unique coincidence point
in X.

Proof. Let x, € X be arbitrary point in X. Since f(X) ¢
g(X), we can construct sequence {gx,} in X as
9%, = fx,, Vn=0. (6)

Set 8n = p(gxn’ gxn+1)'

If there exists n € N such that §, = 0, then by (pl) and
(p2) we have gx, = gx,,; = fx,. Hence, f and g have a
coincidence point in X. Now assume that 8, # 0 for all n > 0.
Thus by (5), we have

P (@5 9%002) = P (S 1)
< 2 (P (9% S) + P (5 Gn)
=9 (2 (9% Fe) P (o 950))

= 2 (P(9% 9%22) + P (6%, 9%,01))

- (/) (p (gxn’ g'xn+2) > P (g'xn+1’ g'xn+l)) .
(7)

By property (p4), we have

P (gxn’ gxn+2) + P (gxnﬂ’gxnﬂ) (8)
< p (gxw gxnﬂ) + p (gxn+1> gxn+2) .
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Thus from (7), we have

P(9%415 9%n12) < 5 (P (9% 9%12) + P (%415 9%11))

N | =

- (/) (P (gxn’ gxn+2) > p (gxn+1’ gxnﬂ))

)

<

(p (gxn’ gxn+1) + p (gxn+1’ gxn+2))

N1 =

- (/) (p (gxn’ g'xn+2) » P (g'xn+l’ g'xn+1))
< max {p (9x,, 9Xp11) > P (%115 9%i2)}

= ¢ (P (g% 9Xni2) > P (%415 GXni1)) -
(10)

From (9), we have either p(gx,, gx,.,)#0 or p(gx,.1>
gX,.1) #0since p(gx,,, gx,.,) #0 foralln € N.
If

max {p (gxn’ gxn+1) > p (gxn+1’ gxn+2)} = P (g'xn+l’ gxn+z) ’)
1

then since ¢(p(gx,;» 9%12)> P(GXpi1> 9%us1)) > 0and by (10),

we have
p(gxn+1’gxn+2) < p(g'xn+1’ g'xn+2)
_¢(p (gxn’ g'xn+2) ’P(gxn+1’ gxn+1))

< P(9%ns1> 9%i2) >
(12)

which is a contradiction. Thus, we have

max {P (gxn’ gxn+1) >P (gxnﬂ’ gxn+2)} = P (gxn’ gxn+1() )
13

and therefore
P (gxn+1’gxn+2) < P (gxn’ gxn+1)
- (/) (p (gxn’ gxn+2) > P (gxn+l> gxn+l))

< P (gxn’ gxn+1) .
(14)

By the above inequalities, we have that {5,,} = {p(gx,,, g%,..1)}
is a non increasing sequence of positive real numbers.
Therefore, there is some § > 0 such that

lim p (gxw gxm—l) =0. (15)

n— 00

Then taking the limitasn — oo in (10), we have

8 <8 - lim ¢ (p (g%, 9%n12) > P (9% i1 9%pi1)) < 8.
(16)

Then,
8= lim ¢ (p (g%, 9%n12) » P (%pe1, 9%0i1)) =0 (17)

and therefore
Jim ¢ (p (9%, 9%n42) > P (9%e1> 9%0e1)) = 0. (18)
By continuity of ¢, we conclude that

im p(gx,, gx,.2) = 0,

n— 00

(19)
Jim p (9% 41> 9% pe1) = 0.

Lettingn — oo in (9) and (15), (19), and the continuity of ¢,
we conclude that § = 0. Thus,

lim p (gxn’ gxnﬂ) =0. (20)

n— 00

Next, we will prove that

lim p(gx,, gx,,) = 0. (21)

1M — 00

Suppose the contrarys; that is,

lim p(gx,, gx,,) #0. (22)

1M — 00

Then there exists an € > 0 for which we can find
subsequences {gx, )}, {gxut of {gx,} such that n(k) is the
smallest integer for which

n(k) > m(k) >k, P (9%uky> 9%m@y) = € (23)

This means that
P (%15 9%my) < € (24)

From the above two inequalities and (p4), we have

€ < p(9%u> IXmii))
< P(9%n> FXno-1) + P (9%n(io-1> 9%me))
= P (9%u@)-1> 9% ni-1) (25)
< P (9% GXn-1) + P (9Xn-1> F%m))

<€+tp (gxn(k)’ gxn(k)—l) .

Letting k. — o0 and using (20), we get

1m P (9%60> 9Xmiiy) = €: (26)



By (p3) and (p4), we have
P (9%ug> 9Xmit))

< P (9% iy GXne1) + P (9Xnye1> 9%miy)
-p (gxn(k)ﬂ’ gxn(k)+1)

< P (9% iy GXnye1) + P (GXnrye1> 9%m))

< P (9% iy GXn 1) + P (9% 41> 9Xm 1)
+ P (9% i1 9%m)) = P (9%m@ 11> FXmiiy+1)

< P (9% ik GXn 1) + P (9% 41> FXme 1)
+ P (9% m 41> 9Xm))

< 2P (9% (i GXni1) + P (9% GXmiir 1)
+ P (9% 1> 9%m)) = P (% 9%y

< 2P (9Xu)> 9% niore1) + P (9%n(iy» G 1)
+ P (9% 41> 9Xm@))

< 2P (9%u(i» GXniye1) + P (9% nihy» GXimit))
+ 2P (9% m(+1> 9%m)) = P (9%m@e> IXmik))

< 2P (9% (i FXniiye1) + P (9% GXimit))

+ 2D (GXmy+1> GXome)) -
(27)

Lettingk — +00 in the above inequalities and using (20)
and (26), we have

f ETOOP (gxn(k)’ gxm(k)) = kETmP (gxn(k)ﬂ’ gxm(k))

= khm p (gxn(k)ﬂ’gxm(k)ﬂ)
— +00

= kLiTFDOP (gxn(k)’ gxm(k)+1) =€
(28)

Therefore, from (5), we have

p (gxm(k)ﬂ’ gxn(k)+1)

=p(f Xn(i)> J- xn(k))
1

< 5 (p (gxm(k)’ f: xn(k)) +p(f: Xim(k)> gxn(k)))
-¢(p (gxm(k)’ f: xn(k)) o (f Xin(k)> gxn(k)))

(p (gxm(k)’ gxn(k)+1) +p (gxm(k)ﬂ’ gxn(k)))

N | =

-¢(p (gxm(k)’ gxn(k)+1) » P (gxm(k)+l’ gxn(k))) .
(29)

Letting k — +00 in the above and using (28) and the
continuity of ¢, we conclude that

e<e—¢(ee)<e (30)
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which is a contradiction. Thus, we have

polim  p (g%, gXpu) = 0. (31)
Therefore, {gx,} is a Cauchy sequence in the complete
partial metric space (X, p).
By Lemma 7, we have that

im D (g2, 9%,n) = 0. (32)

Thus, {gx,} is a Cauchy sequence in the complete met-

ric space (X, p*). Hence, by Lemma 7, {gx,} is a Cauchy

sequence in the complete metric space (X, p). Again, by
Lemma 7, there exists x € X such that

lim p*(gx,,gx) =0 (33)

n—+00
which implies that

lim p (g%, gx,,) -

p(gx.gx) = lim p(gx,gx)=  lim
(34)

n—+00

Next, we prove that lim,, _, ,  p(fx, gx,..1) = p(fx, gx).
Lettingn — +ooin

P (%, g%1) < p(fx, gx) + p (g%, gx,01) = p (g%, gx),

(35)
we have
Jim p(fx, gx,.,) < p(fx, gx). (36)
Also, lettingn — +00 in
p(fx, gx) < p(fx, gxu1) + P (9% 9X) -
~P (%1 9%i1) »
we have
p(fx.gx) < lim p(fx gx,.). (38)
From (36) and (38), we have
lim p(fx, gx,.1) = p(fx. gx). (39)

n—+0o0

Now, we prove that fx = gx. By (5), we have

P (fx% g%u) = P (fx, fx,)

IA

> (g% fx,) + P (fx.9%,)
-9 (plow fi) p(frgx)  (10)

> (p(9%,9%,m) + P (f:9%,)

- ¢ (p(gx gxu1), p(fx. gx,))-
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Letting n — 400 in the above and using (39) and the
continuity of ¢, we conclude that

IN

P (f.9%) < 5 (fx.9%) - $ (0. p (. 9%))

(41)

IA

1
Lp(rgv).
Hence, p(fx, gx) = 0. By (p1) and (p2), we have fx = gx.
Thus, x is a coincidence point of f and g.
To prove the uniqueness of the coincidence point of f and
g» suppose that y is another coincidence point of f and g.
From (5), we have

plg%.y) = p (5 f3) < 5 (p(5.3) + P (5.9))

42)
—¢(p(xy),p (%))
Therefore, we have ¢(p(x,y), p(x,y)) = 0. Hence,
p(x, ¥) = 0. By (pl) and (p2), we have x = y.
Thus, f and g have a unique coincidence point. O

As an immediate consequence of the above theorem, we
have the following fixed point result.

Corollary 11. Let (X, p) be a complete partial metric space
and f : X — X a weakly C-contraction mapping. That is,
T satisfies

(p(x fy) + p(fx.y))

-¢(p(x fy), p(fx.y))

forall x, y € X, where ¢ : [0,00) x [0,00) — [0,00) isa
continuous mapping such that ¢(t, s) = 0 if and only ift = s =
0.

o | =

p(fx fy) <
(43)

Then, there exists a unique x € X such that fx = x.

Corollary 12. Let (X, p) be a complete partial metric space.
Suppose that the mapping f : X — X satisfies the following
contractive condition:

p(fx fy) <kp(fx.y) +1p(x fy), (44)

forall x, y, u, v € X, where k, | are nonnegative constants with
k + 2l < 1. Then, f has a unique fixed point.

Proof. Take ¢(t,s) = ((1/2) — D)t + ((1/2) — k)s, where k, [ are
nonnegative constants with k + 2/ < 1. O

Corollary 13 (see [10, Corollary 2.7]). Let (X, p) be a complete
partial metric space. Suppose that the mapping f : X — X
satisfies the following contractive condition:

P S (p(fon) vp(e ). @9

forallx, y € X, where0 < k < 2/3. Then, f has a unique fixed
point.

Proof. Take ¢(t,s) = ((1/2) — (k/2)) (t +s), where 0 < k <
2/3. O
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