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A new fault diagnosis method is proposed for PV arrays with SP connection in this study, the advantages of which are that it would
minimize the number of sensors needed and that the accuracy and anti-interference ability are improved with the introduction
of fuzzy group decision-making theory. We considered five “decision makers” contributing to the diagnosis of PV array faults,
including voltage, current, environmental temperature, panel temperature, and solar illumination. The accuracy and reliability of
the proposed method were verified experimentally, and the possible factors contributing to diagnosis deviation were analyzed,
based on which solutions were suggested to reduce or eliminate errors in aspects of hardware and software.

1. Introduction

Astable and reliable operation of the photovoltaic (PV) arrays
is desirable for better performance and prolonged lifetime of
the PV systems. However, PV arrays are highly susceptible to
a variety of problems, such as hot spots, aging, and damage
[1, 2], which could significantly reduce the power output or
even permanently damage the batteries [1, 3]. It is thus of
paramount importance to detect and locate these faults in PV
arrays.

Fault diagnosis methods for PV arrays can be broadly
classified into those based on infrared images and those based
on electrical signals. The former method makes use of the
inherent property of the infrared images that there is a clear
temperature difference between the defective and nondefec-
tive PV arrays [2, 4]. However, it has been criticized for being
inaccurate, use of expensive and delicate instruments, and
delayed reaction. In recent years, considerable effort has been
devoted to upgrading the hardware and software but results
in no significant improvement in the fault diagnosis of large-
scale PV arrays. On the other hand, the electrical method,
despite its limitations such as use of large number of sensors,
low accuracy, inadaptability to large-scale PV arrays, and
vulnerability to environmental influences, has found a place
in fault diagnosis. An electricalmethod proposed by Japanese
scholars applied the high frequency reaction measurement
with time domain analysis for the detection of failedmodules
[5, 6], which had no real-time property and a low realistic

possibility of operation. Despite these problems, most of the
fault diagnosis methods based on voltage or current sensors
can detect and locate certain kinds of faults [5, 7–11].

In a previous study, a new PV connection was designed
to detect the faults of large-scale PV systems, in which a
large number of sensors were embedded and “data fusion”
technique was used [7]. Another approach was to use a
switching matrix to connect the solar adaptive bank to the
solar PV module branches [8]. Some parameters of PV
module, such as shunt resistance, series resistance, and diode
factor, have been shown to be closely related to PV array
faults [9]. A novel method was then proposed to acquire
the I-V curves of PV modules strings, and the failures were
indicated by the variations of the parameters based on the
I-V curves. Two methods, capacitance measurement (ECM)
and time-domain reflectometry (TDR), were presented to
locate the faults in the PV module strings [5]. ECM could
detect the disconnection position in the string without
the effects of irradiance change, while TDR could detect
the degradation position (series resistance increase) by the
change of response waveform. However, these techniques
still have the limitations described previously. In addition,
existing fault diagnosis functions for PV inverter can only
provide fault information in the branch.

In this study, a new sensor-embedded method is pro-
posed for the detection of PV array faults, which has better
integrated practical value. This method not only reduces
the number of sensors needed to collect the necessary data
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and the cost of the whole system but also improves the
accuracy and anti-interference ability with the introduction
of fuzzy group decision-making theory [12–17]. Fuzzy group
decision-making theory has been applied to fault diagnosis of
rotating and intelligent instrument [13, 14] and proved to be
especially suitable for group decision-making problems with
different forms of preference information and incomplete
certain information on weights. The final goal of group
decision making is to find the best solution among a set of
feasible alternatives, which can best reflect the preferences of
the group of decision makers as a whole. In this study, we
consider five “decision makers” contributing to the diagnosis
of PV array faults, including voltage, current, environmental
temperature, panel temperature, and solar illumination. The
proposed method is experimentally verified and factors that
cause diagnosis deviation are analyzed; then solutions are
suggested to reduce or eliminate errors in aspects of hardware
structure and software design [18].

2. A New Diagnosis Method for
PV Array Faults

2.1. PV Array Connection Structure and Sensor
Detection Structure

2.1.1. PV Array Connection Structure. Each PV cell can pro-
duce only a limited voltage and current. To increase voltage
and current output, it is desirable to connect individual cells
in series, parallel, series-parallel (SP), or total cross tied
(TCT) to form larger arrays [19]. It needs to consider the
effect of connection structure and detection mode of voltage
and current sensors in monitoring large-scale PV arrays. A
variety of detection structures have been proposed based on
different connection structures. For example, some sensors
were embedded in PV arrays with TCT connection.However,
these structures tend to be complicated and costly.

2.1.2. A New Sensor Detection Structure. Detection structure
preferably has the following characteristics: (1) using as
few sensors as possible, (2) high resolution, and (3) being
adaptable to large-scale PV arrays. A detection structure that
complies with the above requirements is proposed in this
study, as shown in Figure 1.

This detection structure is based on a 4 × 8 PV array
with SP connection, where each symbol represents a solar
panel, and there are three sensors (one current sensor and two
voltage sensors) embedded in each branch. Thus if one solar
panel fails, fault will be confined to the two adjacent panels.

If 𝐼
𝑖
< 𝐼
𝑗
(0 < 𝑖 ≤ 4, 0 < 𝑗 ≤ 4 and 𝑗 ̸= 𝑖), fault occurs in the

𝑖-th branch. Then the failed panel can be located according
to the voltages measured by the two voltage sensors. There
are four possibilities (PV panels are numbered from top to
bottom).

(1) If No.1 or No.2 panel fails, then 𝑉
𝑖1
< 𝑉
𝑗1
, 𝑉
𝑖2
> 𝑉
𝑗2
,

where 1 ≤ 𝑗 ≤ 4 and 𝑗 ̸= 𝑖;
(2) If No.3 or No.4 panel fails, then 𝑉

𝑖1
< 𝑉
𝑗1
, 𝑉
𝑖2
< 𝑉
𝑗2
,

where 1 ≤ 𝑗 ≤ 4 and 𝑗 ̸= 𝑖;
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Figure 1: A new fault detection structure.

(3) If No.5 or No.6 panel fails, then 𝑉
𝑖1
> 𝑉
𝑗1
, 𝑉
𝑖2
< 𝑉
𝑗2
,

where 1 ≤ 𝑗 ≤ 4 and 𝑗 ̸= 𝑖;
(4) If No.7 or No.8 panel fails, then 𝑉

𝑖1
> 𝑉
𝑗1
, 𝑉
𝑖2
> 𝑉
𝑗2
,

where 1 ≤ 𝑗 ≤ 4 and 𝑗 ̸= 𝑖;

For the detection structure of𝑀×𝑁 PV array (𝑁 branch-
es, 𝑀 solar panels in each branch) shown in Figure 2, the
resolution of fault location is assumed to be 𝐿 (accordingly,
one voltage sensor is responsible for 2 × 𝐿 solar panels) and
each branch has 𝑝 voltage sensors. Fault will be located based
on the voltage and current data collected by amicrocontroller.

(a) If
𝑉
ℎ𝑟
< 𝑉
𝑖𝑗
(0 < 𝑖 ≤ 𝑁, 𝑖 ̸= ℎ, 0 < 𝑗 ≤ 𝑝)

𝑉
ℎ𝑠
> 𝑉
𝑖𝑗
(0 < 𝑠 ≤ 𝑝, 𝑠 ̸= 𝑟, 0 < 𝑖 ≤ 𝑁, 𝑖 ̸= ℎ, 0 < 𝑗 ≤

𝑝)

𝑉
𝑖𝑗
= 𝑉
𝑢V, (0 < 𝑖, 𝑗, 𝑢, V ≤ 𝑁; 𝑖, 𝑗, 𝑢, V ̸= ℎ),

fault occurs in No.ℎ branch due to different sensor readings
in this branch.Then it can be determined that the failed panel
is within the range of the 𝑟-th sensor.

(b) If
𝑉
ℎ𝑟
< 𝑉
𝑖𝑗
, 𝑉
ℎ(𝑟+1)

< 𝑉
𝑖𝑗
(0 < 𝑖 ≤ 𝑁, 𝑖 ̸= ℎ, 0 < 𝑗 ≤ 𝑝)

𝑉
ℎ𝑠
> 𝑉
𝑖𝑗
(0 < 𝑠 ≤ 𝑝, 𝑠 ̸= 𝑟, 𝑠 ̸= 𝑟 + 1, 0 < 𝑖 ≤

𝑁, 𝑖 ̸= ℎ, 0 < 𝑗 ≤ 𝑝)

𝑉
𝑖𝑗
= 𝑉
𝑢V, (0 < 𝑖, 𝑗, 𝑢, V ≤ 𝑁; 𝑖, 𝑗, 𝑢, V ̸= ℎ),

fault occurs in No.ℎ branch due to different sensor readings
in this branch.Then it can be determined that the failed panel
is within the cross range of No.𝑟 and No.(𝑟 + 1) sensor.
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Figure 2:𝑀×𝑁 detection structure.

As described in Figure 2, fault location is determined
by a process of logical deduction. The detection structure
proposed in this study considers the cross range of voltage
sensors, thereby minimizing the number of sensors needed
and eventually the cost of the system. This would be particu-
larly obvious with the increase of𝑀.

The relationship between 𝑋 (the number of sensors
needed), 𝐿,𝑀, and𝑁 is

𝑋 = [
𝑀

3 × 𝐿
] × 2 × 𝑁 + 𝑁, (1)

where [𝑀/3 × 𝐿] is to eliminate the decimal part.
Equation (1) shows that 𝑋 is inversely proportional to 𝐿.

Thus, the higher the accuracy of fault positioning, the larger
the number of sensors needed.

2.2. Fuzzy Group Decision-Making Theory in the Diagnosis of
PV Array Faults

2.2.1. Fuzzy Fault Diagnosis. Uncertainty is a universal char-
acteristic of decision-making problems. As we will see, it is
particularly relevant to the diagnosis of PV array faults due
to the dynamic nature and uncertainty—contingency and
fuzziness—of the detection signals. A key premise underlying
fuzziness is that there appears to be no clear-cut difference

between two phenomena. It is necessary to establish the
relationship between fuzzy problems and inherent factors in
a mathematical way, and the result can be obtained by the
fuzzy mathematics [20]. Given different attributes of PV fault
diagnosis system and uncertainties in data processing, fuzzy
method is applied in this study to process the measurement
data and evaluate the fault level.

2.2.2. Group Decision-Making Theory in Fault Diagnosis.
Group decision making is an important topic in system
management.Theprimary purpose of group decisionmaking
is to find the most preferred solution among a set of feasible
alternatives provided bymultiple decisionmakers, which can
best reflect the preferences of the group of decisionmakers as
a whole and therefore avoid decision mistakes to a maximum
extent [21].

PV array faults could cause changes in voltage, current,
and panel temperature, and abnormalities in these parame-
ters are, in turn, indicative of PV array faults. Although no
direct relationship has been established between PV array
faults and environmental temperature or solar irradiance,
both of them are introduced as decision makers in the
diagnosis of PV array faults, as shown in Figure 3.

Let 𝐷 = 𝑑
1
, 𝑑
2
, 𝑑
3
, . . . , 𝑑

𝑚
be a set of decision makers,

𝑂 = 𝑜
1
, 𝑜
2
, 𝑜
3
, . . . , 𝑜

𝑚
a set of alternatives, and 𝜆 =
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Figure 3: Group decision-making system for PV array faults.

[𝜆
1
, 𝜆
2
, 𝜆
3
, . . . , 𝜆

𝑚
] the weight vector of decision makers,

respectively. The alternatives that No.𝑖 decision maker offers
are𝑊(𝑖) = [𝑊(𝑖)

1
,𝑊
(𝑖)

2
,𝑊
(𝑖)

3
, . . . ,𝑊(𝑖)

𝑛
]. For any given𝑊(𝑖), the

rank vector 𝑅(𝑖) = [𝑟(𝑖)
1
, 𝑟
(𝑖)

2
, 𝑟
(𝑖)

3
, . . . , 𝑟(𝑖)

𝑛
] can be calculated,

where 𝑟(𝑖)
𝑗

is the rank of No.𝑗 alternative for No.𝑖 decision
member (1 ≤ 𝑟(𝑖)

𝑗
≤ 𝑛). 𝑊(𝑖) is graded according to the

hierarchical fuzzy quantitative analysis before calculating𝑅(𝑖).
The minimum unit value depends on the features of both
decision makers and fault diagnosis.

(1) The generalized distance of decision makers is

𝑑 (𝑖, 𝑗) = 𝛾
𝑖𝑗
+ 𝜃
𝑖𝑗
⋅ 𝑖, (2)

where

𝛾
𝑖𝑗
=
1

𝑛

𝑛

∑
𝑘=1

󵄨󵄨󵄨󵄨󵄨󵄨
𝑟
(𝑖)

𝑘
− 𝑟
(𝑗)

𝑘

󵄨󵄨󵄨󵄨󵄨󵄨
,

𝜃
𝑖𝑗
= arccos( 𝑊(𝑖) ⋅ 𝑊(𝑗)

󵄩󵄩󵄩󵄩𝑊
(𝑖)󵄩󵄩󵄩󵄩 ⋅
󵄩󵄩󵄩󵄩𝑊
(𝑗)󵄩󵄩󵄩󵄩
) .

(3)

𝛾
𝑖𝑗
and 𝜃

𝑖𝑗
represent the degree to which the two

decision makers are consistent.
(2) For any 𝑑(𝑖, 𝑗) = 𝛾

𝑖𝑗
+ 𝜃
𝑖𝑗
⋅ 𝑖, the standard generalized

distance is

𝑄
𝑖𝑗
=
𝛾
𝑖𝑗

𝛾max
⋅ 𝛼 +

𝜃
𝑖𝑗

𝜃max
⋅ 𝛽, (4)

where 𝜃max= 90,

𝛾max = {
𝑛/2, 𝑛 is even
𝑛/2 − 1/2𝑛, 𝑛 is odd,

(5)

𝛼 is the rank weight coefficient of two weight vectors
and 𝛽 is the angle weight coefficient that meet 𝛼+𝛽 =
1 and 𝛼 > 𝛽.

(3) Let 𝛾
𝐴
+𝜃
𝐴
⋅ 𝑖 be the remarkable consistency threshold

and let 𝛾
𝐷
+𝜃
𝐷
⋅ 𝑖 be the serious divergence threshold,

the values of which depend on the composition
of decision makers and the attributes of decision-
making problem. In the diagnosis of PV array faults,
they would be determined by measurement data and
experience. 𝑄

𝐴
and 𝑄

𝐷
are corresponding standard

generalized distances.
The decision function of remarkable consistency is

𝜑 (𝑖, 𝑗) = {
1, 𝑄

𝑖𝑗
≤ 𝑄
𝐴

0, 𝑄
𝑖𝑗
> 𝑄
𝐴
.

(6)

The decision function of serious divergence is

𝜓 (𝑖, 𝑗) = {
1, 𝑄

𝑖𝑗
≥ 𝑄
𝐷

0, 𝑄
𝑖𝑗
< 𝑄
𝐷
.

(7)

(4) GC and GD are the judgment matrix of the remark-
able consistency and serious divergence, respectively:

GC = {𝑐
𝑖𝑗
}
𝑚×𝑚
𝑐
𝑖𝑗
= {
𝜑 (𝑖, 𝑗) , 𝑖 ̸= 𝑗,

1, 𝑖 = 𝑗,

GD = {𝑥
𝑖𝑗
}
𝑚×𝑚
𝑥
𝑖𝑗
= {
𝜓 (𝑖, 𝑗) , 𝑖 ̸= 𝑗,

0, 𝑖 = 𝑗.

(8)

(5) The consistency index is

IAI(𝑖) =
𝑚

∑
𝑗=1

𝑗 ̸= 𝑖

𝜑 (𝑖, 𝑗)

𝑚 − 1
. (9)

The divergence index is

IDI(𝑖) =
𝑚

∑
𝑗=1

𝑗 ̸= 𝑖

𝜓 (𝑖, 𝑗)

𝑚 − 1
. (10)
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(6) The proportion of decision makers that provide
remarkably consistent opinions is

GAI =
𝑚

∑
𝑖=1

IAI(𝑖)

𝑚
. (11)

The proportion of decision makers that provide seri-
ously divergent opinions is

GDI =
𝑚

∑
𝑖=1

IDI(𝑖)

𝑚
. (12)

There are five decisionmakers (𝑚 = 5), including voltage,
current, environmental temperature, panel temperature, and
solar irradiance, denoted by 𝑑

𝑉
, 𝑑
𝐼
, 𝑑TP, 𝑑TE, and 𝑑𝐺, respec-

tively, and five alternatives (𝑛 = 5, 𝑂 = {VL, 𝐿,𝑀,𝐻,VH}),
including very low, low, medium, high, and very high fault
probability. The standard generalized distance between two
decision makers is

𝑄
𝑖𝑗
=
∑
5

𝑘=1

󵄨󵄨󵄨󵄨󵄨󵄨
𝑟
(𝑖)

𝑘
− 𝑟
(𝑗)

𝑘

󵄨󵄨󵄨󵄨󵄨󵄨

12
⋅ 𝛼

+
arccos ((𝑊(𝑖) ⋅ 𝑊(𝑗)) / (󵄩󵄩󵄩󵄩󵄩𝑊

(𝑖)󵄩󵄩󵄩󵄩󵄩
⋅
󵄩󵄩󵄩󵄩󵄩
𝑊(𝑗)
󵄩󵄩󵄩󵄩󵄩
))

90
⋅ 𝛽,

(13)

where 𝑖, 𝑗 = 𝑑
𝑉
, 𝑑
𝐼
, 𝑑TP, 𝑑TE, 𝑑𝐺. According to 𝑄𝐴 and 𝑄𝐷,

the index can be calculated and final fault diagnosis can be
made.

3. Experiment and Analysis

3.1. Experiment Design and Data Analysis. The proposed
method is then verified experimentally with custom-made
PV panels, as shown in Figure 4. The terminals of each PV
monomer are independent so that they can be connected
arbitrarily. It consists of four branches numbered from 1 to 4.
Temperature is measured by a DS18B20 digital thermometer
and solar irradiance by a TSL230B light to frequency con-
verter from TI company.

The data collected in this study are shown in Table 1,
where 𝑉

11
to 𝑉
42

are voltages, 𝐼
1
to 𝐼
4
are currents, 𝑇

𝑒1
to

𝑇
𝑒4

are environmental temperatures, 𝑇
𝑝1

to 𝑇
𝑝4

are panel
temperatures, and𝐺

1
to𝐺
4
are solar irradiances, respectively.

Because neither environmental temperature nor solar
irradiance has a direct effect onPVarray faults, a special treat-
ment is adopted. When they are normal, all the preference
data are set to be 0.2 and the rank results to be in accordance
with 𝑟(𝐼)

𝑘
or 𝑟(𝑉)
𝑘

. However, when they are abnormal, the failure
probability is reduced, VL and 𝐿are increased, and𝑀,𝐻, and
VH are decreased. Fuzzy quantitative analysis is performed
with the other three decision makers using cross triangular
membership function.The preference data of No.1 branch are
shown in Table 2.

The rank results are shown in Table 3. Then the standard
generalized distance𝑄

𝑖𝑗
can be calculated using (13), and the

results are shown in Table 4, where 𝛼 = 0.7, 𝛽 = 0.3, 𝑄
𝐴
=

0.05, and 𝑄
𝐷
= 0.5.

The evaluation indexes in Table 5 show that the overall
consistency index is 0.20 and the divergence index is 0,

Figure 4: Custom-made solar panels.

indicating a high consistency between decision makers.
Therefore, No.1 branch has a relatively high probability of
faults. According to the judgment process described above,
No.1 or No.2 PV cell in the first branch might fail.

By following the same process as above, we found that
No.2 andNo.3 branch have no fault, butNo.4 branch has fault.
The remarkable consistency is 0.10 and the serious divergence
is 0.60, indicating a false fault detection. The deviation of
the voltage and current from normal range may be due
to environmental factors. A miscarriage of justice would
happen if the decision is made on the basis of incomplete
measurement data rather on group decisionmaking in which
a group of decision makers work collectively to find the best
candidate from a set of alternatives.

3.2. Errors and Solutions. The precision of the system would
decrease due to the errors inherent in measurement and data
processing. It is necessary to analyze these errors and provide
solutions to improve the effectiveness of the system [16].

3.2.1. Voltage and Current Sensors. Hall current and voltage
sensors are used in this study. Without considering the effect
of temperature, the output voltage (𝑈

𝑉
) and current (𝑈

𝐼
) of

Hall sensors are

𝑈
𝑉
= 𝛼𝑉,

𝑈
𝐼
= 𝛽𝐼,

(14)

where 𝑉 and 𝐼 are the measured voltage and current and 𝛼
and 𝛽 are constants, respectively.

When temperature is taken into account,

𝑈
𝑉
= 𝑓 (𝑉, 𝑇) , (15)

𝑈
𝐼
= 𝑔 (𝐼, 𝑇) . (16)

Since𝑓 and 𝑔 are unknown functions, each depending on
two variables, two-dimensional regression analysis is used to
determine the relationship between themeasured parameters
and sensor outputs. Then the coefficients of the regression
equation are calculated using the least square method.

The two-dimensional regression equation is established
based on (16):

𝐼 = 𝑔 (𝑈
𝐼
, 𝑇) . (17)
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Table 1: Data collected by experimental system.

Branch 1 2 3 4
V 11 V 12 V21 V22 V31 V32 V41 V42

Voltage (V) 1.559 2.454 2.072 2.086 2.060 2.074 1.876 2.190
I1 I2 I3 I4

Current (A) 0.041 0.128 0.121 0.081
𝑇
𝑒1

𝑇
𝑒2

𝑇
𝑒3

𝑇
𝑒4

Environmental temperature (∘C) 24.2 24.2 24.2 24.0
𝑇
𝑝1

𝑇
𝑝2

𝑇
𝑝3

𝑇
𝑝4

Panel temperature (∘C) 38.1 37.4 37.5 31.9
G1 G2 G3 G4

Solar irradiance (W/m2) 760 762 760 410

Table 2: Preference of different decision makers.

Decision makers Preference
VL L M H VH

𝑑
𝑉

0.00 0.00 0.00 0.00 1.00
𝑑
𝐼

0.00 0.00 0.00 0.65 0.35
𝑑TE 0.20 0.20 0.20 0.20 0.20
𝑑TP 0.00 0.00 0.00 0.80 0.20
𝑑
𝐺

0.20 0.20 0.20 0.20 0.20

Table 3: Ranks of preference.

Decision makers Ranks
VL L M H VH

𝑑
𝑉

5 4 3 2 1
𝑑
𝐼

5 4 3 1 2
𝑑TE 5 4 3 2 1
𝑑TP 5 4 3 1 2
𝑑
𝐺

5 4 3 2 1

Table 4: Weighted generalized distance.

𝑄
𝑖𝑗

𝑑
𝑉

𝑑
𝐼

𝑑TE 𝑑TP 𝑑
𝐺

𝑑
𝑉

0.00 0.21 0.21 0.25 0.21
𝑑
𝐼

0.21 0.00 0.18 0.05 0.18
𝑑TE 0.21 0.18 0.00 0.19 0.00
𝑑TP 0.25 0.05 0.19 0.00 0.19
𝑑
𝐺

0.21 0.18 0.00 0.19 0.00

Table 5: Software evaluation indexes.

Decision makers IAI IDI
𝑑
𝑉

0.00 0.00
𝑑
𝐼

0.25 0.00
𝑑TE 0.25 0.00
𝑑TP 0.25 0.00
𝑑
𝐺

0.25 0.00
Combined index 0.20 0.00

It can be expressed as follows:

𝐼 = 𝑎
0
+ 𝑎
1
𝑈
𝐼
+ 𝑎
2
𝑇 + 𝑎
3
𝑈
2

𝐼
+ 𝑎
4
𝑈
𝐼
𝑇 + 𝑎
5
𝑇
2
+ 𝜀, (18)

where 𝐼 is the corrected current, 𝑎
0
∼ 𝑎
5
are constants that

are considered as key factors for 𝐼, and 𝜀 is infinitesimal.
An error 𝑒 exists between 𝐼(𝑈

𝐼
, 𝑇) and calibration value

𝐼
𝑘
with a variance of

𝑒
2
= [𝐼
𝑘
− 𝐼 (𝑈

𝐼
, 𝑇)]
2
. (19)

At last, 𝑎
0
∼ 𝑎
5
can be estimated by the least square

method that makes 𝑒2 a minimum.

3.2.2. Temperature Measurement. Figure 5 shows a general
model of the PV cell, which can be expressed as

𝐼 = 𝐼ph − 𝐼st {exp[
𝑞 (𝑈 + IR

𝑠
)

𝑛𝑘𝑡
] − 1} −

𝑈 + IR
𝑠

𝑅sh
, (20)

where 𝐼ph is the photons-generated current due to sunlight,
𝐼st is the diode reverse saturation current, 𝑞 is an electron
charge (1.6 ∗ 10−9 C), 𝑘 is Boltzmann’s constant (= 1.38 ∗
10−23 J/K), 𝑡 is working temperature of the cell in Kelvin, 𝑛
is the ideality factor, 𝑅

𝑠
is the series resistance, and 𝑅sh is the

parallel resistance.
It shows that the ambient temperature can affect PV panel

temperature, which in turn can affect the output current
𝐼 and voltage 𝑈. Therefore, temperature is an important
factor contributing to PV panel failure, and the accuracy of
temperature measurements has a direct effect on the overall
precision of the system. It is thus necessary to compensate
the temperature measured by DS18B20, which is known to
be vulnerable to thermal noise of internal semiconductor.
The error increases linearly with temperature.We partitioned
the temperature into different ranges and then calculated the
correction coefficient by using a more accurate temperature
sensor.

Let the linear error model of DS18B20 be 𝑇 = 𝐻 × 𝑇
𝑠
+

𝑊, where 𝑇 is measured by DS18B20, 𝑇
𝑠
is measured by a

more accurate sensor and represents the actual temperature
at a certain moment,𝐻 is a linear correction coefficient that
varies with temperature, and 𝑊 is an error compensation
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Figure 5: Circuit model of solar cell.

parameter.𝐻 and𝑊 are estimated by observing the temper-
ature for𝑀 times:

𝑇
𝑖
= 𝐻 × 𝑇

𝑠𝑖
+𝑊 + V

𝑖 (𝑖 = 1 ∼ 𝑀) , (21)

where V
𝑖
is the random error with zero mean in each

observation.
Temperature is measured, most probably, under different

conditions, thus providing more accurate results in some
experiments and less accurate ones in others. In this study, the
weighted least squares method is used with a weight matrix
of𝑊 = diag[𝑤

1
, 𝑤
2
, . . . , 𝑤

𝑀
], where 𝑤

𝑖
is the weight of No.𝑖

observation.
Then (21) becomes

𝑇
𝑖
= 𝐻 ×𝑊 × 𝑇

𝑆𝑖
+𝑊 + V

𝑖 (𝑖 = 1 ∼ 𝑀) . (22)

According to the least square method,

[
𝐻

𝑊
] =

[
[
[
[
[
[
[
[
[
[

[

[

[

𝑇
𝑆1

𝑤
1

𝑇
𝑆2

𝑤
2

⋅ ⋅ ⋅
𝑇
𝑆𝑀

𝑤
𝑀

1 1 ⋅ ⋅ ⋅ 1

]

]

×

[
[
[
[
[
[
[
[
[
[

[

𝑇
𝑆1

𝑤
1

1

𝑇
𝑆2

𝑤
2

1

...
...

𝑇
𝑆𝑀

𝑤
𝑀

1

]
]
]
]
]
]
]
]
]
]

]

]
]
]
]
]
]
]
]
]
]

]

−1

× [

[

𝑇
𝑆1

𝑤
1

𝑇
𝑆2

𝑤
2

⋅ ⋅ ⋅
𝑇
𝑆𝑀

𝑤
𝑀

1 1 ⋅ ⋅ ⋅ 1

]

]

×

[
[
[
[

[

𝑇
1

𝑇
2

...
𝑇
𝑀

]
]
]
]

]

.

(23)

It follows from (23) that 𝐻 for different temperature
ranges can be obtained from the temperature measured by
DS18B20 and the accurate sensor. Then 𝐻 values will be
stored in microprocessor and used to calculate the temper-
ature.

3.2.3. Solar Irradiance Measurement. It shows in (20) that
the output of solar cells depends to a great extent on 𝐼ph
determined by the solar irradiance. Therefore, the measure-
ment of solar irradiance will be considered. In this study,
it is measured by TSL230B, in which sun light is converted

800

700

600

500

400

300

200

100

0

7
:0
0

8
:0
0

9
:0
0

10
:0
0

11
:0
0

12
:0
0

13
:0
0

14
:0
0

15
:0
0

16
:0
0

17
:0
0

(h)

W
/m

2

Figure 6: Typical solar irradiance curve in north China.

to current by polycrystalline silicon photoelectric diode and
then to frequency signals by current-frequency converter.
Figure 6 shows a typical solar irradiance curve in north
China. It shows that the solar irradiance ranges from about
100 to 800W/m2; thus the working time for TSL230B would
be very long and its stability would be greatly affected
by temperature. It thus points to a need to compensate
temperature drift.

Without considering the temperature drift, the rela-
tionship between measured solar irradiance 𝐺 and output
frequency 𝑓 is linear:

𝐺 = 𝑎𝑓 + 𝑏, (24)

where 𝑎 and 𝑏 are linear coefficients.
When temperature drift is considered,

𝐺 = 𝑎𝑓 + 𝑏 + ℎ (𝑡) . (25)

𝐻(𝑡) is an unknown function that can be expanded
by Taylor’s formula, and ℎ(𝑡) can be approximated by a
polynomial whose coefficients are derivative values:

ℎ (𝑡) = 𝑎𝑛𝑡
𝑛
+ 𝑎
𝑛−1
𝑡
𝑛−1
+ ⋅ ⋅ ⋅ + 𝑎

1
𝑡 + 𝑎
0
, (26)

where 𝑎
𝑖
(𝑖 = 0, 1, 2, . . . , 𝑛) is a parameter.

𝐺 is measured by a precise handheld irradiance meter
under different temperatures 𝑡, and the frequency 𝑓 is
measured by TSL230B. A polynomial curve is fitted using
the Polyfit function in Matlab, so that 𝑎

𝑖
can be obtained.

Although a higher degree of fitting appears to be theoretically
appealing as it implies a better fittedmodel, it will pose a high
demand on CPU. The daily temperature varies in a parabola
manner. In this study, the fitting degree of 3 can completely
meet the requirements.

3.2.4. Compared with Other Methods. There have been very
few methods on PV array faults diagnosis in practice. It is
difficult to determine the location of fault rapidly for SP



8 Journal of Applied Mathematics

connection structure, when one solar panel fails.Themethod
on infrared images has low accuracy and needs expensive
price. The method used in [7] needs large number of voltage
sensors and current sensors, which increases the cost of the
system. The new sensor-embedded method proposed in this
study needs much fewer sensors, which decreases the cost
of the whole system. Besides this, if one solar panel fails,
fault will be confined to the two adjacent panels rapidly. The
accuracy is also improved.

4. Conclusions

In this study, a new fault diagnosis method is proposed
for PV arrays with SP connection, which is with practical
application value, which canminimize the number of sensors
needed, decrease the cost of the whole system, and improve
the accuracy and anti-interference ability with the introduc-
tion of fuzzy group decision-making theory. It makes good
use of all relevant information, including voltage, current,
environmental temperature, panel temperature, and solar
illumination, thereby resulting in a more accurate diagnosis
of PV array faults. In addition, errors that cause diagnosis
deviation are analyzed, and solutions are suggested to further
improve the precision of diagnosis.
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