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We describe the structure of Lie triple derivations on J-subspace lattice algebras. The results can be applied to atomic Boolean
subspace lattice algebras and pentagon subspace lattice algebras, respectively.

1. Introduction and Preliminaries

LetA be an associative algebra, and letM be anA-bimodule.
We denote by 𝑍(M,A) the center of M relative to A; that
is, 𝑍(M,A) = {𝑀 ∈ M : 𝐴𝑀 = 𝑀𝐴 for all 𝐴 ∈ A}. A
linear mapping 𝛿 : A → M is called a Lie triple derivation if
𝛿([[𝐴, 𝐵], 𝐶]) = [[𝛿(𝐴), 𝐵], 𝐶]+[[𝐴, 𝛿(𝐵)], 𝐶]+[[𝐴, 𝐵], 𝛿(𝐶)]

for all 𝐴, 𝐵, 𝐶 ∈ A, where [𝐴, 𝐵] = 𝐴𝐵 − 𝐵𝐴 is the
usual Lie product. We say that a Lie triple derivation 𝛿 is
standard if it can be decomposed as a sumof a derivation from
A to M and a mapping from A to 𝑍(M,A) vanishing on
every double commutator. The standard problem, which has
been studied formany years, is to find conditions onA under
which each Lie triple derivation is standard or standard-
like. This problem has been investigated for von Neumann
algebras in [1], for prime rings in [2], for nest algebras in [3, 4],
for TUHF algebras in [5], and for upper triangular algebras in
[6]. In this present note, we pursue this line of investigation
forJ-subspace lattice algebras.

Throughout, all algebras and vector spaces will be over F ,
where F is either the real fieldR or the complex fieldC. Given
a Banach space𝑋with topological dual𝑋∗, by𝐵(𝑋)wemean
the algebra of all bounded linear operators on 𝑋. The terms
operator on 𝑋 and subspace of 𝑋 will mean “bounded linear
map of𝑋 into itself ” and “norm closed linear manifold of𝑋,”
respectively. For𝐴 ∈ 𝐵(𝑋), denote by𝐴∗ the adjoint of𝐴. For
any nonempty subset 𝐿 ⊆ 𝑋, 𝐿⊥ denotes its annihilator; that
is, 𝐿⊥ = {𝑓 ∈ 𝑋

∗

: 𝑓(𝑥) = 0 for all 𝑥 ∈ 𝐿}. For 𝑥 ∈ 𝑋 and

𝑓 ∈ 𝑋
∗, the rank one operator 𝑥 ⊗ 𝑓 is defined by (𝑥 ⊗ 𝑓)𝑧 =

𝑓(𝑧)𝑥 for 𝑧 ∈ 𝑋.
A family L of subspaces of 𝑋 is called a subspace lattice

on 𝑋 if it contains (0) and 𝑋 and is complete in the sense
that it is closed under the operations ∨ (closed linear span)
and ∧ (set-theoretic intersection). For a subspace lattice L
on 𝑋, the associated subspace lattice algebra AlgL is the set
of operators on𝑋 leaving every subspace inL invariant; that
is

AlgL = {𝐴 ∈ 𝐵 (𝑋) : 𝐴𝑥 ∈ 𝐿 for every 𝑥 ∈ 𝐿

and for every 𝐿 ∈ L} .

(1)

Obviously, AlgL is a unital weakly closed operator algebra.
A subalgebra of AlgL is called a standard subalgebra if it
contains all finite-rank operators in AlgL.

Subspace lattice algebras are important and mainly con-
sist of nonself-adjoint operator algebras. Completely distribu-
tive subspace lattice algebras, commutative subspace lattice
algebras, atomic Boolean subspace lattice algebras, pentagon
subspace lattice algebras, and so forth have been widely
studied. See, for example, [7–11]. Recently, Panaia in [12]
introduced a new class of subspace lattices-J-subspace lattice
algebras. Several authors have studied J-subspace lattice as
well asJ-subspace lattice algebras; see, for example, [13–18].

Given a subspace latticeL on Banach space𝑋, put

J (L) = {𝐿 ∈ L : 𝐿 ̸= (0) , 𝐿
−

̸= 𝑋} , (2)
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where𝐾
−
= ∨{𝑀 ∈ L : 𝑀 ̸⊇ 𝐾}. CallL aJ-subspace lattice

on𝑋 if
(1) ∨{𝐾 : 𝐾 ∈ J(L)} = 𝑋,
(2) ∧{𝐾

−
: 𝐾 ∈ J(L)} = (0),

(3) 𝐾 ∨ 𝐾
−
= 𝑋, for every 𝐾 ∈ J(L),

(4) 𝐾 ∧ 𝐾
−
= (0), for every 𝐾 ∈ J(L).

The simplest example of J-subspace lattice is any pen-
tagon subspace latticeP = {(0), 𝐾, 𝐿,𝑀,𝑋}. Here𝐾, 𝐿, and
𝑀 are subspaces of 𝑋 satisfying 𝐾 ∨ 𝐿 = 𝑋, 𝐾 ∧ 𝑀 = (0)

and 𝐿 ⊂ 𝑀. In this case, 𝐾
−

= 𝑀, 𝐿
−

= 𝐾, and J(P) =

{𝐾, 𝐿}. For further discussion of pentagon subspace lattice see
[8, 10]. Another important element of the class ofJ-subspace
lattice is the atomic Boolean subspace lattice. It follows from
[15] that every commutative J-subspace lattice on a Hilbert
space is an atomic Boolean subspace lattice. However, most
J-subspace lattices on Hilbert space are non-commutative.

Therefore, J-subspace lattices as well as J-subspace lat-
tice algebras deserve some attention. In the previous papers
[3, 17, 18], we studied algebraic isomorphisms, Jordan iso-
morphisms, Jordan derivations, and Lie derivations. Here we
study Lie triple derivations of J-subspace lattice algebras.
Even for pentagon subspace lattice algebras and atomic Bool-
ean subspace lattice algebras, our results are new.

For a subspace latticeL, the relevance ofJ(L) is due to
the following lemma, which is crucial to what follows.

Lemma 1 (see [11]). If L is a subspace lattice on 𝑋, then the
rank-one operator 𝑥 ⊗ 𝑓 belongs to AlgL if and only if there
exists a subspace 𝐾 in J(L) such that 𝑥 ∈ 𝐾 and 𝑓 ∈ 𝐾

⊥

−
,

where𝐾⊥
−
means (𝐾

−
)
⊥.

From Lemma 1, we can see that if L is a J-subspace
lattice, then AlgL is rich in rank-one operators. Moreover,
finite-rank operators in aJ-subspace lattice algebra have nice
properties. Given a subspace lattice L, by F(L) we denote
the algebra of all finite-rank operators inAlgL. If𝐾 ∈ J(L),
then we write F

1
(𝐾) = {𝑥 ⊗ 𝑓 : 𝑥 ∈ 𝐾, 𝑓 ∈ 𝐾

⊥

−
} and

F(𝐾) = ⟨F
1
(𝐾)⟩, the linear manifold spanned byF

1
(𝐾).

Lemma 2 (see [17]). Let L be a J-subspace lattice on 𝑋.
Suppose that 𝐴 is an operator of rank 𝑛 inF(L). Then 𝐴 can
be written as a sum of 𝑛 rank-one operators in AlgL.

Recalling that a linear mapping 𝛿 of an algebra A is a
local derivation if for every 𝐴 ∈ A there is a derivation 𝑑

𝐴
,

depending on 𝐴, such that 𝛿(𝐴) = 𝑑
𝐴
(𝐴).

Lemma 3 (see [3]). LetL be aJ-subspace lattice on𝑋. Then
every local derivation fromF(L) to a standard subalgebra of
AlgL is a derivation.

Lemma 4 (see [3]). Let L be a J-subspace lattice on 𝑋.
Suppose thatA is inF(L), 𝑆 inA, and 𝐶 in𝑍(A). If [𝐴, 𝑆] =

𝐶, then 𝐶 = 0.

2. Lie Triple Derivation on F(L)

Themain result in this section reads as follows.

Theorem 5. Let L be a J-subspace lattice on 𝑋 and A a
standard subalgebra of AlgL. Let 𝛿 be a Lie triple derivation
fromF(L) toA. Then 𝛿 is standard.

For the proof of the theorem, we need some lemmas. In
the following, we keep the notation as in the statement of
the theorem. Recalling that the statement means that 𝛿 is the
sum of a derivation from F(L) to A and a linear mapping
from F(L) to 𝑍(A,F(L)) vanishing on every double
commutator. Here 𝑍(A,F(L)) = {𝐴 ∈ A : 𝐴𝐵 = 𝐵𝐴 for
all 𝐵 ∈ F(L)}. From [3, Remark 2.5(i)], we know that
𝑍(A,F(L)) is equal to 𝑍(A), the center ofA.

Lemma 6. Let 𝐾 ∈ J(L) and 𝑃 be an idempotent operator
inF(𝐾). Then there are an operator 𝑆 inF(𝐾) and a unique
operator 𝜏(𝑃) in 𝑍(A) such that 𝛿(𝑃) = [𝑃, 𝑆] + 𝜏(𝑃).

Proof. Set 𝑃
1

= 𝑃 and 𝑃
2

= 𝐼 − 𝑃. Note that A does not
necessarily contain 𝐼; we understand 𝑃

2
𝐵 = 𝐵 − 𝑃

1
𝐵 and

𝐵𝑃
2
= 𝐵 − 𝐵𝑃

1
for 𝐵 ∈ A.

For 𝐴
11

∈ 𝑃
1
F(L)𝑃

1
, we have that

0 = 𝛿 ([[𝑃
1
, 𝐴
11
] , 𝐵])

= [[𝛿 (𝑃
1
) , 𝐴
11
] , 𝐵] + [[𝑃

1
, 𝛿 (𝐴

11
)] , 𝐵] .

(3)

Let 𝐶 = [𝛿(𝑃
1
), 𝐴
11
] + [𝑃

1
, 𝛿(𝐴
11
)]. Since 𝐵 is arbitrary, we

have 𝐶 ∈ 𝑍(A). Then

𝛿 (𝑃
1
) 𝐴
11

− 𝐴
11
𝛿 (𝑃
1
) + 𝑃
1
𝛿 (𝐴
11
) − 𝛿 (𝐴

11
) 𝑃
1
= 𝐶. (4)

Multiplying this equation by 𝑃
1
from both sides, we get

𝑃
1
𝛿 (𝑃
1
) 𝑃
1
𝐴
11

− 𝐴
11
𝑃
1
𝛿 (𝑃
1
) 𝑃
1
= 𝐶𝑃
1
; (5)

that is,

[𝑃
1
𝛿 (𝑃
1
) 𝑃
1
, 𝐴
11
] = 𝐶𝑃

1
. (6)

It follows from the Kleinecke-Shirokov theorem (cf. [19,
Problem232]) that𝐶𝑃

1
is quasinilpotent. Let𝐿 ∈ J(L).Then

there exists a scalar 𝜂
𝐿
∈ F , such that 𝐶𝑥 = 𝜂

𝐿
𝑥 for all 𝑥 ∈ 𝐿.

Particularly, 𝐶𝑃
1
𝑥 = 𝜂

𝐿
𝑃
1
𝑥; that is, (𝜂

𝐿
𝐼 − 𝐶𝑃

1
)𝑃
1
𝑥 = 0.

This implies that either 𝜂
𝐿

= 0 or 𝑃
1
𝑥 = 0 since 𝐶𝑃

1
is

quasinilpotent. Consequently, we always have 𝐶𝑃
1
𝑥 = 0 for

all 𝑥 ∈ 𝐿. Hence 𝐶𝑃
1
= 0 since 𝑋 = ∨{𝐿 : 𝐿 ∈ J(L)}. Then

by (5) we have that

𝑃
1
𝛿 (𝑃
1
) 𝑃
1
𝐴
11

= 𝐴
11
𝑃
1
𝛿 (𝑃
1
) 𝑃
1
. (7)

Similarly, for 𝐴
22

∈ 𝑃
2
F(L)𝑃

2
, by considering [𝑃

1
, 𝐴
22
],

we have that

𝑃
2
𝛿 (𝑃
1
) 𝑃
2
𝐴
22

= 𝐴
22
𝑃
2
𝛿 (𝑃
1
) 𝑃
2
. (8)

Now for 𝐴
12

∈ 𝑃
1
F(L)𝑃

2
, we have that

𝛿 (𝐴
12
) = 𝛿 ([[𝐴

12
, 𝑃
1
] , 𝑃
1
])

= [[𝛿 (𝐴
12
) , 𝑃
1
] , 𝑃
1
] + [[𝐴

12
, 𝛿 (𝑃
1
)] , 𝑃
1
]

+ [[𝐴
12
, 𝑃
1
] , 𝛿 (𝑃

1
)]
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= 𝑃
1
𝛿 (𝐴
12
) 𝑃
2
+ 𝑃
2
𝛿 (𝐴
12
) 𝑃
1

+ 𝐴
12
𝛿 (𝑃
1
) 𝑃
1
+ 𝑃
1
𝛿 (𝑃
1
) 𝐴
12

− 𝐴
12
𝛿 (𝑃
1
) + 𝛿 (𝑃

1
) 𝐴
12
.

(9)

Multiplying this equation by 𝑃
1
from the left side and by 𝑃

2

from the right side, we get

𝑃
1
𝛿 (𝑃
1
) 𝑃
1
𝐴
12

= 𝐴
12
𝑃
2
𝛿 (𝑃
1
) 𝑃
2
. (10)

Similarly, for 𝐴
21

∈ 𝑃
2
F(L)𝑃

1
, we have that

𝑃
2
𝛿 (𝑃
1
) 𝑃
2
𝐴
21

= 𝐴
21
𝑃
1
𝛿 (𝑃
1
) 𝑃
1
. (11)

Using (7)–(11), it is easy to verify that 𝜏(𝑃) = 𝑃
1
𝛿(𝑃
1
)𝑃
1
+

𝑃
2
𝛿(𝑃
1
)𝑃
2
∈ 𝑍(A). Now let 𝑆 = 𝑃

1
𝛿(𝑃
1
)𝑃
2
− 𝑃
2
𝛿(𝑃
1
)𝑃
1
. Then

𝑆 ∈ F(𝐾) and 𝛿(𝑃
1
) = [𝑃

1
, 𝑆]+𝜏(𝑃

1
). Moreover, by Lemma 4,

such 𝜏(𝑃
1
) is unique.

Lemma 7. Let 𝐴 = 𝑥 ⊗ 𝑓 be inF(𝐾) with 𝐾 ∈ J(L). Then
there are an operator 𝑆 inF(𝐾) and a unique operator 𝜏(𝐴) in
𝑍(A) such that 𝛿(𝐴) = [𝐴, 𝑆] + 𝜏(𝐴).

Proof. If 𝑓(𝑥) ̸= 0, then the result follows from the linearity
and Lemma 6.

We now suppose that 𝑓(𝑥) = 0. Take 𝑦 ∈ 𝐾 such that
𝑓(𝑦) = 1. Obviously, 𝑥 and 𝑦 are linearly independent. Set
𝑃 = 𝑦 ⊗ 𝑓. Then by Lemma 6, 𝛿(𝑃) = [𝑃, 𝑆

1
] + 𝜏(𝑃), where

𝑆
1
∈ F(𝐾) and 𝜏(𝑃) ∈ 𝑍(A). We associate a new Lie triple

derivation as follows:

Δ (𝑇) = 𝛿 (𝑇) − [𝑇, 𝑆
1
] , 𝑇 ∈ F (L) . (12)

Then Δ(𝑃) = 𝜏(𝑃) ∈ 𝑍(A).
Let 𝑃
1
= 𝑃 and 𝑃

2
= 𝐼 − 𝑃. Then

Δ (𝐴) = Δ ([[𝐴, 𝑃
1
] , 𝑃
1
])

= [[Δ (𝐴) , 𝑃
1
] , 𝑃
1
] = 𝑃
1
Δ (𝐴) 𝑃

2
+ 𝑃
2
Δ (𝐴) 𝑃

1
.

(13)

We will show 𝑃
1
Δ(𝐴)𝑃

2
= 0. For this, we first observe that

𝑃
1
Δ(𝐴)𝑃

2
= 𝑦 ⊗ ℎ for some ℎ ∈ 𝐾

⊥

−
. Since

[𝑃
1
Δ (𝐴) 𝑃

2
+ 𝑃
2
Δ (𝐴) 𝑃

1
, 𝐴]

= [Δ (𝐴) , 𝐴] = [Δ (𝐴) , [𝐴, 𝑃
1
]]

= Δ ([𝐴, [𝐴, 𝑃
1
]]) − [𝐴, [Δ (𝐴) , 𝑃

1
]]

− [𝐴, [𝐴, Δ (𝑃
1
)]] = − [𝐴, [Δ (𝐴) , 𝑃

1
]]

= − [𝐴, 𝑃
2
Δ (𝐴) 𝑃

1
− 𝑃
1
Δ (𝐴) 𝑃

2
]

= [𝑃
2
Δ (𝐴) 𝑃

1
− 𝑃
1
Δ (𝐴) 𝑃

2
, 𝐴] ,

(14)

it follows that [𝑃
1
Δ(𝐴)𝑃

2
, 𝐴] = 0; that is, ℎ(𝑥)𝑦 ⊗ 𝑓 − 𝑥 ⊗ ℎ =

0. Hence ℎ = 0 since 𝑥 and 𝑦 are linearly independent. So
𝑃
1
Δ(𝐴)𝑃

2
= 0.

Now by (13), we have Δ(𝐴) = 𝑃
2
Δ(𝐴)𝑃

1
. Therefore there

exists 𝑧 ∈ 𝐾 such that Δ(𝐴) = 𝑧 ⊗ 𝑓 and 𝑓(𝑧) = 0. Choose
𝑔 ∈ 𝐾

⊥

−
such that 𝑔(𝑥) = 1. Then

Δ (𝐴) = 𝑧 ⊗ 𝑓 = (𝑧 ⊗ 𝑔) (𝑥 ⊗ 𝑓) − (𝑥 ⊗ 𝑓) (𝑧 ⊗ 𝑔) . (15)

Let 𝑆
2
= 𝑧 ⊗ 𝑔. Then Δ(𝐴) = [𝐴, −𝑆

2
], and so 𝛿(𝐴) = [𝐴, 𝑆

1
−

𝑆
2
]. Thus 𝑆 = 𝑆

1
− 𝑆
2
and 𝜏(𝐴) = 0 are desired.

Lemma 8. Suppose 𝐴 = ∑
𝑛

𝑘=1
𝑥
𝑘
⊗ 𝑓
𝑘

∈ F(𝐾), with 𝐾 ∈

J(L). Then there are an operator 𝑆 in F(𝐾) and a unique
operator 𝜏(𝐴) in 𝑍(A) such that 𝛿(𝐴) = [𝐴, 𝑆] + 𝜏(𝐴).
Moreover, 𝜏(𝐴) = ∑

𝑛

𝑘=1
𝜏(𝑥
𝑘
⊗ 𝑓
𝑘
).

Proof. By [3, Proposition 2.6], there is a matrix unit {𝑦
𝑖
⊗

𝑔
𝑗
}
𝑚

𝑖,𝑗=1
such that each 𝑥

𝑘
⊗ 𝑓
𝑘
belongs to the algebra

D =
{

{

{

𝐶 ∈ F (𝐾) : 𝐶 =

𝑚

∑

𝑖,𝑗=1

𝜆
𝑖𝑗
𝑦
𝑖
⊗ 𝑔
𝑗
, 𝜆
𝑖𝑗
∈ F

}

}

}

. (16)

Obviously,D is a finite-dimensional Banach algebra which is
isomorphic𝑀

𝑚
(F) via𝐶 → [𝜆

𝑖𝑗
]
𝑚×𝑚

. By [1], 𝛿|D is standard,
that is, 𝛿|D = 𝑑 + ℎ, where 𝑑 is a derivation fromD toA and
ℎ is a linear mapping fromD to 𝑍(A,D) vanishing on every
double commutator. By [7, Lemma 10.7], there is an operator
𝑇 inA such that 𝑑(𝐷) = [𝐷, 𝑇] for all𝐷 ∈ D. Consequently,
𝑑 is a derivation from D to F(𝐾). By [7] again, there is an
operator 𝑆 in F(𝐾) such that 𝑑(𝐷) = [𝐷, 𝑆] for all 𝐷 ∈ D.
Thus for each 𝑘, it follows that

𝛿 (𝑥
𝑘
⊗ 𝑓
𝑘
) = [𝑥

𝑘
⊗ 𝑓
𝑘
, 𝑆] + ℎ (𝑥

𝑘
⊗ 𝑓
𝑘
) . (17)

On the other hand, by Lemma 7, for each 𝑘, there is an
operator 𝑆

𝑘
inF(𝐾) such that

𝛿 (𝑥
𝑘
⊗ 𝑓
𝑘
) = [𝑥

𝑘
⊗ 𝑓
𝑘
, 𝑆
𝑘
] + 𝜏 (𝑥

𝑘
⊗ 𝑓
𝑘
) . (18)

By (17) and (18), we get

[𝑥
𝑘
⊗ 𝑓
𝑘
, 𝑇
𝑘
] = 𝐶
𝑘
, (19)

where 𝑇
𝑘
= 𝑆 − 𝑆

𝑘
, 𝐶
𝑘
= 𝜏(𝑥

𝑘
⊗ 𝑓
𝑘
) − ℎ(𝑥

𝑘
⊗ 𝑓
𝑘
). Since 𝐶

𝑘

commutes with 𝑥
𝑘
⊗ 𝑓
𝑘
, it follows from Kleinecke-Shirokov

theorem that 𝐶
𝑘
is quasinilpotent. Moreover, 𝐶

𝑘
𝑦
𝑖
= 𝜆
𝑖
𝑦
𝑖

for some 𝜆
𝑖
∈ F and 𝐶

𝑘
𝑦
𝑖
⊗ 𝑔
𝑖
is quasinilpotent since 𝐶

𝑘

commutes with 𝑦
𝑖
⊗ 𝑔
𝑖
. This implies that 𝐶

𝑘
𝑦
𝑖

= 0, 𝑖 =

1, . . . , 𝑚.
Since 𝑥

𝑘
⊗𝑓
𝑘
= (∑
𝑚

𝑖=1
𝑦
𝑖
⊗ 𝑔
𝑖
)(𝑥
𝑘
⊗𝑓
𝑘
)(∑
𝑚

𝑖=1
𝑦
𝑖
⊗ 𝑔
𝑖
), there

are 𝑖, 𝑗 such that𝑓
𝑘
(𝑦
𝑖
) ̸= 0, 𝑔

𝑗
(𝑥
𝑘
) ̸= 0. Applying (19) to 𝑦

𝑖
, we

get𝑓
𝑘
(𝑇
𝑘
𝑦
𝑖
)𝑥
𝑘
−𝑓
𝑘
(𝑦
𝑖
)𝑇
𝑘
𝑥
𝑘
= 𝐶
𝑘
𝑦
𝑖
= 0. So𝐶

𝑘
= 𝑥
𝑘
⊗𝑔, where

𝑔 = 𝑇
∗

𝑘
𝑓
𝑘
− (𝑓
𝑘
(𝑇
𝑘
𝑦
𝑖
)/𝑓
𝑘
(𝑦
𝑖
))𝑓
𝑘
. Thus 𝑔

𝑗
(𝑥
𝑘
)𝑦
𝑖
⊗ 𝑔 = (𝑦

𝑖
⊗

𝑔
𝑗
)(𝑥
𝑘
⊗ 𝑔) = 𝐶

𝑘
(𝑦
𝑖
⊗ 𝑔
𝑗
) = 0. So 𝑔 = 0, and therefore 𝐶

𝑘
= 0

and [𝑥
𝑘
⊗𝑓
𝑘
, 𝑇
𝑘
] = 0. Consequently, [𝑥

𝑘
⊗𝑓
𝑘
, 𝑆
𝑘
] = [𝑥

𝑘
⊗𝑓
𝑘
, 𝑆]

and 𝜏(𝑥
𝑘
⊗ 𝑓
𝑘
) = ℎ(𝑥

𝑘
⊗ 𝑓
𝑘
), 𝑘 = 1, . . . , 𝑛. Thus

𝛿 (𝐴) =

𝑛

∑

𝑘=1

([𝑥
𝑘
⊗ 𝑓
𝑘
, 𝑆] + 𝜏 (𝑥

𝑘
⊗ 𝑓
𝑘
))

= [𝐴, 𝑆] +

𝑛

∑

𝑘=1

𝜏 (𝑥
𝑘
⊗ 𝑓
𝑘
) .

(20)

By Lemma 4, the sum ∑
𝑛

𝑘=1
𝜏(𝑥
𝑘
⊗ 𝑓
𝑘
) is independent of the

representation of 𝐴. Let 𝜏(𝐴) = ∑
𝑛

𝑘=1
𝜏(𝑥
𝑘
⊗ 𝑓
𝑘
). The proof is

complete.

Proof of Theorem 5. Let 𝐴 ∈ F(L). Then there exists a
unique finite family of distinct 𝐾

1
, 𝐾
2
, . . . , 𝐾

𝑛
in J(L) such

that 𝐴 = 𝐴
1
+ 𝐴
2
+ ⋅ ⋅ ⋅ + 𝐴

𝑛
, 𝐴
𝑖
∈ F(𝐾

𝑖
). By Lemma 8,
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for each 𝑖, there are operators 𝑆
𝑖
inF(𝐾

𝑖
) and 𝜏(𝐴

𝑖
) in 𝑍(A)

such that 𝛿(𝐴
𝑖
) = [𝐴

𝑖
, 𝑆
𝑖
] + 𝜏(𝐴

𝑖
). Let 𝑆 = 𝑆

1
+ 𝑆
2
+ ⋅ ⋅ ⋅ + 𝑆

𝑛
.

Since 𝑆
𝑖
𝐴
𝑗
= 𝐴
𝑗
𝑆
𝑖
= 0 if 𝑖 ̸= 𝑗, it follows that

𝛿 (𝐴) =

𝑛

∑

𝑖=1

𝛿 (𝐴
𝑖
) =

𝑛

∑

𝑖=1

([𝐴
𝑖
, 𝑆
𝑖
] + 𝜏 (𝐴

𝑖
))

= [𝐴, 𝑆] +

𝑛

∑

𝑖=1

𝜏 (𝐴
𝑖
) .

(21)

Define 𝜏(𝐴) to be an operator in 𝑍(A) such that 𝛿(𝐴) =

[𝐴, 𝑇] + 𝜏(𝐴) for some 𝑇 in F(L). By Lemma 8 and the
equation above, we see that 𝜏(𝐴) is well defined and 𝜏(𝐴) =

∑
𝑛

𝑖=1
𝜏(𝐴
𝑖
).

Now define a mapping from F(L) to A as Δ(𝐴) =

𝛿(𝐴) − 𝜏(𝐴) for 𝐴 ∈ F(L). Then Δ is linear since 𝜏 is linear.
Moreover, for each 𝐴 ∈ F(L) there is an operator 𝑆 such
thatΔ(𝐴) = [𝐴, 𝑆]. Consequently,Δ is a local derivation from
F(L) toA. By [3, Proposition 2.6], Δ is a derivation. Thus 𝛿
is standard. This completes the proof.

Corollary 9. Let L be a J-subspace lattice and suppose that
the dimension of each element in F(L) is infinite. Let 𝛿 be a
Lie triple derivation fromF(L) to itself.Then 𝛿 is a derivation.

Proof. By [3, Remark 2.5(iii)], 𝑍(F(L)) = 0 in this case.
Hence byTheorem 5, 𝛿 is a derivation.

3. Lie Triple Derivations of J-Subspace
Lattice Algebras

In this section, we study Lie triple derivations of whole J-
subspace lattice algebras. The principal result describes the
structure of those mappings.

Theorem 10. LetL be aJ-subspace lattice on a Banach space
𝑋. Let 𝛿 : AlgL → AlgL be a linear mapping. The following
is equivalent.

(i) 𝛿 is a Lie triple derivation.
(ii) For each𝐾 ∈ J(L), there exist an operator𝑇

𝐾
in𝐵(𝐾)

and a linear functional 𝜆
𝐾

: AlgL → F vanishing on
every double commutator such that 𝛿(𝐴)𝑥 = (𝑇

𝐾
𝐴 −

𝐴𝑇
𝐾
)𝑥 + 𝜆

𝐾
(𝐴)𝑥 for all 𝐴 ∈ AlgL and 𝑥 ∈ 𝐾.

Proof. (ii) ⇒ (i). This is a straightforward verification.
(i) ⇒ (ii). Obviously, the restriction of 𝛿 to F(L) is

a Lie triple derivation. Hence it is standard by Theorem 5.
Therefore, there exist a derivation 𝑑 : F(L) → AlgL and a
linear mapping 𝜏 : F(L) → 𝑍(AlgL) vanishing on every
double commutator such that 𝛿(𝐹) = 𝑑(𝐹) + 𝜏(𝐹) for every
𝐹 ∈ F(L).

Fix an element 𝐾 ∈ J(L). Take vectors 𝑥
𝐾

∈ 𝐾 and
𝑓
𝐾

∈ 𝐾
⊥

−
such that 𝑓

𝐾
(𝑥
𝐾
) = 1. Define a linear mapping

𝑇
𝐾

: 𝐾 → 𝐾 by

𝑇
𝐾
𝑥 = 𝑑 (𝑥 ⊗ 𝑓

𝐾
) 𝑥
𝐾

(22)

for 𝑥 ∈ 𝐾. This is well defined because of 𝑥 ⊗ 𝑓
𝐾

∈ F(L) for
𝑥 ∈ 𝐾.

For 𝐹 ∈ F(L) and 𝑥 ∈ 𝐾, by (22) we have

𝑇
𝐾
𝐹𝑥 = 𝑑 (𝐹𝑥 ⊗ 𝑓

𝐾
) 𝑥
𝐾

= 𝑑 (𝐹) (𝑥 ⊗ 𝑓
𝐾
) 𝑥
𝐾
+ 𝐹𝑑 (𝑥 ⊗ 𝑓

𝐾
) 𝑥
𝐾
.

(23)

So for all 𝐹 ∈ F(L) and for all 𝑥 ∈ 𝐾,

𝑑 (𝐹) 𝑥 = (𝑇
𝐾
𝐹 − 𝐹𝑇

𝐾
) 𝑥. (24)

Let𝐴 be in AlgL. Let 𝑥 be in𝐾.Then for𝐹 ∈ F(L)with
𝐹
2

= 𝐹, by (22) and (24), we have

𝛿 ([[𝐴, 𝐹] , 𝐹]) 𝑥 = 𝑑 ([[𝐴, 𝐹] , 𝐹]) 𝑥 + 𝜏 ([[𝐴, 𝐹] , 𝐹]) 𝑥

= 𝑇
𝐾
([[𝐴, 𝐹] , 𝐹]) 𝑥 − ([[𝐴, 𝐹] , 𝐹]) 𝑇

𝐾
𝑥

+ 𝜏 ([[𝐴, 𝐹] , 𝐹]) 𝑥

= (𝑇
𝐾
𝐴𝐹 + 𝑇

𝐾
𝐹𝐴 − 2𝑇

𝐾
𝐹𝐴𝐹

−𝐴𝐹𝑇
𝐾
− 𝐹𝐴𝑇

𝐾
+ 2𝐹𝐴𝐹𝑇

𝐾
) 𝑥

+ 𝜏 ([[𝐴, 𝐹] , 𝐹]) 𝑥,

(25)

𝛿 ([[𝐴, 𝐹] , 𝐹]) 𝑥 = [[𝛿 (𝐴) , 𝐹] , 𝐹] 𝑥 + [[𝐴, 𝛿 (𝐹)] , 𝐹] 𝑥

+ [[𝐴, 𝐹] , 𝛿 (𝐹)] 𝑥

= [[𝛿 (𝐴) , 𝐹] , 𝐹] 𝑥 + [[𝐴, 𝑑 (𝐹)] , 𝐹] 𝑥

+ [[𝐴, 𝐹] , 𝑑 (𝐹)] 𝑥

= (𝛿 (𝐴) 𝐹 − 2𝐹𝛿 (𝐴) 𝐹 + 𝐹𝛿 (𝐴)

+ 𝐴𝑑 (𝐹) 𝐹 − 𝑑 (𝐹)𝐴𝐹 − 𝐹𝐴𝑑 (𝐹)

+ 𝐹𝑑 (𝐹)𝐴 + 𝐴𝐹𝑑 (𝐹) − 𝐹𝐴𝑑 (𝐹)

−𝑑 (𝐹)𝐴𝐹 + 𝑑 (𝐹) 𝐹𝐴) 𝑥

= (𝛿 (𝐴) 𝐹 − 2𝐹𝛿 (𝐴) 𝐹 + 𝐹𝛿 (𝐴)

+ 𝐴 (𝑇
𝐾
𝐹 − 𝐹𝑇

𝐾
) 𝐹 − (𝑇

𝐾
𝐹 − 𝐹𝑇

𝐾
) 𝐴𝐹

− 𝐹𝐴 (𝑇
𝐾
𝐹 − 𝐹𝑇

𝐾
) + 𝐹 (𝑇

𝐾
𝐹 − 𝐹𝑇

𝐾
) 𝐴

+ 𝐴𝐹 (𝑇
𝐾
𝐹 − 𝐹𝑇

𝐾
) − 𝐹𝐴 (𝑇

𝐾
𝐹 − 𝐹𝑇

𝐾
)

− (𝑇
𝐾
𝐹 − 𝐹𝑇

𝐾
) 𝐴𝐹

+ (𝑇
𝐾
𝐹 − 𝐹𝑇

𝐾
) 𝐹𝐴) 𝑥

= (𝛿 (𝐴) 𝐹 − 2𝐹𝛿 (𝐴) 𝐹 + 𝐹𝛿 (𝐴) + 𝐴𝑇
𝐾
𝐹

− 2𝑇
𝐾
𝐹𝐴𝐹 + 2𝐹𝑇

𝐾
𝐴𝐹

− 2𝐹𝐴𝑇
𝐾
𝐹 + 2𝐹𝐴𝐹𝑇

𝐾
− 𝐹𝑇
𝐾
𝐴

−𝐴𝐹𝑇
𝐾
+ 𝑇
𝐾
𝐹𝐴) 𝑥.

(26)
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Comparing these two equations, we get

(𝛿 (𝐴) − 𝑇
𝐾
𝐴 + 𝐴𝑇

𝐾
) 𝐹𝑥

= 𝐹 (2𝛿 (𝐴) 𝐹 − 𝛿 (𝐴) − 2𝑇
𝐾
𝐴𝐹

+2𝐴𝑇
𝐾
𝐹 − 𝑇
𝐾
𝐹𝐴 − 𝐴𝑇

𝐾
) 𝑥

+ 𝜏 ([[𝐴, 𝐹] , 𝐹]) 𝑥.

(27)

Taking 𝑓 ∈ 𝐾
⊥

−
with 𝑓(𝑥) = 1 and then putting 𝐹 = 𝑥 ⊗ 𝑓 in

the last equation, we get

(𝛿 (𝐴) − (𝑇
𝐾
𝐴 − 𝐴𝑇

𝐾
)) 𝑥

= 𝜆
1
(𝐴, 𝑥, 𝑓) 𝑥 + 𝜏 ([[𝐴, 𝐹] , 𝐹]) 𝑥,

(28)

where 𝜆
1
(𝐴, 𝑥, 𝑓) = 𝑓((2𝛿(𝐴)𝐹 − 𝛿(𝐴) − 2𝑇

𝐾
𝐴𝐹 +

2𝐴𝑇
𝐾
𝐹 − 𝑇

𝐾
𝐹𝐴 − 𝐴𝑇

𝐾
)𝑥). Since 𝜏([[𝐴, 𝐹], 𝐹]) is in the

center of 𝑍(AlgL), it follows from [3, Remark 2.5] that
𝜏([[𝐴, 𝐹], 𝐹])𝑥 = 𝜆

2
(𝐴, 𝑥, 𝑓)𝑥 for some 𝜆

2
(𝐴, 𝑥, 𝑓) ∈ F .

Consequently, (𝛿(𝐴) − (𝑇
𝐾
𝐴 − 𝐴𝑇

𝐾
))𝑥 is a scalar multiple

of 𝑥. Since this holds for each 𝑥 ∈ 𝐾, it follows easily that
𝛿(𝐴) − (𝑇

𝐾
𝐴−𝐴𝑇

𝐾
) viewed as a linear mapping from𝐾 to𝐾

is a scalar multiple of the identify on 𝐾. Namely, there exists
a scalar 𝜆

𝐾
(𝐴) such that

(𝛿 (𝐴) − (𝑇
𝐾
𝐴 − 𝐴𝑇

𝐾
)) 𝑥 = 𝜆

𝐾
(𝐴) 𝑥 (29)

for each 𝑥 ∈ 𝐾. One can easily see that 𝜆
𝐾

: AlgL → F is
linear and vanishes on every double commutator.

It remains to verify the boundedness of 𝑇
𝐾
. Suppose that

{𝑥
𝑛
}
∞

𝑛=1
is a sequence of vectors in 𝐾, lim

𝑛→∞
𝑥
𝑛

= 0, and
lim
𝑛→∞

𝑇
𝐾
𝑥
𝑛
= 𝑥
0
. For any 𝑓 ∈ 𝐾

⊥

−
,

𝑓 (𝑥
𝑛
) 𝑑 (𝑥
𝐾
⊗ 𝑓
𝐾
) 𝑥
𝐾

= 𝑑 ((𝑥
𝐾
⊗ 𝑓) (𝑥

𝑛
⊗ 𝑓
𝐾
)) 𝑥
𝐾

= 𝑑 (𝑥
𝐾
⊗ 𝑓) 𝑥

𝑛

+ (𝑥
𝐾
⊗ 𝑓) 𝑑 (𝑥

𝑛
⊗ 𝑓
𝐾
) 𝑥
𝐾

= 𝑑 (𝑥
𝐾
⊗ 𝑓) 𝑥

𝑛
+ 𝑓 (𝑇

𝐾
𝑥
𝑛
) 𝑥
𝐾
.

(30)

Taking the limit, we get that 𝑓(𝑥
0
) = 0. Since 𝑥

0
is in 𝐾 and

𝑓 ∈ 𝐾
⊥

−
is arbitrary,𝑥

0
= 0. So𝑇

𝐾
is closed.TheClosedGraph

theorem gives the boundedness of 𝑇
𝐾
, completing the proof.
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