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The author considers the Neumann boundary value problem −𝑦

󸀠󸀠
(𝑡) + M𝑦 (𝑡) = 𝜆𝜔 (𝑡) 𝑓 (𝑡, 𝑦 (𝑡)) , 𝑡 ∈ 𝐽, 𝑡 ̸= 𝑡

𝑘
, −Δ𝑦

󸀠
|

𝑡=𝑡𝑘
=

𝜆𝐼

𝑘
(𝑡

𝑘
, 𝑦 (𝑡

𝑘
)) , 𝑘 = 1, 2, . . . , 𝑚, 𝑦

󸀠
(0) = 𝑦

󸀠
(1) = 0 and establishes the dependence results of the solution on the parameter 𝜆,

which cover equations without impulsive effects and are compared with some recent results by Nieto and O’Regan.

1. Introduction

Impulsive effects exist widely in many evolution processes in
which their states are changed abruptly at certain moments
of time. The theory and applications of impulsive differential
equations have been emerging as an important area of
investigation in recent years [1–6]. There is a vast literature
on the existence of solutions by using different methods
such as bifurcation theory [7, 8], fixed point theorems in
cones [9–12], the method of lower and upper solutions [13,
14], and the theory of critical point theory and variational
methods [15–19]. We remark that on second-order impulsive
differential equations with parameter only a few results have
been obtained; see, for instance, [9, 20–22]. To the best of
our knowledge, these papers only consider the existence of
positive solutions. However, the corresponding results for the
dependence of the solution on the parameter 𝜆 for second-
order impulsive differential equations are not investigated
until now. In this paper, we try to solve this kind of problem.

Consider the Neumann boundary value problems

− 𝑦

󸀠󸀠

(𝑡) +M𝑦 (𝑡) = 𝜆𝜔 (𝑡) 𝑓 (𝑡, 𝑦 (𝑡)) ,

𝑡 ∈ 𝐽, 𝑡 ̸= 𝑡

𝑘
,

−Δ𝑦

󸀠󵄨
󵄨

󵄨

󵄨

󵄨𝑡=𝑡𝑘

= 𝜆𝐼

𝑘
(𝑡

𝑘
, 𝑦 (𝑡

𝑘
)) , 𝑘 = 1, 2, . . . , 𝑚,

𝑦

󸀠

(0) = 𝑦

󸀠

(1) = 0,

(1)

whereM > 0 is a constant, 𝜆 > 0 is a parameter, 𝐽 = [0, 1], 𝜔
is a nonnegative measurable function on (0, 1), 𝜔 ̸= 0 on any
open subinterval in (0, 1), which may be singular at 𝑡 = 0

and/or 𝑡 = 1, 𝑡
𝑘
(𝑘 = 1, 2, . . . , 𝑚) (where 𝑚 is fixed positive

integer) are fixed points with 0 = 𝑡
0
< 𝑡

1
< 𝑡

2
< ⋅ ⋅ ⋅ < 𝑡

𝑘
<

⋅ ⋅ ⋅ < 𝑡

𝑚
< 𝑡

𝑚+1
= 1, and Δ𝑦󸀠|

𝑡=𝑡𝑘
= 𝑦

󸀠
(𝑡

+

𝑘
) − 𝑥

󸀠
(𝑡

−

𝑘
), where

𝑦

󸀠
(𝑡

+

𝑘
) and 𝑦󸀠(𝑡−

𝑘
) represent the right-hand limit and left-hand

limit of 𝑦󸀠(𝑡) at 𝑡 = 𝑡
𝑘
, respectively. In addition, 𝜔, 𝑓, and 𝐼

𝑘

satisfy

(H
1
) 𝜔 ∈ 𝐿1loc(0, 1);

(H
2
) 𝑓 ∈ 𝐶 (𝐽 × R+,R+), 𝐼

𝑘
∈ 𝐶 (𝐽 × R+,R+), where

R+ = [0, +∞), 𝑘 = 1, 2, . . . , 𝑚.

Some special cases of (1) have been investigated. For
example, Nieto and O’Regan [17] studied problem (1) with
𝜆 = 1 and 𝜔 ≡ 1 for 𝑡 ∈ 𝐽. By using variational methods
and critical point theory, the authors proved the existence of
solutions of problem (1).
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For ease of exposition, we set

𝑓

0
= lim sup
𝑦→0

+

max
𝑡∈𝐽

𝑓 (𝑡, 𝑦)

𝑦

,

𝑓

∞
= lim sup
𝑦→∞

max
𝑡∈𝐽

𝑓 (𝑡, 𝑦)

𝑦

,

𝑓

0
= lim inf
𝑦→0

+
min
𝑡∈𝐽

𝑓 (𝑡, 𝑦)

𝑦

,

𝑓

∞
= lim inf
𝑦→∞

min
𝑡∈𝐽

𝑓 (𝑡, 𝑦)

𝑦

,

𝐼

0

(𝑘) = lim sup
𝑦→0

+

max
𝑡∈𝐽

𝐼

𝑘
(𝑡, 𝑦)

𝑦

,

𝐼

∞

(𝑘) = lim sup
𝑦→∞

max
𝑡∈𝐽

𝐼

𝑘
(𝑡, 𝑦)

𝑦

,

𝐼

0
(𝑘) = lim inf

𝑦→0
+
min
𝑡∈𝐽

𝐼

𝑘
(𝑡, 𝑦)

𝑦

,

𝐼

∞
(𝑘) = lim inf

𝑦→∞

min
𝑡∈𝐽

𝐼

𝑘
(𝑡, 𝑦)

𝑦

,

𝑘 = 1, 2, . . . , 𝑚.

(2)

Our main results are as follows.

Theorem 1. Assume that (𝐻
1
) and (𝐻

2
) hold. Then the

following two conclusions hold:

(H
3
) if 𝑓0 = 0, 𝐼0(𝑘) = 0, and 𝑓

∞
= ∞, 𝐼

∞
(𝑘) = ∞,

𝑘 = 1, 2, . . . , 𝑚, then for every 𝜆 > 0 problem (1) has
a positive solution 𝑦

𝜆
(𝑡) satisfying lim

𝜆→0
+‖𝑦
𝜆
‖PC1 =

∞;

(H
4
) if 𝑓
0
= ∞, 𝐼

0
(𝑘) = ∞, and 𝑓∞ = 0, 𝐼∞(𝑘) = 0,

𝑘 = 1, 2, . . . , 𝑚, then for every 𝜆 > 0 problem (1) has a
positive solution 𝑦

𝜆
(𝑡) satisfying lim

𝜆→0
+‖𝑦
𝜆
‖PC1 = 0.

Remark 2. Assume that (H
1
) and (H

2
) hold. Furthermore,

suppose that 𝑓
∞
= ∞ or 𝐼

∞
(𝑘) = ∞, 𝑘 = 1, 2, . . . , 𝑚, in

(H
3
) or 𝑓
0
= ∞ or 𝐼

0
(𝑘) = ∞, 𝑘 = 1, 2, . . . , 𝑚, in (H

4
). Then

the conclusions of Theorem 1 also hold.

Remark 3. It follows from the conditions of Theorem 1
that we develop some ideas of Guo and Lakshmikantham
essentially; for detail, see Theorem 2.3.7 in [23].

Remark 4. For simplicity we only consider Neumann bound-
ary conditions since all the results obtained in this paper can
also be adapted with minor changes to the other boundary
conditions.

2. Preliminaries

Let 𝐽󸀠 = 𝐽 \ {𝑡
1
, 𝑡

2
, . . . , 𝑡

𝑚
}, 𝑘 = 1, 2, . . . , 𝑚, and

PC1 [0, 1] = {𝑦 ∈ 𝐶 [0, 1] : 𝑦󸀠󵄨󵄨󵄨
󵄨

󵄨(𝑡𝑘 ,𝑡𝑘+1)
∈ 𝐶 (𝑡

𝑘
, 𝑡

𝑘+1
) ,

𝑦

󸀠
(𝑡

−

𝑘
) , 𝑦

󸀠
(𝑡

+

𝑘
) exists,

𝑘 = 1, 2, . . . , 𝑚} .

(3)

Then PC1[0, 1] is a real Banach space with norm

󵄩

󵄩

󵄩

󵄩

𝑦

󵄩

󵄩

󵄩

󵄩PC1 = max {󵄩󵄩
󵄩

󵄩

𝑦

󵄩

󵄩

󵄩

󵄩∞
,

󵄩

󵄩

󵄩

󵄩

󵄩

𝑦

󸀠󵄩
󵄩

󵄩

󵄩

󵄩∞
} , (4)

where ‖𝑦‖
∞
= sup

𝑡∈𝐽
|𝑦(𝑡)|, ‖𝑦󸀠‖

∞
= sup

𝑡∈𝐽
|𝑦

󸀠
(𝑡)|.

A function 𝑦 ∈ PC1[0, 1] ∩ 𝐶2(𝐽󸀠) is called a solution of
problem (1) if it satisfies (1).

In our main results, we will make use of the following
lemmas.

Lemma 5. If (𝐻
1
) and (𝐻

2
) hold, then problem (1) has a

unique solution 𝑦 given by

𝑦 (𝑡) = 𝜆∫

1

0

𝐺 (𝑡, 𝑠) 𝜔 (𝑠) 𝑓 (𝑠, 𝑦 (𝑠)) 𝑑𝑠

+ 𝜆

𝑚

∑

𝑘=1

𝐺 (𝑡, 𝑡

𝑘
) 𝐼

𝑘
(𝑡

𝑘
, 𝑦 (𝑡

𝑘
)) ,

(5)

where

𝐺 (𝑡, 𝑠) =

{

{

{

{

{

{

{

{

{

{

{

{

{

cosh (√M (1 − 𝑡)) cosh (√M𝑠)
√M sinh (√M)

, 0 ≤ 𝑠 ≤ 𝑡 ≤ 1,

cosh (√M𝑡) cosh (√M (1 − 𝑠))

√M sinh (√M)
, 0 ≤ 𝑡 ≤ 𝑠 ≤ 1.

(6)

Proof. The proof is similar to that of Lemma 2.4 in [24].

By (6), we can prove that 𝐺(𝑡, 𝑠) has the following
property:

1

√M sinh (√M)
= 𝛼 ≤ 𝐺 (𝑡, 𝑠) ≤ 𝛽 =

cosh2 (√M)
√M sinh (√M)

,

∀𝑡, 𝑠 ∈ 𝐽.

(7)

Define a cone in PC1[0, 1] by

𝐾 = {𝑦 ∈ PC1 [0, 1] : 𝑦 ≥ 0, 𝑦 (𝑡) ≥ 𝛿󵄩󵄩󵄩
󵄩

𝑦

󵄩

󵄩

󵄩

󵄩PC1 , 𝑡 ∈ 𝐽} ,

(8)

where

𝛿 =

1

cosh2 (√M)
. (9)

It is easy to see𝐾 is a closed convex cone of PC1[0, 1].
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Define an operator 𝑇
𝜆
: 𝐾 → PC1[0, 1] by

(𝑇

𝜆
𝑦) (𝑡) = 𝜆∫

1

0

𝐺 (𝑡, 𝑠) 𝜔 (𝑠) 𝑓 (𝑠, 𝑦 (𝑠)) 𝑑𝑠

+ 𝜆

𝑚

∑

𝑘=1

𝐺 (𝑡, 𝑡

𝑘
) 𝐼

𝑘
(𝑡

𝑘
, 𝑦 (𝑡

𝑘
)) .

(10)

From (10), we know that 𝑦 ∈ PC1[0, 1] is a solution of
problem (1) if and only if 𝑦 is a fixed point of operator 𝑇

𝜆
.

Lemma 6. Suppose that (𝐻
1
) and (𝐻

2
) hold.Then𝑇

𝜆
(𝐾) ⊂ 𝐾

and 𝑇
𝜆
: 𝐾 → 𝐾 is completely continuous.

Proof. For 𝑦 ∈ 𝐾, it follows from (7) and (10) that

(𝑇𝑦) (𝑡) = 𝜆∫

1

0

𝐺 (𝑡, 𝑠) 𝜔 (𝑠) 𝑓 (𝑠, 𝑦 (𝑠)) 𝑑𝑠

+ 𝜆

𝑚

∑

𝑘=1

𝐺 (𝑡, 𝑡

𝑘
) 𝐼

𝑘
(𝑡

𝑘
, 𝑦 (𝑡

𝑘
))

≤ 𝜆

cosh2 (√M)
√M sinh (√M)

× [∫

1

0

𝜔 (𝑠) 𝑓 (𝑠, 𝑦 (𝑠)) 𝑑𝑠 +

𝑚

∑

𝑘=1

𝐼

𝑘
(𝑡

𝑘
, 𝑦 (𝑡

𝑘
))] ,

𝑡 ∈ 𝐽.

(11)

It follows from (7), (10), and (11) that

(𝑇𝑦) (𝑡) = 𝜆∫

1

0

𝐺 (𝑡, 𝑠) 𝜔 (𝑠) 𝑓 (𝑠, 𝑦 (𝑠)) 𝑑𝑠

+ 𝜆

𝑚

∑

𝑘=1

𝐺 (𝑡, 𝑡

𝑘
) 𝐼

𝑘
(𝑡

𝑘
, 𝑦 (𝑡

𝑘
))

≥

1

√M sinh (√M)
𝜆

× [∫

1

0

𝜔 (𝑠) 𝑓 (𝑠, 𝑦 (𝑠)) 𝑑𝑠 +

𝑚

∑

𝑘=1

𝐼

𝑘
(𝑡

𝑘
, 𝑦 (𝑡

𝑘
))]

≥ 𝛿

cosh2 (√M)
√M sinh (√M)

𝜆

× [∫

1

0

𝜔 (𝑠) 𝑓 (𝑠, 𝑦 (𝑠)) 𝑑𝑠 +

𝑚

∑

𝑘=1

𝐼

𝑘
(𝑡

𝑘
, 𝑦 (𝑡

𝑘
))]

≥ 𝛿

󵄩

󵄩

󵄩

󵄩

𝑇𝑦

󵄩

󵄩

󵄩

󵄩

.

(12)

Thus, 𝑇(𝐾) ⊂ 𝐾.
Next, by similar arguments of Lemmas 5 and 6 [12] one

can prove that 𝑇 : 𝐾 → 𝐾 is completely continuous. So it is
omitted, and the theorem is proved.

To obtain positive solutions of problem (1), the following
fixed point theorem in cones is fundamental, which can be
found in [23, page 94].

Lemma 7. Let 𝑃 be a cone in a real Banach space 𝐸. Assume
Ω

1
, Ω
2
are bounded open sets in 𝐸 with 0 ∈ Ω

1
, Ω
1
⊂ Ω

2
. If

𝐴 : 𝑃 ∩ (Ω

2
\ Ω

1
) 󳨀→ 𝑃 (13)

is completely continuous such that either

(a) ‖𝐴𝑥‖ ≤ ‖𝑥‖, ∀𝑥 ∈ 𝑃 ∩ 𝜕Ω
1
, and ‖𝐴𝑥‖ ≥ ‖𝑥‖, ∀𝑥 ∈

𝑃 ∩ 𝜕Ω

2
, or

(b) ‖𝐴𝑥‖ ≥ ‖𝑥‖, ∀𝑥 ∈ 𝑃 ∩ 𝜕Ω
1
, and ‖𝐴𝑥‖ ≤ ‖𝑥‖, ∀𝑥 ∈

𝑃 ∩ 𝜕Ω

2
,

then 𝐴 has at least one fixed point in 𝑃 ∩ (Ω
2
\ Ω

1
).

3. Proofs of the Main Results

For convenience we introduce some notations

𝛾 = ∫

1

0

𝜔 (𝑠) 𝑑𝑠, 𝜌 = max
𝑡∈𝐽,0≤𝑦≤𝑐

𝑓 (𝑡, 𝑦) ,

𝜌

∗
= max {𝜌

𝑘
, 𝑘 = 1, 2, . . . , 𝑚} ,

(14)

where 𝜌
𝑘
= max

𝑡∈𝐽,0≤𝑦≤𝑐
𝐼

𝑘
(𝑡, 𝑦), 𝑘 = 1, 2, . . . , 𝑚, and 𝑐 > 0 is

a constant.

Proof of Theorem 1. We need only prove this theorem under
condition (H

3
) since the proof is similar when (H

4
) holds,

provided the proper adjustments are made.
If 𝑓0 = 0, 𝐼0(𝑘) = 0, then there exist 𝑙 > 0 and 𝑟 > 0 such

that

𝑓 (𝑡, 𝑦) < 𝑙𝑦, 𝐼

𝑘
(𝑡, 𝑦) < 𝑙𝑦,

∀𝑡 ∈ 𝐽, 0 ≤ 𝑦 ≤ 𝑟, 𝑘 = 1, 2, . . . , 𝑚,

(15)

where 𝑙 satisfies

𝜆max {𝛽, 1} 𝑙 (𝛾 + 𝑚) ≤ 1. (16)

Then for 𝑦 ∈ 𝐾 ∩ 𝜕Ω
𝑟
we have

(𝑇

𝜆
𝑦) (𝑡) = 𝜆∫

1

0

𝐺 (𝑡, 𝑠) 𝜔 (𝑠) 𝑓 (𝑠, 𝑦 (𝑠)) 𝑑𝑠

+ 𝜆

𝑚

∑

𝑘=1

𝐺 (𝑡, 𝑡

𝑘
) 𝐼

𝑘
(𝑡

𝑘
, 𝑦 (𝑡

𝑘
))

≤ 𝜆𝛽∫

1

0

𝜔 (𝑠) 𝑙𝑦 (𝑠) 𝑑𝑠 + 𝜆𝛽

𝑚

∑

𝑘=1

𝑙𝑦 (𝑡

𝑘
)

≤ 𝜆𝛽𝑙

󵄩

󵄩

󵄩

󵄩

𝑦

󵄩

󵄩

󵄩

󵄩PC1 (∫
1

0

𝜔 (𝑠) 𝑑𝑠 + 𝑚)

= 𝜆𝛽𝑙

󵄩

󵄩

󵄩

󵄩

𝑦

󵄩

󵄩

󵄩

󵄩PC1 (𝛾 + 𝑚) ≤
󵄩

󵄩

󵄩

󵄩

𝑦

󵄩

󵄩

󵄩

󵄩PC1 ,
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󵄨

󵄨

󵄨

󵄨

󵄨

(𝑇

𝜆
𝑦)

󸀠

(𝑡)

󵄨

󵄨

󵄨

󵄨

󵄨

≤ 𝜆∫

1

0

󵄨

󵄨

󵄨

󵄨

󵄨

𝐺

󸀠

𝑡
(𝑡, 𝑠)

󵄨

󵄨

󵄨

󵄨

󵄨

𝜔 (𝑠) 𝑓 (𝑠, 𝑦 (𝑠)) 𝑑𝑠

+ 𝜆

𝑚

∑

𝑘=1

󵄨

󵄨

󵄨

󵄨

󵄨

𝐺

󸀠

𝑡
(𝑡, 𝑡

𝑘
)

󵄨

󵄨

󵄨

󵄨

󵄨

𝐼

𝑘
(𝑡

𝑘
, 𝑦 (𝑡

𝑘
))

≤ 𝜆∫

1

0

𝜔 (𝑠) 𝑓 (𝑠, 𝑦 (𝑠)) 𝑑𝑠

+ 𝜆

𝑚

∑

𝑘=1

𝐼

𝑘
(𝑡

𝑘
, 𝑦 (𝑡

𝑘
))

≤ 𝜆𝑙 (𝛾 + 𝑚)

󵄩

󵄩

󵄩

󵄩

𝑦

󵄩

󵄩

󵄩

󵄩PC1

≤

󵄩

󵄩

󵄩

󵄩

𝑦

󵄩

󵄩

󵄩

󵄩PC1 ,

(17)

where
𝐺

󸀠

𝑡
(𝑡, 𝑠)

=

{

{

{

{

{

{

{

{

{

{

{

{

{

− sinh (√M (1 − 𝑡)) cosh (√M𝑠)

sinh (√M)
, 0 ≤ 𝑠 ≤ 𝑡 ≤ 1,

cosh (√M𝑡) sinh (√M (1 − 𝑠))

sinh (√M)
, 0 ≤ 𝑡 ≤ 𝑠 ≤ 1,

max
𝑡,𝑠∈𝐽,𝑡 ̸= 𝑠

󵄨

󵄨

󵄨

󵄨

󵄨

𝐺

󸀠

1𝑡
(𝑡, 𝑠)

󵄨

󵄨

󵄨

󵄨

󵄨

= 1.

(18)

It follows from (17) that
󵄩

󵄩

󵄩

󵄩

𝑇

𝜆
𝑦

󵄩

󵄩

󵄩

󵄩PC1 ≤
󵄩

󵄩

󵄩

󵄩

𝑦

󵄩

󵄩

󵄩

󵄩PC1 , ∀𝑦 ∈ 𝐾 ∩ 𝜕Ω

𝑟
. (19)

If 𝑓
∞
= ∞, 𝐼

∞
(𝑘) = ∞, then there exist 𝐿 > 0 and 𝑅 > 𝑟 > 0

such that
𝑓 (𝑡, 𝑦) > 𝐿𝑦, 𝐼

𝑘
(𝑡, 𝑦) > 𝐿𝑦,

∀𝑡 ∈ 𝐽, 𝑦 ≥ 𝑅, 𝑘 = 1, 2, . . . , 𝑚,

(20)

where 𝐿 satisfies
𝜆𝛼𝐿𝛿 (𝛾 + 𝑚) ≥ 1. (21)

Let 𝜂 = 𝑅/𝛿. Thus, when 𝑦 ∈ 𝐾 ∩ 𝜕Ω
𝜂
we have

𝑦 (𝑡) ≥ 𝛿

󵄩

󵄩

󵄩

󵄩

𝑦

󵄩

󵄩

󵄩

󵄩PC1 = 𝛿𝜂 = 𝑅, 𝑡 ∈ 𝐽, (22)

and then we get

(𝑇

𝜆
𝑦) (𝑡) = 𝜆∫

1

0

𝐺 (𝑡, 𝑠) 𝜔 (𝑠) 𝑓 (𝑠, 𝑦 (𝑠)) 𝑑𝑠

+ 𝜆

𝑚

∑

𝑘=1

𝐺 (𝑡, 𝑡

𝑘
) 𝐼

𝑘
(𝑡

𝑘
, 𝑦 (𝑡

𝑘
))

≥ 𝜆𝛼∫

1

0

𝜔 (𝑠) 𝐿𝑦 (𝑠) 𝑑𝑠 + 𝜆𝛼

𝑚

∑

𝑘=1

𝐿𝑦 (𝑡

𝑘
)

≥ 𝜆𝛼𝐿𝛿

󵄩

󵄩

󵄩

󵄩

𝑦

󵄩

󵄩

󵄩

󵄩PC1 (∫
1

0

𝜔 (𝑠) 𝑑𝑠 + 𝑚)

= 𝜆𝛼𝐿𝛿

󵄩

󵄩

󵄩

󵄩

𝑦

󵄩

󵄩

󵄩

󵄩PC1 (𝛾 + 𝑚)

≥

󵄩

󵄩

󵄩

󵄩

𝑦

󵄩

󵄩

󵄩

󵄩PC1 .

(23)

This yields
󵄩

󵄩

󵄩

󵄩

𝑇

𝜆
𝑦

󵄩

󵄩

󵄩

󵄩PC1 ≤
󵄩

󵄩

󵄩

󵄩

𝑦

󵄩

󵄩

󵄩

󵄩PC1 , ∀𝑦 ∈ 𝐾 ∩ 𝜕Ω

𝜂
. (24)

Hence, for given 𝜆 > 0 condition (a) of Lemma 7 is
satisfied of operator 𝑇

𝜆
, which implies that 𝑇

𝜆
has a fixed

point 𝑦
𝜆
inΩ
𝜂
\ Ω

𝑟
.

It remains to prove ‖𝑦
𝜆
‖PC1 = +∞ as 𝜆 → 0

+. In fact, if
not, there would exist a number 𝑐 > 0 and a sequence 𝜆

𝑛
→

0

+ such that
󵄩

󵄩

󵄩

󵄩

󵄩

𝑦

𝜆𝑛

󵄩

󵄩

󵄩

󵄩

󵄩PC1
≤ 𝑐 (𝑛 = 1, 2, 3, . . .) . (25)

Furthermore, the sequence {‖𝑦

𝜆𝑛
‖PC1} contains a subse-

quence that converges into a number 𝑑, where 0 ≤ 𝑑 ≤ 𝑐. For
simplicity, suppose that {‖𝑦

𝜆𝑛
‖PC1} itself converges into 𝑑.

If 𝑑 > 0, then ‖𝑦
𝜆𝑛
‖PC1 > 𝑑/2 for sufficiently large 𝑛 (𝑛 >

N), and therefore

1

𝜆

𝑛

= (

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

∫

1

0

𝐺 (𝑡, 𝑠) 𝜔 (𝑠) 𝑓 (𝑠, 𝑦

𝜆𝑛
(𝑠)) 𝑑𝑠

+

𝑚

∑

𝑘=1

𝐺 (𝑡, 𝑡

𝑘
) 𝐼

𝑘
(𝑡

𝑘
, 𝑦

𝜆𝑛
(𝑡

𝑘
))

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩PC1
)

× (

󵄩

󵄩

󵄩

󵄩

󵄩

𝑦

𝜆𝑛

󵄩

󵄩

󵄩

󵄩

󵄩PC1
)

−1

≤

𝛽 (𝛾𝜌 + 𝑚𝜌

∗
)

󵄩

󵄩

󵄩

󵄩

󵄩

𝑦

𝜆𝑛

󵄩

󵄩

󵄩

󵄩

󵄩PC1

≤

2𝛽 (𝛾𝜌 + 𝑚𝜌

∗
)

𝑑

(𝑛 > N) ,

(26)

which contradicts 𝜆
𝑛
→ 0

+.
If 𝑑 = 0, then ‖𝑦

𝜆𝑛
‖PC1 → 0 for sufficiently large 𝑛 (𝑛 >

N), and therefore it follows from (H
3
) that for any 𝜀 > 0 there

exists 𝑏 > 0 such that

𝑓 (𝑡, 𝑦

𝜆𝑛
(𝑡)) ≤ 𝜀𝑦

𝜆𝑛
, 𝐼

𝑘
(𝑡, 𝑦

𝜆𝑛
(𝑡)) ≤ 𝜀𝑦

𝜆𝑛
,

∀𝑦

𝜆𝑛
: 0 ≤ 𝑦

𝜆𝑛
≤ 𝑏,

(27)

and hence it follows from (10) that

1

𝜆

𝑛

= (

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

∫

1

0

𝐺 (𝑡, 𝑠) 𝜔 (𝑠) 𝑓 (𝑠, 𝑦

𝜆𝑛
(𝑠)) 𝑑𝑠

+

𝑚

∑

𝑘=1

𝐺 (𝑡, 𝑡

𝑘
) 𝐼

𝑘
(𝑡

𝑘
, 𝑦

𝜆𝑛
(𝑡

𝑘
))

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩PC1
)

× (

󵄩

󵄩

󵄩

󵄩

󵄩

𝑦

𝜆𝑛

󵄩

󵄩

󵄩

󵄩

󵄩PC1
)

−1

≤

𝛽 (𝛾𝜀

󵄩

󵄩

󵄩

󵄩

󵄩

𝑦

𝜆𝑛

󵄩

󵄩

󵄩

󵄩

󵄩PC1 + 𝑚𝜀
󵄩

󵄩

󵄩

󵄩

󵄩

𝑦

𝜆𝑛

󵄩

󵄩

󵄩

󵄩

󵄩PC1)
󵄩

󵄩

󵄩

󵄩

󵄩

𝑦

𝜆𝑛

󵄩

󵄩

󵄩

󵄩

󵄩PC1

= 𝛽 (𝛾 + 𝑚) 𝜀.

(28)

Since 𝜀 is arbitrary, we have 𝜆
𝑛
→ +∞ (𝑛 → +∞) in

contradiction to 𝜆
𝑛
→ 0

+. Therefore, ‖𝑦
𝜆
‖ → +∞ as

𝜆 → 0

+ and the proof is complete.
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Remark 8. ComparingwithNieto andO’Regan [17], themain
features of this paper are as follows.

(i) The parameter 𝜆 > 0 is considered.
(ii) Theparameter dependence of the solution is available.
(iii) 𝜔 ∈ 𝐿1loc(0, 1), not 𝜔(𝑡) ≡ 1 for 𝑡 ∈ 𝐽.

4. An Example

To illustrate how our main results can be used in practice we
present an example.

Example 9. Consider the following boundary value problems

−𝑦

󸀠󸀠

(𝑡) + 𝑦 (𝑡) = 𝜆

1

√

𝑡

3
√

1 + 𝑡

2
𝑦

2

(𝑡) , 𝑡 ∈ 𝐽, 𝑡 ̸=

1

2

,

−Δ𝑦

󸀠󵄨
󵄨

󵄨

󵄨

󵄨𝑡1=1/2
=

1

1 + 𝑡

𝑦

3

1 + 𝑦

, 𝑘 = 1,

𝑦

󸀠

(0) = 𝑦

󸀠

(1) = 0.

(29)

Evidently, 𝑦(𝑡) ≡ 0 is the trivial solution of problem (29).

Conclusion. Problem (29) has at least one positive solution for
any 𝜆 > 0.

Proof. Problem (29) can be regarded as a problem of the form
(1), where

M = 1, 𝑡

1
=

1

2

,

𝜔 (𝑡) =

1

√

𝑡

, 𝑓 (𝑡, 𝑦) =

3
√

1 + 𝑡

2
𝑦

2

(𝑡) ,

𝐼

1
(𝑡, 𝑦) = (1 + 𝑡)

𝑦

3

1 + 𝑦

.

(30)

It follows from the definition of 𝜔, 𝑓, and 𝐼 that (H
1
)

and (H
2
) hold, and 𝜔(𝑡) is singular at 𝑡 = 0 and 𝑡 = 1. By

calculating, we have

𝛿 =

1

cosh2 (1)
, 𝛾 = ∫

1

0

1

√

𝑡

𝑑𝑡 = 2,

𝛼 =

1

sinh (1)
, 𝛽 =

cosh2 (1)
sinh (1)

,

𝑓

0
= lim sup
𝑦→0

max
𝑡∈𝐽

3
√

1 + 𝑡

2
𝑦

2
(𝑡)

𝑦

= 0,

𝐼

0

(𝑘) = lim sup
𝑦→0

max
𝑡∈𝐽

(1 + 𝑡) (𝑦

3
/ (1 + 𝑦))

𝑦

= 0,

𝑓

∞
= lim inf
𝑦→∞

min
𝑡∈𝐽

3
√

1 + 𝑡

2
𝑦

2
(𝑡)

𝑦

= ∞,

𝐼

∞
(𝑘) = lim sup

𝑦→∞

min
𝑡∈𝐽

(1 + 𝑡) (𝑦

3
/ (1 + 𝑦))

𝑦

= ∞.

(31)

Then, the condition (H
3
) of Theorem 1 holds. Hence, by

Theorem 1, the conclusion follows, and the proof is com-
plete.
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