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Local graph based discriminant analysis (DA) algorithms recently have attracted increasing attention to mitigate the limitations
of global (graph) DA algorithms. However, there are few particular concerns on the following important issues: whether the local
construction is better than the global one for intraclass and interclass graphs, which (intraclass or interclass) graph should locally
or globally be constructed? and, further how they should be effectively jointed for good discriminant performances. In this paper,
pursuing our previous studies on the graph construction and DA, we firstly address the issues involved above, and then by jointly
utilizing both the globality and the locality, we develop, respectively, aGloballymarginal andLocally compactDiscriminantAnalysis
(GmLcDA) algorithm based on so-introduced global interclass and local intraclass graphs and a Locally marginal and Globally
compact Discriminant Analysis (LmGcDA) based on so-introduced local interclass and global intraclass graphs, the purpose of
which is not to show how novel the algorithms are but to illustrate the analyses in theory. Further, by comprehensively comparing
the Locally marginal and Locally compact DA (LmLcDA) based on locality alone, the Globally marginal and Globally compact
Discriminant Analysis (GmGcDA) just based on globality alone, GmLcDA, and LmGcDA, we suggest that the joint of locally
constructed intraclass and globally constructed interclass graphs is more discriminant.

1. Introduction

Discriminant analysis (DA) techniques [1] are indispensable
in many fields including machine learning, pattern recog-
nition, data compression, scientific visualization, and neural
computation. Multiple discriminant analysis (MDA) [2–4] is
one of themost popular global DAmethods. However, owing
to globally constructing both intraclass and interclass graphs,
they generally fail to effectively capture underlying local
structures in data, for example, many low-dimensional local
manifolds of samples residing on the original input space.
To mitigate such limitations, plenty of local graph based DA
algorithms have been proposed as powerful tools typically
including marginal Fisher analysis (MFA) [5] and its variants
[6], locality sensitive discriminant analysis (LSDA) [7], LDE
[8], and ANMM [9–15]. These algorithms locally construct
both intraclass and interclass graphs. However, is the local
construction better than the global one for intraclass and
interclass graphs? Subsequently, some globally maximizing

and locally minimizing DR algorithms are proposed [16–
18]. By contrast, there is no locally marginal and globally
compact based DA algorithm to be studied. Several issues
need to be addressed, that is, which (intraclass or interclass)
graph should locally or globally be constructed? Further,
how should they be effectively jointed for good discriminant
performances? Up to date, to our knowledge, there are
few particular concerns on these issues. So, pursuing our
previous studies on the graph construction and DA [19–
21], in this paper, we elaborately address the issues involved
above. Concretely, firstly, we illustrate the meanings of local
compactness, global compactness, local margin, and global
margin in DA, as shown in Figure 1; secondly, we formulate
globally constructed intraclass and interclass graphs; thirdly,
resorting to the relation between the scatter and the structure
preservation property of DA based on graph construction,
by Proposition 1 and Corollary 2 and Proposition 3 and
Corollary 4, we demonstrate that the interclass graph should
be globally constructed and the intraclass graph should
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Figure 1: Illustration of local and global constructions for intraclass and interclass, where Lc refers to local compactness, Gc to global
compactness, Lm to local margin, and Gm to global margin.

be locally constructed; finally, by jointly utilizing both the
globality and the locality, we develop twoDA algorithms; that
is, one is Globally marginal and Locally compact Discrimi-
nant Analysis (GmLcDA) algorithm based on so-introduced
global interclass and local intraclass graphs, and the other
is Locally marginal and Globally compact Discriminant
Analysis (LmGcDA) based on so-introduced local interclass
and global intraclass graphs. It is worth pointing out that the
purpose of developing both DA algorithms is not to show
how novel the algorithms are but to illustrate the analyses
in theory. Further, we perform experiments to compare
GmLcDA, LmGcDA, LmLcDA, and GmGcDA. Concretely,
the comparative experiments among GmLcDA, LmGcDA,
LmLcDA (MFA and LSDA), and GmGcDA (MDA) are on
the toy and real-world datasets. By the comparisons above,
we suggest that the joint of locally constructed intraclass and
globally constructed interclass graphs is more discriminant.
(It is necessary to point out that the two concepts of adjacency
matrix and graph are alternatively used in the whole paper
since a graph is corresponding to an adjacency matrix.)

The rest of this paper is organized as follows. In Section 2,
the graph construction and two typical DA algorithms,
MDA and MFA, are briefly reviewed. In Section 3, we firstly
indicate the meanings of compactness and margin in DA
and introduce the global intraclass graph and interclass graph
and then heuristically demonstrate the involved above issues
and further develop GmLcDA and LmGcDA and finally
compare GmLcDA, LmGcDA, LmLcDA, and GmGcDA.
In Section 4, the comparative experiments are performed.
Finally, the suggestions and remarks for future work are given
in Section 5.

2. Related Works

2.1. Graph Construction. Let 𝑋 = {𝑥
1
, . . . , 𝑥

𝑛
}, 𝑥
𝑖
∈ 𝑅
𝐷

denote a set of 𝑛 samples; current graph constructions
mainly include the two types of 𝑘-nearest-neighbor and
𝜀-neighborhood [22]. And the construction of adjacency
matrix 𝑆 is to weight edges of a graph by a similarity function,
which mainly refers to the heat kernel and 0-1 two ways [22].
The graph construction of this work focuses on discussing the
latter due to its simplicity and generality:

𝑆
𝑖𝑗
=

{{

{{

{

1, if 𝑥
𝑖
is the 𝑘 nearest neighbors of 𝑥

𝑗

or 𝑥
𝑗
is the 𝑘 nearest neighbors of 𝑥

𝑖
,

0, otherwise.
(1)

2.2. Typical DA Algorithms. MDA is deemed an example of
GmGcDA here from the viewpoint of graph embedding [5].
Given a dataset of 𝑛 samples belonging to 𝑐 classes 𝑋 with
the label 𝑙(𝑥

1
), 𝑙(𝑥
2
), . . . , 𝑙(𝑥

𝑛
), 𝑙(𝑥
𝑖
) ∈ {1, 2, . . . , 𝑐}. It seeks

the projection directions that maximize the interclass margin
and simultaneouslyminimize the intraclass compactness and
thus preserve the global structure in data but fail to discover
the local geometric structure in manifold data embedded in
the ambient space.

In order to mitigate the limitations of global algorithms,
there is increasing interest in graph embedding based DA
algorithms. MFA is a typical one, induced from the graph
embedding framework for dimensionality reduction [5].
According to the graph embedding framework, MFA con-
structs a local intraclass graph with the adjacency matrix
𝑆 to characterize the intraclass compactness and a local
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interclass graph with the adjacency matrix 𝑆𝑝 to characterize
the interclass separability:

𝑆
𝑖𝑗
=

{

{

{

1, if 𝑖 ∈ 𝑁+
𝑘
1

(𝑗) or 𝑗 ∈ 𝑁+
𝑘
1

(𝑖) ,

0, otherwise,
(2a)

𝑆
𝑝

𝑖𝑗
=

{

{

{

1, if (𝑖, 𝑗) ∈ 𝑃
𝑘
2

(𝑐
𝑖
) or (𝑖, 𝑗) ∈ 𝑃

𝑘
2

(𝑐
𝑗
) ,

0, otherwise,
(2b)

where 𝑁+
𝑘
1

(𝑖) indicates the index set of the 𝑘
1
nearest neigh-

bors of the sample 𝑥
𝑖
in the same class and 𝑃

𝑘
2

(𝑐) is a set of 𝑘
2

nearest sample pairs from different classes.
Here, we call such DA algorithms based on local intra-

class and interclass graphs as Locally marginal and Locally
compact DA (LmLcDA).

3. Analyzing and Addressing Issues

From the reviews above we have found that motivations of
most local graph based DA algorithms are to mitigate the
limitations of global algorithms, despite different formula-
tions. However, up to date, there are few particular analyses
on whether the local construction is always better than the
global one for intraclass and interclass graphs and which
(intraclass or interclass) graph should locally or globally be
constructed. Further how should they be effectively jointed
for good discriminant performances? In this section, in order
to further analyze and address these issues, we first illustrate
the meanings of local compactness, global compactness,
local margin, and global margin in DA, then formally
introduce the globally constructed intraclass graph 𝑆

gc and
interclass graph 𝑆

gm, elaborately analyze and address the
issues involved above, and finally develop Globally marginal
and Locally compact Discriminant Analysis (GmLcDA) and
Locally marginal and Globally compact Discriminant Analy-
sis (LmGcDA).

3.1. Meanings of Compactness and Margin in DA. Now we
firstly illustrate the meanings of local compactness, global
compactness, local margin, and global margin in DA, respec-
tively, which are all shown in Figure 1. Figure 1(a) shows the
structures of local compactness of 𝑥

𝑖
and 𝑥

𝑗
, where 𝑥

𝑖
is

locally linked with the five dots within the same class and
𝑥
𝑗
with pentacles, and such structures of local compactness

are encompassed by the two pink dash-line ellipses for
the sake of clearer display. Meanwhile, Figure 1(b) shows
the structures of local margin of 𝑥

𝑝
and 𝑥

𝑞
, where 𝑥

𝑝
is

locally linked with the four pentacles from the different
classes, 𝑥

𝑞
with dots, and such structures of local margin

are encompassed, respectively, by the blue and cyan dot-line
ellipses. By contrast, Figure 1(c) shows the structures of global
compactness of classes 1 and 2, while Figure 1(d) shows the
structures of global margin of both classes. And it should
be noted that the gray dash-line and dot-line ellipses do not
denote a cluster but all points linked within them.

3.2. Globally Constructed Intraclass and Interclass Graphs.
The global intraclass graph 𝑆gc is formulated as follows:

𝑆
gc
𝑖𝑗
= {

1, if 𝑙 (𝑥
𝑖
) and 𝑙 (𝑥

𝑗
) belong to the same class,

0, otherwise
(3)

and the global interclass graph 𝑆gm as follows:

𝑆
gm
𝑖𝑗

= {
1, if 𝑙 (𝑥

𝑖
) and 𝑙 (𝑥

𝑗
) belong to different classes,

0, otherwise.
(4)

From the formulation of 𝑆gc in (3) and 𝑆gm in (4), it can
be seen that globally constructed intraclass and interclass
graphs are parameter-free. In order to compare them with
locally constructed graphs, their neighbor parameters may,
respectively, be viewed as∑𝑐

𝑖=1
𝑛
2

𝑖
and 𝑛2−∑𝑐

𝑖=1
𝑛
2

𝑖
for a dataset

with 𝑐 classes and 𝑛 samples (𝑛
𝑖
samples per class), where

∑
𝑐

𝑖=1
𝑛
2

𝑖
denotes the maximum number of neighbor sample

pairs intraclass.

3.3. Heuristic Demonstration of Issues. In this subsection,
resorting to the relation between the scatter and the structure
preservation property of DA based on graph construction,
by Proposition 1 and Corollary 2 and Proposition 3 and
Corollary 4, we demonstrate that the interclass graph should
be globally constructed and the intraclass graph should be
locally constructed. Those inequalities in the two proposi-
tions and corollaries demonstrate the scatter discrepancies
between locally constructed graph and globally constructed
graph in the input space. And on the other hand, there is
a geometry structure preservation hypothesis; that is, the
intraclass graph inDA can preserve the compact structures of
the input space into the embedded space, while the interclass
graph preserves the margin structures of the input space into
the embedded space. Under such hypothesis, those scatter
inequalities heuristically demonstrate to some extent that
the intraclass graph should be locally constructed and the
interclass graph should be globally constructed.

Proposition 1. For a locally constructed intraclass graph
corresponding to the adjacency matrix 𝑆𝑡 with parameter 𝑡,
then the intraclass scatters corresponding to 𝑆𝑡1 and 𝑆𝑡2 are
𝑛

∑

𝑖,𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖
− 𝑥
𝑗

󵄩󵄩󵄩󵄩󵄩

2

𝑆
𝑡
1

𝑖𝑗
<

𝑛

∑

𝑖,𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖
− 𝑥
𝑗

󵄩󵄩󵄩󵄩󵄩

2

𝑆
𝑡
2

𝑖𝑗
, 𝑖𝑓 𝑡

1
< 𝑡
2
, (5)

where the parameter 𝑡 stands for the nearest neighbors of the
sample 𝑥

𝑖
or 𝑥
𝑗
in the same class, as 𝑘

1
defined in (2a), while

the parameters 𝑡
1
and 𝑡
2
denote that 𝑡 in 𝑆

𝑡 takes 𝑡
1
and 𝑡
2
,

respectively, for 𝑆𝑡1 and 𝑆𝑡2 .

Proof. According to the definition of the adjacency matrix
𝑆
𝑡, its element 𝑆𝑡

𝑖𝑗
takes 1 or 0. What take value as 1 in 𝑆

𝑡
1

is less than that in 𝑆
𝑡
2 if 𝑡
1
< 𝑡
2
; and ‖𝑥

𝑖
− 𝑥
𝑗
‖
2
> 0 when

𝑖 ̸= 𝑗. Hence, for 𝑡
1

< 𝑡
2
, the intraclass scatters are

∑
𝑛

𝑖,𝑗=1
‖𝑥
𝑖
− 𝑥
𝑗
‖
2
𝑆
𝑡
1

𝑖𝑗
< ∑
𝑛

𝑖,𝑗=1
‖𝑥
𝑖
− 𝑥
𝑗
‖
2
𝑆
𝑡
2

𝑖𝑗
. The proof is com-

pleted.
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Corollary 2. ∑𝑛
𝑖,𝑗=1

‖𝑥
𝑖
− 𝑥
𝑗
‖
2
𝑆
𝑘
1

𝑖𝑗
≤ ∑
𝑛

𝑖,𝑗=1
‖𝑥
𝑖
− 𝑥
𝑗
‖
2
𝑆
𝑔𝑐

𝑖𝑗
.

From Proposition 1 it can be seen that Corollary 2 is clear
since the parameter 𝑘

1
≤ ∑
𝑐

𝑖=1
𝑛
2

𝑖
.

From Proposition 1 and Corollary 2 it can be shown that
the intraclass scatter corresponding to locally constructed
graph in the input space is not larger than that corresponding
to globally constructed graph. And, it is well known that
the intraclass graph for DA algorithms aims to preserve the
local compactness structures of intraclass samples in the
input space into the embedded space, as shown by Figure 1(a)
not Figure 1(c). So, according to the geometry structure
preservation property of graph embedding DA algorithms,
small intraclass scatter in the input space is often also small in
the embedding space; in other words, large intraclass scatter
in the input space is often also large in the embedding space;
then the compactness of intraclass samples corresponding to
locally constructed graph often can be preserved in the low-
dimensional space.Thus intraclass graph often should locally
but not globally be constructed, which is consistent with the
statement in [23] that, empirically, small neighbor parameter
tends to perform better.

Proposition 3. For a locally constructed interclass graph
corresponding to the adjacency matrix 𝑆𝑝,𝑔 with parameter 𝑔,
then the interclass scatters corresponding to 𝑆𝑝,𝑔1 and 𝑆𝑝,𝑔2 are
𝑛

∑

𝑖,𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖
− 𝑥
𝑗

󵄩󵄩󵄩󵄩󵄩

2

𝑆
𝑝,𝑔
2

𝑖𝑗
>

𝑛

∑

𝑖,𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖
− 𝑥
𝑗

󵄩󵄩󵄩󵄩󵄩

2

𝑆
𝑝,𝑔
1

𝑖𝑗
, 𝑖𝑓 𝑔

2
> 𝑔
1
,

(6)

where the parameter 𝑔 stands for the nearest sample pairs from
different classes, as 𝑘

2
defined in (2b), while the parameters 𝑔

1

and 𝑔
2
denote that 𝑔 in 𝑆𝑝,𝑔 takes 𝑔

1
and 𝑔

2
, respectively, for

𝑆
𝑝,𝑔
1 and 𝑆𝑝,𝑔2 .

The proof is similar to Proposition 1 and thus omitted.

Corollary 4. ∑𝑛
𝑖,𝑗=1

‖𝑥
𝑖
− 𝑥
𝑗
‖
2
𝑆
𝑔𝑚

𝑖𝑗
≥ ∑
𝑛

𝑖,𝑗=1
‖𝑥
𝑖
− 𝑥
𝑗
‖
2
𝑆
𝑝,𝑘
2

𝑖𝑗
.

From Proposition 3 it can be seen that Corollary 4 is clear
since (𝑛2 − ∑𝑐

𝑖=1
𝑛
2

𝑖
) ≥ 𝑘
2
.

The interclass graph for DA algorithms aims to effec-
tively separate samples from different classes: thus the local
construction of interclass graph is not quite reasonable on
several facets. (1) It is expected that the samples fromdifferent
classes are separated as effectively as possible, as shown in
Figure 1(d) not Figure 1(b); that is, the interclass scatter is as
large as possible, while the interclass scatter corresponding to
local graph in the input space is not larger than that corre-
sponding to global graph, as demonstrated in Proposition 3
and Corollary 4. Considering the properties of structure
preservation for graph embedding DA algorithms, the local
construction for interclass graph seems not desirable. (2)
The exhaustive search for the neighbor parameter (such as
𝑘
2
in MFA) in high-dimensional input space is unavoidable

and very expensive for a good performance. Moreover, if the
parameter is unsuitably set, then the supervised information
cannot be sufficiently effectively utilized, and further it seems

not so easy to confirm which parameter value on earth is
most suitable to a task. By contrast, the global construction
of interclass graph does not need exhaustive search for the
neighbor parameter anymore because the neighbor parame-
ter is adaptive to different datasets. Furthermore, all available
supervised information as prior knowledge can be sufficiently
utilized in maximizing the interclass margin. So, interclass
graph often should globally but not locally be constructed,
for good discriminant performances.

From the discussions above, it can be expected that the
joint of local construction for intraclass and global one for
interclass is more discriminant for good performances. Next,
in order to illustrate the analyses above, we develop two DA
algorithms of GmLcDA and LmGcDA.

3.4. GmLcDA and LmGcDA. In this subsection, two DA
algorithms are developed: one is the Globally marginal and
Locally compactDiscriminantAnalysis (GmLcDA) by jointly
utilizing the global interclass graph 𝑆gm in (4) and the local
intraclass graph 𝑆lc in (2a) and the other is Locally marginal
and Globally compact Discriminant Analysis (LmGcDA) by
jointly utilizing the local interclass graph 𝑆𝑝 in (2b) and the
global intraclass graph 𝑆gc in (3).

In order to develop GmLcDA, the adjacency matrix 𝑆 in
(2a) is rewritten as 𝑆lc corresponding to the local intraclass
graph:

𝑆
lc
𝑖𝑗
= {

1, if 𝑥
𝑖
∈ 𝑁
𝑘𝑐
(𝑥
𝑗
) or 𝑥

𝑗
∈ 𝑁
𝑘𝑐
(𝑥
𝑖
) ,

0, otherwise,
(7)

where 𝑁
𝑘𝑐
(𝑥
𝑖
) denotes the set of 𝑘𝑐 nearest neighbors of

sample 𝑥
𝑖
within the same class. In fact, 𝑆lc in (7) is consistent

with 𝑆 in (2a). However, since GmLcDA only involves one
neighbor parameter for the local intraclass graph (the global
interclass graph is parameter-free), the formulation with
parameter 𝑘𝑐 in (7) is used rather than the onewith parameter
𝑘
1
in (2a) for a clearer understanding.
Now compute the interclass scatter 𝐵gm and intraclass

scatter 𝐴lc,

𝐵
gm

= ∑

𝑖,𝑗

(𝑦
𝑖
− 𝑦
𝑗
)
2

𝑆
gm
𝑖𝑗

= ∑

𝑖,𝑗

󵄩󵄩󵄩󵄩󵄩
𝑤
𝑇
𝑥
𝑖
− 𝑤
𝑇
𝑥
𝑗

󵄩󵄩󵄩󵄩󵄩

2

𝑆
gm
𝑖𝑗

= 2𝑤
𝑇[

[

∑

𝑖

𝑥
𝑖
𝐷

gm
𝑖𝑖
𝑥
𝑇

𝑖
−∑

𝑖,𝑗

𝑥
𝑖
𝑆
gm
𝑖𝑗
𝑥
𝑇

𝑗
]

]

𝑤

= 2𝑤
𝑇
𝑋(𝐷

gm
− 𝑆

gm
)𝑋
𝑇
𝑤

= 2𝑤
𝑇
𝑋𝐿

gm
𝑋
𝑇
𝑤,

(8)

where 𝐷gm is a diagonal matrix and its entries are column
(or row, since 𝑆gm is symmetric) sum of 𝑆gm, 𝐷gm

𝑖𝑖
= ∑
𝑗
𝑆
gm
𝑖𝑗
,

and the corresponding Laplacian matrix 𝐿
gm

= 𝐷
gm

−

𝑆
gm is symmetric and positive semidefinite matrices as well.
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Likely, 𝐴lc is obtained by replacing 𝑆gm in (8) with 𝑆
lc and

correspondingly we obtain𝐷lc and 𝐿lc.
Further, the objective criterion of GmLcDA can be

formulated by jointly maximizing 𝐵gm andminimizing𝐴lc to
simultaneously preserve the local compactness structures of
intraclass data and the margins between different-class data.
Consider

𝑤
GmLc

= argmax
𝑤

𝐵
gm

𝐴lc = argmax
𝑤

𝑤
𝑇
𝑋(𝐷

gm
− 𝑆

gm
)𝑋
𝑇
𝑤

𝑤𝑇𝑋(𝐷lc − 𝑆lc)𝑋𝑇𝑤

= argmax
𝑤

𝑤
𝑇
𝑋𝐿

gm
𝑋
𝑇
𝑤

𝑤𝑇𝑋𝐿lc𝑋𝑇𝑤
(9)

which can be solved by the generalized eigen-decomposition
𝑋𝐿

gm
𝑋
𝑇
𝑤 = 𝜆𝑋𝐿

lc
𝑋
𝑇
𝑤 [24].

Likely, for LmGcDA, the local interclass adjacencymatrix
𝑆
𝑝 is rewritten as 𝑆lm corresponding to the local interclass
graph:

𝑆
lm
𝑖𝑗
= {

1, if (𝑖, 𝑗) ∈ 𝑃
𝑘𝑚
(𝑐
𝑖
) or (𝑖, 𝑗) ∈ 𝑃

𝑘𝑚
(𝑐
𝑗
) ,

0, otherwise,
(10)

where𝑃
𝑘𝑚
(𝑐) is a set of 𝑘𝑚 nearest sample pairs fromdifferent

classes. Further 𝑆lm in (10) and 𝑆gc in (3) are jointed to form
the objective criterion of LmGcDA as follows:

𝑤
LmGc

= argmax
𝑤

𝐵
lm

𝐴gc = argmax
𝑤

𝑤
𝑇
𝑋(𝐷

lm
− 𝑆

lm
)𝑋
𝑇
𝑤

𝑤𝑇𝑋 (𝐷
gc − 𝑆gc) 𝑋𝑇𝑤

= argmax
𝑤

𝑤
𝑇
𝑋𝐿

lm
𝑋
𝑇
𝑤

𝑤𝑇𝑋𝐿gc𝑋𝑇𝑤
(11)

which can be solved by the generalized eigen-decomposition
𝑋𝐿

lm
𝑋
𝑇
𝑤 = 𝜆𝑋𝐿

gc
𝑋
𝑇
𝑤 [24].

3.5. Comparison among GmLcDA, LmGcDA, LmLcDA, and
GmGcDA. GmLcDA jointly constructs global interclass
graph, as shown in Figure 1(d), and local intraclass graph, as
shown in Figure 1(a). Such graph construction leads to larger
margin between classes and larger compactness within the
same class, so it can preserve the geometry structure and
is consistent to Proposition 1 and Corollary 2; Proposition 3
and Corollary 4. As a result, it more likely results in good
discriminant performances, as shown in the experiments in
Section 4.

LmGcDA exactly shows an opposite effect. That is, it is
difficult for a locally constructed interclass graph (shown
in Figure 1(b)) and a globally constructed intraclass graph
(shown in Figure 1(c)) to effectively preserve geometry struc-
ture of input samples, in fact, which leads to the worse per-
formances in real-world tasks, as shown by the experiments
in Section 4.

By contrast, LmLcDA constructs locally both intra- and
interclass graphs, as shown in Figures 1(b) and 1(a), respec-
tively. It is almost well known that the local parameter settings

of graph construction are relatively intractable, especially for
interclass. Accordingly, for good discriminant performance,
such construction of graph needs more domain knowledge
and experience.

Different from the three above, the graph construction of
GmGcDA only adopts the global way, for both intraclass and
interclass. For such construction, its accomplishment is easy
and stable for different domains.

4. Experiments

In this section, to further illustrate and support the analy-
ses in the above theory, we compare LmLcDA, GmLcDA,
LmGcDA, and GmGcDA by performing the experiments
on the toy and the real-world datasets; the latter includes
UCI [25], face recognition, and object categorization. The
nearest neighbor classifier (1NN) [26] is followed after these
DA algorithms to evaluate their classification performances.
The ridge regularization [27] is adopted for all compared
DA algorithms. That is, all the compared DA algorithms are
derived from a regularized objective of the same form as
𝑤
∗
= argmax(𝑤𝑇𝐵𝑤)/(𝑤𝑇𝐴𝑤+𝛼∗𝐼)with parameter𝛼 = 0.1,

where 𝐵 and 𝐴, respectively, respond to inter- and intraclass
scatters.

4.1. A Toy Example. Here, the toy example illustrates that
both intraclass and interclass graphs locally constructed
show less discriminant projections, implying that the global
construction appears more necessary and thus suggesting
that a globally constructed interclass graph and a locally
constructed intraclass graph can be desirable to obtain more
discriminant performance.

For LmLcDA, such as MFA, due to the injection of the
locality into both intraclass and interclass graphs, they may
fail to obtain discriminant projections for some tasks that
the global structure needs to consider. Moreover, there is
not any guidance on the selection of the neighbor parameter
for the interclass graph. When the neighbor parameters for
constructing graph are inappropriately set, their projection
results may be more unfavorable. For example, for a linearly
separable problem shown in Figure 2(a), for the DA algo-
rithms that adopt at least one global graph,GmGcDA(MDA),
GmLcDA with parameter 𝑘𝑐 = 3 and LmGcDA with 𝑘𝑚 = 5

can effectively separate the two-class samples, as shown in
Figures 2(c)–2(e). On the contrary, from Figure 2(b), we can
observe that, in the reduced one-dimensional subspace of
MFA (𝑘

1
is empirically set to 3 and different 𝑘

2
’s), the two-

class samples overlap to different extents. Moreover, no laws
can be found for the selection of 𝑘

2
. We only can observe that

when 𝑘
2
= 15, the separation of two class samples is relatively

satisfactory.
Further while the input points are added, as shown in

Figure 2(f), it is changed that both the margin between the
two classes and the compactness within Class 2. And it is
more difficult to partition the two-class samples in the one-
dimensional projection space of LmGcDA than in the one of
GmLcDA, as shown in Figures 2(g) and 2(h).
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Figure 2: Continued.
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Figure 2: A toy example.

4.2. Real-World Datasets. On these real-world datasets, we
compare GmLcDA, LmGcDA, two LmLcDAs (MFA and
LSDA), andGmGcDA (MDA). In order to effectively evaluate
the various algorithms, their model parameters are searched
from a large candidate range and correspondingly the best
results are reported. To address the singularity of MDA, here
the inverse ofmatrix 𝑆

𝑤
is replaced by the pseudoinverse [24].

4.2.1. UCI Datasets. We select the 5 two-class UCI datasets,
whose descriptions are shown in column 1 of Table 1, and the
classification results of 1NN on the original data are reported.

For each dataset, samples are randomly divided into
training set and testing set, which, respectively, contain half
of the samples. The random division is performed 30 times
and the average accuracies for each algorithm are tabulated
in Table 1. The neighbor parameters 𝑘𝑐 for GmLcDA, 𝑘𝑚 for
LmGcDA, 𝑘

1
forMFA, and 𝑘 for LSDA are searched from 2 to

half of the minimum of each class sample with the increment
of 5. The parameter 𝑘

2
for MFA is searched from 20 to the

sum (Notice that themaximum of 𝑘
2
forMFA, i.e., the sum of

training samples (𝑛), is smaller than the so-called parameter
of global interclass graph for GmLcDA (𝑛2 − ∑

𝑐

𝑖=1
𝑛
2

𝑖
).) of

training samples with the increment of 20.
From the results shown in Table 1, we can observe the

following.

(i) GmLcDA produces the optimal accuracies on the 4
datasets except for Sonar, which clearly outperforms
LmGcDA, MDA, MFA, LSDA, and 1NN with the
unreduced data. The accuracy of GmLcDA only is
0.0048, lower than LSDA on Sonar. Moreover, the
optimal reduced dimensions of GmLcDA (except for
Sonar) are lower than those ofMFA and LSDA, which
clearly is helpful for efficient testing.

(ii) LmGcDA is the worst on all datasets except for Crx,
on which it is only better than MDA. Such results
clearly testify that the locality for interclass graph and
globality for intraclass graph are not alternatives.

(iii) Both MFA and LSDA achieve almost similar results
since they adopt local intraclass and interclass graphs
to preserve the local geometry of data. However, the
optimal reduced dimensions of MFA are higher than
those of LSDA overall.

(iv) The performances of MDA are relatively inferior,
especially on Crx and Spectf and even worse than
1NN on the unreduced data. Moreover, the standard
deviations of MDA on all datasets seem larger than
those of the other algorithms, which can be attributed
to the factor that its reduced dimension can only be
limited to one dimension for two-class datasets.

(v) GmLcDA, LmLcDA, and GmGcDA almost all out-
perform 1NN on all datasets (except for GmGcDA
on Crx, Sonar, and Spectf) with lower reduced-
dimensions. By contrast, LmGcDA is worse than 1NN
on all datasets.

4.2.2. Face Recognition. It is well known that face recognition
is a very important task in pattern recognition and machine
learning. In this subsection, two benchmark datasets, Yale
and ORL, are used to evaluate the uses of local and global
graphs for DA algorithms on the face image recognition.

Data Description. The Yale dataset contains 165 face images
of 15 individuals (𝑐 = 15), 11 images per individual, and
these 11 images were gotten at different facial expressions
or configuration. Figure 3(a) is 11-sample face images of one
person in Yale dataset. The ORL dataset consists of 400 face
images for 40 distinct subjects (𝑐 = 40), 10 images per
subject.These imageswere taken against a dark homogeneous
background with the subjects in an upright, frontal position
(with tolerance for some side movement). Figure 3(b) is 10
sample face images of one person in ORL dataset. The size of
each image in Yale and ORL is 112 × 92 and 100 × 100 pixels,
with 256 grey levels per pixel.

Experimental Settings. Considering the very high dimension
of the face images, in our experiment, PCA [28, 29] is firstly
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Table 1: Accuracy% ± standard deviation (optimal reduced dimensions), where the reduced highest dimension of MDA is number of class
subtract one, here equals one.

Datasets GmLcDA LmGcDA LmLcDA (MFA) LmLcDA (LSDA) GmGcDA (MDA) 1NN
(number of sample, number of attr.)
Crx 70.63 ± 1.22 66.42 ± 5.67 69.76 ± 0.79 68.71 ± 1.74 59.58 ± 7.47 67.29 ± 1.33
(666, 6) (2) (6) (6) (6)
Sonar 85.15 ± 2.63 62.68 ± 0.65 83.88 ± 1.66 85.63 ± 3.03 69.61 ± 5.81 83.11 ± 3.08
(208, 60) (42) (10) (24) (34)
Spectf 77.97 ± 2.88 67.52 ± 3.92 76.47 ± 1.77 75.94 ± 1.88 68.72 ± 5.13 71.13 ± 3.90
(267, 44) (6) (10) (24) (4)
Water 95.44 ± 2.06 92.54 ± 0.75 94.91 ± 3.83 92.11 ± 4.40 90.88 ± 4.81 87.90 ± 3.55
(116, 38) (2) (4) (8) (2)
Wdbc 96.23 ± 1.28 80.51 ± 2.58 95.53 ± 0.86 95.78 ± 0.79 94.97 ± 1.38 91.69 ± 1.13
(569, 30) (6) (10) (30) (10)

(a)

(b)

Figure 3: Face sample images of one person. (a) Yale, (b) ORL.

adopted to identify a low-dimensional subspace. Here, 99%
energy is kept.Then the variousDAalgorithms are performed
in the obtained PCA subspace. In order to show effects of the
various algorithms on training sets with different numbers
of samples, each face dataset is partitioned into the different
gallery and probe sets where 𝐺

𝑚
/𝑃
𝑛
indicates that 𝑚 images

for each person are randomly selected for training and the
remaining 𝑛 images for testing. For each dataset, 30 random
splits with 𝐺

𝑚
/𝑃
𝑛
are generated and the average results of

the 30 classification accuracies are reported. The neighbor
parameters 𝑘𝑐 for GmLcDA and 𝑘

1
for MFA are searched

from {2, 3, . . . , 𝐺
𝑚
− 1}, 𝑘𝑚 for LmGcDA and 𝑘

2
for MFA

from {5, 10, . . . , 𝑐
∗
𝐺
𝑚
} on Yale, from {20, 40, . . . , 𝑐

∗
𝐺
𝑚
} on

ORL, and 𝑘 for LSDA from {5, 10, . . . , 𝑐
∗
𝐺
𝑚
/2}. The optimal

results of the several algorithms on the two datasets are listed
in Table 2.

From the results of Table 2, we can observe the following.
(i) With the increase of gallery samples, that is, 𝐺

𝑚
= 3

to 7 (5) on Yale (ORL), the performances of these
algorithms increase to different degrees.

(ii) For the two datasets with different 𝐺
𝑚
/𝑃
𝑛
divisions,

GmLcDA always obtains better accuracies than the
other algorithms, which shows effectiveness and fea-
sibility for face recognition task. These relatively
excellent results of GmLcDA may be ascribed to the

joint injection of the global margin interclass and
local compactness intraclass.

(iii) MFA and LSDA produce some worse results than
MDA, such as on Yale with𝐺

4
/𝑃
7
and𝐺

5
/𝑃
6
forMFA,

𝐺
6
/𝑃
5
for LSDA, and on ORL with 𝐺

5
/𝑃
5
for MFA.

Moreover, MFA is relatively worse. A possible reason
is that only the local geometry of data for intraclass
and interclass limits their performances, especially
MFA, whose 𝑘

2
marginal points possibly limit its

generalization ability to a certain degree.
(iv) On Yale, the unsupervised PCA is worse than the

other algorithms. However, it is worth noting that
PCA produces better accuracies than MDA, LSDA,
and MFA on ORL. That may be ascribed to such
a factor that, for ORL, the margin of different-class
samples is larger in the PCA subspace with 99%
energy. Besides, on Yale, the standard deviations of
MDA and PCA are larger than those of the other
algorithms.

4.2.3. Object Categorization. Aclassical problem in computer
vision and pattern recognition is to classify a set of objects
into a group of known categories. Here, we use the popular
benchmark dataset Coil20. The dataset consists of gray-scale
images of 20 objects and 72 images for each object with pose
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Table 2: Accuracy% ± standard deviation (optimal reduced dimensions), where the reduced highest dimension of MDA is number of class
subtract one, here equals one.

Dataset 𝐺
𝑚
/𝑃
𝑛

GmLcDA LmGcDA LmLcDA (MFA) LmLcDA (LSDA) GmGcDA (MDA) PCA

Yale

𝐺
3
/𝑃
8

84.58 ± 2.89 69.04 ± 6.18 77.25 ± 3.73 79.42 ± 5.08 72.17 ± 3.89 64.25 ± 3.23
(14) (10) (16) (18)

𝐺
4
/𝑃
7

88.29 ± 4.09 73.95 ± 6.52 82.10 ± 4.18 85.62 ± 4.27 85.52 ± 5.25 67.43 ± 2.83
(14) (10) (16) (18)

𝐺
5
/𝑃
6

89.78 ± 3.13 76.67 ± 6.23 86.33 ± 3.14 88.11 ± 3.52 89.22 ± 2.67 68.22 ± 3.52
(16) (10) (24) (20)

𝐺
6
/𝑃
5

91.33 ± 2.76 82.80 ± 4.70 89.47 ± 2.22 89.73 ± 3.50 90.67 ± 2.81 70.13 ± 4.45
(14) (10) (18) (24)

𝐺
7
/𝑃
4

93.17 ± 3.55 84.67 ± 5.06 93.00 ± 3.41 92.00 ± 3.67 92.33 ± 4.10 73.00 ± 6.56
(28) (10) (20) (20)

ORL

𝐺
3
/𝑃
7

90.46 ± 2.36 86.45 ± 2.60 88.68 ± 1.95 87.43 ± 2.03 84.89 ± 2.47 88.29 ± 2.79
(38) (24) (28) (39)

𝐺
4
/𝑃
6

93.83 ± 1.16 87.00 ± 2.29 90.88 ± 2.49 90.92 ± 1.19 90.67 ± 1.42 91.83 ± 1.33
(43) (18) (18) (40)

𝐺
5
/𝑃
5

95.25 ± 1.30 85.45 ± 3.72 90.10 ± 3.33 93.65 ± 2.01 93.45 ± 1.46 94.65 ± 1.18
(78) (16) (23) (40)

Figure 4: Sample images of 20 objects from Coil20.

intervals of 5∘, the size of each image being 32 × 32 pixels, as
shown in Figure 4.

Experimental Settings. Similar to the face recognition exper-
iment, the dataset is partitioned into the different gallery
and probe sets with 4 groups. For each group 𝐺

𝑚
/𝑃
𝑛
,

20 random splits are generated and the average results of
the 20 classification accuracies are reported. For the first
three groups with relatively small gallery sets (𝐺

𝑚
/𝑃
𝑛

=

𝐺
6
/𝑃
66
, 𝐺
9
/𝑃
63

and 𝐺
18
/𝑃
54
), the neighbor parameters 𝑘𝑐 for

GmLcDAand 𝑘
1
forMFAare searched from {2, 4, . . . , 𝐺

𝑚
−1},

𝑘𝑚 for LmGcDA and 𝑘
2
for MFA from {20, 40, . . . , 𝑐

∗
𝐺
𝑚
},

and 𝑘 for LSDA from {10, 30, . . . , 𝑐
∗
𝐺
𝑚
− 2}. For relatively

large gallery samples with 𝐺
36
/𝑃
36
, 𝑘𝑐 and 𝑘

1
are searched

from {2, 8, . . . , 𝐺
𝑚
− 1}, 𝑘𝑚 and 𝑘

2
from {40, 120, . . . , 𝑐

∗
𝐺
𝑚
},

and 𝑘 from {10, 90, . . . , 𝑐
∗
𝐺
𝑚
−2}.The accuracies with respect

to different reduced dimensions are displayed in Figure 5.
From Figure 5 we can clearly see the following.
(i) Figures 5(a)–5(d) show that, with the increase of

gallery samples, the performances of these algorithms
are improved to different extents. Likewise, with the
gradual increase of reduced dimension, their accu-
racies correspondingly increase. However, with the
further increase of reduced dimension, their perfor-
mances (except for MDA whose reduced dimension
is at most 𝑐 − 1) decrease gradually. This result is
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Figure 5: Accuracies with respect to the reduced dimensions on Coil20.

especially evident for small gallery samples with𝐺
𝑚
=

6, which undoubtedly is an example of “curse of
dimensionality” [2].

(ii) For the four groups 𝐺
𝑚
/𝑃
𝑛
from small 𝐺

6
to relative

large𝐺
36
, GmLcDA outperforms all MFA, LSDA, and

MDA with respect to different reduced dimensions.
In particular, when the reduced dimension is less than
10, its superiority is more obvious. For example, when
the reduced dimension is 2, it is over 30% better than
the worst LSDA. Moreover, the reduced dimension of

GmLcDA with respect to its best accuracy is lower
than that of the other algorithms. We can observe
that the accuracies of GmLcDA have achieved the
best value when the reduced dimension is less than
or equal to 20, and afterward they tend to maintain
stable.

(iii) The performances of LSDA and MFA do not show
very remarkable distinction except for 𝐺

𝑚
=

18. Specifically, for the first two groups, MFA is
more predominant than LSDA overall, as shown in
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Figures 5(a) and 5(b). In contrast, with the increase
of the gallery sample number, LSDA exceeds MFA
in performance, as shown in Figures 5(c) and 5(d).
We basically claim that LSDA is not suitable to
small training samples. Moreover, we can very clearly
observe that the performances of LSDA are always the
worst when the reduced dimension is relatively low.

(iv) When the reduced dimensions are less than the
reduced range (𝑐 − 1) of MDA, the accuracies of
MDA are almost parallel to those of MFA and LSDA.
However, since the reduced dimension is only limited
to themaximum of 𝑐−1, its performances are inferior
to the other three algorithms overall.

5. Conclusion and Future Work

In this paper, we elaborately address some important issues in
DA based on graph construction. And in order to illustrate
and support the analyses in theory, by jointly utilizing both
the globality and the locality, we develop GmLcDA algorithm
based on the global interclass and local intraclass graphs and
LmGcDA based on the local interclass and global intraclass
graphs. Further, by comprehensively comparing LmLcDA
(MFA, LSDA), GmLcDA, LmGcDA, and GmGcDA (MDA)
on toy and real-world datasets, we suggest that the joint
of locally constructed intraclass and globally constructed
interclass graphs is more discriminant.
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