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Using functions in some function classes and a generalized Riccati technique, we establish Kamenev-type oscillation criteria for

second-order dynamic equations with damping on time scales of the form (r(t)(xA(t))y)A + p(t)(xA(t)y) + f(t, x(g(t))) = 0. Two
examples are included to show the significance of the results.

1. Introduction
In this paper, we study the second-order dynamic equation

with damping

(= ©)) +pO (> ©) + ftLx(g@®)) =0 O

on a time scale T satisfying inf T = t, and sup T = co.
Throughout this paper we will assume that

(C1) r € C4(T, (0,00));

(C2) p € C4(T,R,), where R, := [0, 00);

(C3) y is a quotient of odd positive integers;

(C4) ge C(T,T) is nondecreasing and g(t) >t fort € T;

(C5) f € C(T x R,R) and there exists a function q €
C4(T,R,) such that uf (t,u) > g(t)u’*";

(C6) —p(t)/r(t) is positively regressive, which means 1 —
u(@®)p(t)/r(t) > 0 and

- 1y
| (ep/r(—(:)t")) Af = oo, @)

The theory of time scales, which has recently received a
lot of attention, was introduced by Hilger in his Ph.D. thesis
[1] in 1988 in order to unify continuous and discrete analysis;
see also [2]. Preliminaries about time scale calculus can be
found in [3-6] and hence we omit them here. Note that, for
some typical time scales, we have the following properties,
respectively:

(1) since T = R,, we have

o =p®)=t, A =1@,
b b (3)
wamzjfmw
(2) since T = N, we have
ot)=t+1, pt)=t—1,
A =fE+1) -0,
ffO=ft+)-f@ @

b b-1
J f(t)At:Zf(k), a<b;
a k=a
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2
(3) since T = {2",n € Ny}, we have
U(t)=2t, P(t):%, fA(t):M’
b log,b-1 (5)
[foa="3 r@)2 ase.
a k=log,a

Definition 1. A solution x of (1) is said to have a generalized
zero at t* € T if x(t")x(o(t*)) < 0 and it is said to
be nonoscillatory on T if there exists £, € T such that
x(t)x(o(t)) > 0 forall t > t,. Otherwise, it is oscillatory.
Equation (1) is said to be oscillatory if all solutions of (1) are
oscillatory.

In recent years, there has been much research activity
concerning the oscillation and nonoscillation of solutions of
dynamic equations on time scales; for example, see [1-16] and
the references therein. In Dosly and Hilger [9], the authors
considered the second-order dynamic equation as

(p@&)x* )" +q®O x(@ () =0 (6)

and gave necessary and sufficient conditions for the oscilla-
tion of all solutions on unbounded time scales. In Del Medico
and Kong [7, 8], the authors employed the following Riccati
transformation:

A
WIGER0 o)
x (t)

and gave sufficient conditions for Kamenev-type oscillation
criteria of (6) on a measure chain.

In Wang [15], the author considered second-order non-
linear damped differential equation as

u(t)

(a)y @) k(' 0)) +p @ k(x ©)+q@®) f (x@)=0,

t >t

(8)

using the following generalized Riccati transformations:

k !
V(t)=¢(t)a(t)[%(§;(t))+lz(t)], t >t
v(t)=¢(t)a(t) <0 +R(t) |, t=t,

)

where ¢ € Cl([to, 0),R,), R € C([ty,00),R), and gave new
oscillation criteria of (8). In [12], Saker considered second-
order nonlinear neutral delay dynamic equation as

(r® (0 + pOye-0)) ) + £ty -8) =0
(10)
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and improved some well-known oscillation results for
second-order neutral delay difference equations. In [13],
Saker et al. studied the second-order damped dynamic equa-
tion with damping as follows:

(ax*®)" + pO > ©+q@®) (fox7) =0 ()

and gave some new oscillation criteria. In Huang and Wang
[10], the authors considered second-order nonlinear dynamic
equation as

(p@®x*®)" + f (tx (@ (1)) = 0. (12)

By using a similar generalized Riccati transformation which
is more general than (7),

A pt)x®(t)
x (t)

where A € Cly(T,R, \ {0}), B € CL(T,R), the authors
extended the results in Del Medico and Kong [7, 8] and
established some new Kamenev-type oscillation criteria. In
[11], Qiu and Wang considered the second-order nonlinear
dynamic equation of a more general form

(PO @) kex*®)) + ftx@@)=0  (14)

and established some Kamenev-type oscillation criteria.

In [14], Senel had tried to establish Kamenev-type oscilla-
tion criteria for (1). However, it seemed that several mistakes
had been made and the obtained theorems and corollaries
are incorrect. In this paper, we will correct some mistakes
in [14] and establish some Kamenev-type oscillation criteria
for (1) by employing functions in some function classes and a
similar generalized Riccati transformation as (13) and as used
in [15, 16] for nonlinear differential equations. Finally, two
examples are included to show the significance of the results.

For simplicity, throughout this paper, we denote (a,b) N
T = (a,b)y, where a,b € R, and [a,b]y, [a,b), (a,b] are
denoted similarly.

u(t) = +B(), (13)

2. Preliminary Results

To establish Kamenev-type criteria for oscillation of (1), we
give three lemmas in this section.

Lemma 2. Assume that (C1)-(C6) hold and there exists a
sufficiently large t, € [t,, 00)y such that x(t) is a solution of
(1) satisfying x(t) > 0 fort € [t,,00)y. Then, fort € [t;,00)y,
one has

[ ()

A
A
<0, x"(t)>0,
e—p/r(t’tl) :|

(15)

(ro(=* ®)")" <o.

Proof. Let t; € [t;,00)y such that x(t) is a solution of (1)
satisfying x(t) > O for t € [t;,00)y; then we also have
x(g(t)) > 0. By (1) and (C5), it follows that, for t € [t;, 00),

(re (= ©)) +p@® (x* ) =~f (t.x(g®)) <0,
(16)
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so we have

=l

efp/r (t) t])

(rO(* 0)') e (61) + PO (x> ©) ey, (1)
e—p/r (t’ tl) efp/r (0 (t) > tl)

<0.
(17)

Assume that there exists t, > t, satisfying x*(t,) < 0;
then, for t € [t,, 00)y, we also have

A y A
[M] <0 (18)

e_P/r(t) tz)
Integrating (18) from ¢, to t € [t,, 00)y, we obtain

r (<" 0) r(n) (=" (1)

€ p/r (t.1;) € p/r (ty1)
, (19)
ro (<) PRYY:
e ) —r(t) (x* () <0

that is,
r)(x*®) <r(t)(x* (1)) e, (bt), (20

which implies that

e*P/r(ta t2) )1/}/' (21)

x*(0) < ' (6) 2 (1) ( 0

Integrating (21) from ¢, to t € [t,,00); and lettingt — o0,
by (C6), we obtain

x(t) < x(t,)

t fe . (st,)\
1/y A plri>"2 s
+r 7 (t,) x" (t,) L ( ) ) As 0,
(22)

which contradicts x(f) > 0. Hence x*(t) > 0, fort €

[t,,00)1, which implies from (16) that (r(t)(xA(t))y)A <0
holds. Lemma 2 is proved. O

Remark 3. In [14, (A™)], the key condition that —p(£)/r(t) is
regressive is missed; then the assumption

o 1
j (%) "a = oo (23)

may not be well presented. In this paper, the condition is
added as (C6).

Remark 4. In [14, (2.5)], it seems not to be so obvious to
obtain the inequality

y () > y(t) ey (Hts). (24)

And in [14, (2.7), (2.8)], the symbol < should be <. We have
improved the proof in Lemma 2.

Lemma 5. Assume that (C1)-(C6) hold and x(t) is a solution
of (1), x(t) > 0 fort € [t;,00)y with t; € [ty, 00)y. Then for
t € [t;,00), if 0 <y < 1, one has

A 1=y
(iag ) > (), (25)

And, if y > 1, one has

x(t) \'
(& (t)> > 0 (1), (26)

where

00 1-y/y
r(t) J; q(s)As) ’

t y-1
(2% (t) = <r1/y(t) J;l rl/)l,(s) AS) .

Proof. Since x(t) is a solution of (1) satistying x(t) > 0 for
t € [t;,00)r with t; € [t;, 00)y, by Lemma 2, we have

o (t) = <L
(27)

L0 (ro(x (t))y)A <0, telt,c0). (28

From (16) it follows that

(r0 (= ))<= (6 x(g®)). (29)

Integrating (29), we obtain
rO () 2 [ fsx(g)as
>[40 (g)as
=X (g0) [ awas G0
> () [ a8

> xV (b) J-OO q(s) As.

Hence, when 0 < y < 1, we have

Lo\ (Lo
(W) Z(XU_(t)) 2o (), tzt. (D)



Since (r(t‘)(xA(t))y)A <0,t € [t;,00), for y > 1, we get

A y\L1/Y
x(t)Zx(t)—x(tl) = Jt MAS

t /v (s)

iy [* 1
> (T(t)(xA (t)) ) Ll rlT(S)AS,

(32)
and we obtain
x(t) \"
(xA(t)> >a,(t), t=t,. (33)
So Lemma 5 is proved. O

Remark 6. In[14,(2.9),(2.10)], whenO < y < land foranyt €
[ee]

[t;, 00)y, the integral .L q(s)As in &, (t) must be convergent,

which means that

(o0
J q (s) As < oo. (34)
t
The condition should be added to the paper.
Lemma 7. Assume that (C1)-(C6) hold and x(t) is a solution

of (1) satisfying x(t) > 0 fort € [t,,00) witht, € [t;, 00)y.
Fort € [t;,00)y, define

ro(x* ) 35
u(t)=A(t)xy—(t)+B(t), (35)

where A € Cid('l]', R,\{0}),Be Crld('l]', R). Then u(t) satisfies
ub () + A(t) q(t) - B* (t) - D, (t) < 0, (36)

where

(A @) p(t) ()"
A fu®)=B@®)\ YA« (t)
A (t)( A )‘ r(®)

012
X[(M) ]  0<y<l,
Dy () = 4 A((tx) O\ [ ut)-B&)\'

0 -] 2 -

A(t)“t)<(r()t>> I A(&)) 1)

A ult)-B(t)\" YA a,(t

000 2) T
u()-B()\°
(G )| e

Proof. Without loss of generality we may assume that there
exists t; € [t;,00)y such that x(t) > 0 fort € [t,00);

then Lemmas 2 and 5 hold. Let u(t) be defined by (35). Then,
differentiating (35) and using (1), it follows that

w = (A) () (A) () 5

= (5) (-p(x*) - F (6x (g @) (38)

(r(xA)y)‘7 + B,

(37)

ABxY — A(x")®
x?(xv)?
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Using the fact that f(¢, x(g(t))) > q(t)x"(g(t)) = q()x"(¢),
we obtain

ANY AYY
uAs—Aq+BA—Ap(x ) +AA<r(x—)>

A INYAN

When 0 < y < 1, using the Pétzsche chain rule, we have

(39)

1

(") =y Jo (x+ hyxA)y_ldh > p(x7) K, (40)
and it follows that
p\A oY1 _A A o\Y
(iy) Zy(x))cy X =yi—g<%>. (41)

By Lemmas 2 and 5, for t > t,, we obtain

x_l(x_y(x_)ya_M (1B

x7  r (x°) \ x° Tr (x)° r\ A

xU

—>1.

x
(42)

So (39) becomes
u® < -Aq+B" - Ap(cxl)y/(l_w

(43)

+AA<u—B>" _ YAx [(u—B)“]z
A r A '
When y > 1, we have
1
(x") = yJ (x+ h;,txA)y_ldh AN, (44)
0
and it follows that

p\A -1_A
()" oyt (45)
xV xV X

By Lemmas 2 and 5, for t > t;, we obtain

e ]
(46)
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So (39) becomes

s a2 (5]

B\’ yAa« B\°1? )
u-— u-—
+AA< A ) _yr2[< A )]

By (43) and (47), (36) holds. Lemma 7 is proved. O

Remark 8. Note that, in general, (x"(t))A # (xA(t))y. In (14,
(3.6)], it seemed that Senel had been confused (x”(t))A with

(xA(t))y. Some similar mistakes had also been made in [14,
(3.8), (3.10)] and, finally, there are some problems about all
conclusions of the theorems and corollaries in [14].

3. Main Results

In this section we establish Kamenev-type criteria for oscil-
lation of (1). Our approach to oscillation problems of (1) is
based largely on the application of the Riccati transformation.
Firstly, we give some definitions.

LetDy={seT:s>0}and D = {(t,s) eT?>:t>s>0}
For any function f(t,s): T> — R, denote by f;' the partial
derivative of f with respect to s. Define

(o, B) = {(A,B) : A(s) € Cly (Dy, R, \ {0}),
B(s) € Ciy (D, R) s € Dy} ;
(48)
% ={H(t,;s) e C' (D,R,) : H(t,t) = 0,

H(t,s) > O,HzA(t,s) <0,t >520}.

These function classes will be used throughout this paper.
Now, we are in a position to give our first theorem.

Theorem 9. Assume that (C1)-(C6) hold and that there exist
(A,B) € (A, B) and H € X such that, foranyt, € T,

lim sup o )
x Jt [H(t,5) (A(9)q(s) - B* () (49)
t

—Hy (t,5) B° (s) - @, (s) | As = o0,

where

(—H (t,5) A(s) p(s) (a, ()"
r(s) (H2 (6, 9)A%(s) + H(t,5)A%(s) )’
" 4yH (t,5) A (s) @, (5)
O<y<l,
[7(s) (HZ (t:5) A% (s) + H (£, 5) A (5))
“H(H)AS) p(s) ]|
X(4H (t,s) A(s) 7 (s) 7},

>

y=1
r(s) (HA(E $)A% () + Hit, 5)A%(s))”
4yH (t,s) A(s) o, (s) ’
y>1, p=0,
. { r (s) (HA(E $)A%(s) + Hit, 5)A%(s))”
min

D, (s) = 1

>

4yH (t,s) A(s) «, (s)
y-1
(H(t,s) A(s) p(s)"/7"
« <r (5) (H2 (t,9) A% (5)
+H (t,5) A" (5))

/(y=1)
<o o)) f

p>0.
(50)

y>1,

Then, (1) is oscillatory.

Proof. Assume that (1) is not oscillatory. Without loss of
generality we may assume that there exists ¢, € [t;, 00)y such
that x(t) > 0 for t € [t;,00)y. Let u(t) be defined by (35).
Then, by Lemma 7, (36) holds.

For simplicity, in the following, we let H, =
H(t,o(s)), H = H(t,s), HzA = HZA(t, s) and omit the
arguments in the integrals.

Multiplying (36), where t is replaced by s, by H, and
integrating it with respect to s from ¢, to t with t € T and
t > o(t,), we obtain

t t t
j H(Aq-B")As < - J Hu®As + J H®yAs.  (51)
t t t

Noting that H(¢,t) = 0, by the integration by parts formula,
we have

t
A
LH(Aq—B ) As

t
<H(t,t)u(t,) + J (Hyu® + H®,) As
t

. (52)
=H(tt,)u(t)+ J H3 B’ As

t

t - B o
+J <H2AA”<u ) +HCD0>As.
! A
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When 0 < y < 1, we have S(HZAA0+HAA)<MI_4B>G
of u— B\’
HZAA< ) + HO, _yHAa2[<u—B)U]2
B\ r A
— _HA /(1-y) HAAa<u - )
ploa) T+ Hy A r(H2A” + HAYY'
+HAA<L¢;B)“_yHAocl[<u;B>"]2 4yHA«,
’ yHAw, (u -B >‘7 r(Hy A + HA®) 2
2 - -
., r(HA” + HA® (53) r A 2yHA«,
- gy’ v )
4yHA«,

r(H2A” + HAYY'

yHAw, <u—B>” r(HZAA‘7+HAA) 2 4yHAw,
r A 2yHAq, (55)
r( HAAC + H AA)Z On the other hand, when p > 0, we also have
< —HAp(a )" + Ty g
Lanb HﬁA"(” ) + HO,
When y = 1, we have oy
\'[/u-B
u-B\’ =_HAP(72> [( A ) ]
HZAA”< " ) + HO,
u—-B\° yHAa,[/u—-B\°
L HAP(BY g e(HBY O (G
r A 2 A
a
—B\® —B\°1? s—HA( 2 [ ]
+HAA<” B) _g[c B)] P
A r A
A 40 -B
r(HYA® + HAY) ~HAp /1, — B\° +(H; A7 + HA )< 1 )
) r ( A ) (56)
HA [( u-B )" ] ? (54) Using the inequality
[\ A
, Aab* ! —at < (A - 1) b, (57)
[r(H; A + HA®) — HAp|
= let A =y, and
4HAr
Y —B\?1"
HA[(u—B)" r(HAA® + HA) - HAp | aA:HAp(%> [(“AB> ] ,
-— - r
r A 2HA L ) (58)
) . r(HAT+ HA®)
[r (Hy A7 + HA*) - HAp] P
< THAT . ya,(HAp)
When y > 1, on the one hand, we have Then we have
' (“=BY | Ho
HAA (” B) + HO, 2 TR
4 59)

= —HAp( [

+ (Hy A + HA®) (

HA — B\? r(HAA‘T + HAA)2
B i “2 ( ) HZAA"(M > L H®, < —2 . (60)
A 4yHAa,

y/G-)
] o p-l <r(H2AA"+HAA)> '

- (HAp)l/(y_l) YOCZ

) So, when p = 0, we get
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while when p > 0 we get

— B o
HZAA"( ”—) + HO,
r(HAA + HA®Y 4
< min ,
4yHAw, (HAP)I/()FI) (61)

r(HAA” + HAY) YD
X| ——m .
14%%)

Therefore, for all y > 0, by (52), we have

Jt H(Aq-B*)As < H (t,t))u(t))
t
, (62)

t
+J HZAB0A5+J @, As,
t

t

which implies that
t
J [H(Aq-B*)-HyB - @, | As < H (t,1,) u(t,). (63)
f
Hence

1 ¢
H(t,t,) L [H(Aq_BA) -Hy B _q)l] As <u(t;) < oo,

(64)
which contradicts (49) and completes the proof. O

When y > 1, let (A,B) = (1,0), and Theorem 9 can be
simplified as the following corollary.

Corollary 10. Assume that (C1)-(C6) hold and that there
exists H € J such that, foranyt, € T,

t
htrris;pH (1 o) J [H(t,5)q(s) — D, (s)] As = 00, (65)
where
[ [r () H2 (1)~ H(t,5) p(s)]’
4H (t,s) 7 (s) ’
y=1,
A 2
7 (s) (H2 (t, s)) , L p=o,
4yH (t,s) «, (s)
@, (s) = 1 (@) (HZA(t, S))2 Y-
) H (t,s)a, (s)’ 1/y-1)
Y 2 ) (H (t,5) p(s))
X (r(S)HA(t »$) vy
ya(s)
y>1, p>0.

(66)

Then, (1) is oscillatory.

Remark 11. There are some mistakes in [14]. For example,
707D should be 7" in [14, (3.22)], the symbol As had not
correctly written in [14, (3.29)], HsA(t, s) + H(t, s)v(s) should
be HsA(t, $)z%(s) + H(t, s)v(s) in [14, (3.30), (3.32)], and the
bracket had been missed in [14, (3.34)].

When B = 0, (35) is simplified as

() (x* @)
xV (t) ’

Now we have the following theorem.

u(t) = Ar) ¢ [thoo),.  (67)

Theorem 12. Assume that (C1)-(C6) hold and that there exists
A€ Cid(DO, R, \ {0}) such that, for any t, € T,

lim sup Jt [A(s)g(s) — @5 (s)] As = oo, (68)
t— 00 t;

where

r(s) (AA(S))Z

4yA (s) oy (s)’
O<y<l,

—A(S) p(s) (o () 4

[4%)r(s) - AE)p©)]

4A (5)27’ (s)

4)/A (5) (22 (5) ’ 5
~[re(ar) y-1

min > 1/(y-1)
YA () (A(s) p(s))

(o)™
Yo, (s) ’

p>0.

> - b

(D3(S):< >1)p=0)

y>1
(69)

Then, (1) is oscillatory.

Proof. Assume that (1) is not oscillatory. Without loss of
generality we may assume that there exists ¢, € [t;, 00)y such
that x(t) > 0 for t € [t;,00)y. Let u(t) be defined by (67).
Then, by Lemma 7, we have

ut () + A q(t) -
where @ (t) is simplified as

D, (t) <0, (70)

. YIA-) | A u(t)
A(t) P () (a (1)) +AZ () (A(t))

Ol T 0eren

wor0 (53 (56 |

A um){yAm%aW wwyr
a0 (5 o) |

Oy(t)=1_




When 0 < y < 1, we have

WA < —Aq—Ap(ocl)y/(kY)

() -]

When y = 1, we have

u < -Aq +

:—A —— J—
1+ 4Ar r{\A
A 2
(A% - Ap)
<-Ag+ ——.
4Ar

When y > 1, on the one hand, we have

o g2
(3] (2
A r A

2

Aty A4y

(4% - ap) A[(u)"_w

2A

2
A yae (g)”_ Abr
- 4yAx, r A 2yAx,
2
r(A®
<-Ag+ ( )
4yAa,

On the other hand, when p > 0, we also have

s sl Y[+ (2)

Using the inequality
Aab*™ —at < (A -1)b,

let A = y and

-l [4)T

Then we have

+
(4p)" I\ ye,

Alr

/(y=1)
1 A\
u <-Aq y—(_r) .

]2

ya(Ap)""

(72)

r

(73)

(74)

(75)

(76)

(77)

(78)
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So, when p = 0, we get

(79)

while when p > 0 we get

2 .
P 105 e
u" < —Aq+ min , Tl :

4yAc,  (Ap) |G

(80)
Therefore, for all y > 0, we always have
u® < —Ag + s, (81)
which implies that
AWM q(t) - Dy (1) < —u (t). (82)

Let t be replaced by s, and integrating (82) with respect to s
from t, tot witht € T and t > o(t;), we obtain

t t
L [A(s)g(s) — D5 (s)] As < - L u® (s)As = u(t)) —u(t)

<u(t) < oo,
(83)
which contradicts (68) and completes the proof. O

When y > 1, let (A, B) = (1,0), and Theorem 12 can be
simplified as the following corollary.

Corollary 13. Assume that (C1)-(C6) hold and that, for any

t, €T,
t
lim sup J [q(s) — D, (s)] As = oo, (84)
t— 00 t;
where
2
p°(s) B
D, (5)=14ar(s) V b (85)
0, y>1

Then, (1) is oscillatory.

Remark 14. Tt seems that the inequality in [14, (3.19)] is
incorrect. From the definition of w(t) (see [14, (3.3)]), we can
see that w(t) is not always positive and we could not obtain
the conclusion in [14, Theorem 3.1]. As a result, we simplify
u(t) as (67) which satisfies u(¢) > 0 in this paper and get the
correct results.

4. Examples

In this section, we will show the application of our oscillation
criteria in two examples. We first give an example to demon-
strate Theorem 9 (or Corollary 10).
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Example 15. Consider the equation

((xA (t))y)A + %(xA (t))y +t(2+sint)x" (g (1) =0,
(86)

where r(t) = 1, p(t) = 1/t, q(t) = t, and y > 1, so we have
—p(t)/r(t) = —1/t. Letting H(t,s) = (t — s)*, (A, B) = (1,0),
we have

(i) T = [1, 00), and then there exists f; € [1,00) such that

gy (tt0) = e ) = exp [ &0(-1 ) )
= exp (Lt <—%> dT) = %,
L:)<Eﬂﬁé§%))uyAt:.Em<%)lwdt:°°’ (®7)
o, (t) = <r1/V(t) J:l rl/ll’(s) AS>”—1

- <f} ds)y1 =(t-1)""

When y = 1, we obtain

0. (5) - [ (s) HS (1, s)—H(t,s)p(s)]2
,(s) =

4H (t,s) 7 (s) )
88
[-2(t - 5) = (t - 5)? .5—1]2
) At s)? =0.
When y > 1, we obtain
T (H 6, S))2 I 1 D) o(s"7)
4yH (t,s) o, () 4y(t - 5)2(5 B to)y—l >
y-1 ( r(s)HA (t, s) )y/(yl)
(H(t,5) p ()7 yaals)
_ y-1 < s >w(y1)
(=57 -s)"" \pls - )™
= (Sl—y), (59)
@, (s)
(s (HZA(t, s))2 y-1
= min )
WH (t,5) 0 () (H (t,5) p ()"
y (T(S)HZA(t, S) )V/(Y_l)
Yo (s)
=0 (51_7) .

9
Hence
I ——L—jﬁHa) ()~ @, ()] &
TSP H (41, ), VA T IRASIAS

(90)

t
=i —s)’s—® d
1tnlso1<1)p(t - t1)2 L [(t s)’s 5 (5)] s

= 00.
That is, (65) holds. By Corollary 10 we see that (86) is
oscillatory.

(ii)) T = {n | n = 2,n € N}, then there exists t; € [2,00)y
such that

€ p/r (ttg) = ey (t,2) = exp (Lt & (‘%) AT)

t y-1 t Y-
% 0= <71/V(t) L rl/;(s) AS) - (Jt AS)

= (t b )y_l-
Similarly, we can get the conclusion that (86) is oscillatory by
Corollary 10.
The second example illustrates Theorem 12.

Example 16. Consider the equation

Loa, v\, Loa v, 1
(762 @)) + 55 ) + 25+ (9@) =0, )

where r(t) = 1/t, p(t) = 1/3t%, q(t) = 1/¢/7 = t75,
and y > 1/3, so we have —p(t)/r(t) = —1/3t. Let H(t,s) =
(t —5)% A(s) = s when T = [1,00); then there exists
t, € [1,00) such that

e—p/r (t’ tO)

=e_y3(t,1) = exp (Lt & (—%) dr)
~ew ([} (5:)) = (5)"
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«© e—P/r(t’tO) m}A
_— t
J;O r(t)
(] 1 1/y
=], () e

(o]
= J £2137dt = o,
1

1 00 1=-p)/y
o= (o ")

00 1=-p)/y
= <tj 5_7/3ds>

t
=0

(t*(lf}’)/ﬁ’) ,

t y-1
a, (t) = (rl/r (1) L rl/yl © As>

1 t y-1
=(— | s"ds
iy t

=o(r).
(93)
When 1/3 < y < 1, we obtain
2
__ wan , TO(A@)
@, (s) = —A(s) p(s) (e (5)) + PYEYAE)
_ B, 1 L3
352 (94)
. st ((7/3)54/3)2 Ny
4)/57/3
_ v (s,
For1/3 <y <1,wehave-2/3 <1/3y-1<0.
When y = 1, we obtain
AN (s)r(s) - A)p(s)]”
0, - L A0p0)
(95)

((7/3) s Lo 1/352)2 B
= 45713 . g1 =0 (S 2/3)'

When y > 1, we obtain
r(s) (4%)’
4yA (s) a, (s)

I (ZO5S
= ooy -~

Abstract and Applied Analysis

y-1 (AA(s)r(s) )V’ vy
(A@s) p ()Y VN you(s)

__r-l (7/3) s s\
(s713. 1/352)1/(1"1) y-O(sv71)

=0 (51/3—}/) >

(96)
(Ds (s)

ro)(A%0) -1
WA() gy () (A(s)p(s)) /P

(Rony
Yo (s)

97)

=0 (31/37").

Fory > 1,wehave 1/3 -y < -2/3 < 0.
Hence

t— 00

t
lim sup J [A(s)g(s) — D5 (s)] As
ty
. (98)
= lim supj [57/3 s D, (s)] ds = oo.
t— 00 t,
That is, (68) holds. By Theorem 12 we see that (92) is

oscillatory. Similarly, we can get the same conclusion when
T=Nand T ={2",n € Ny}.
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