
Research Article
Load Balancing for Future Internet:
An Approach Based on Game Theory

Shaoyi Song, Tingjie Lv, and Xia Chen

School of Economics and Management, Beijing University of Posts and Telecommunications, Beijing 100876, China

Correspondence should be addressed to Shaoyi Song; songshaoyi.sem@gmail.com

Received 9 September 2013; Accepted 11 December 2013; Published 10 February 2014

Academic Editor: Ching-Jong Liao

Copyright © 2014 Shaoyi Song et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In recent years, countries all over theworld consider the future internet as the country’s strategic development directions, so projects
about future internet have been launched by these countries. Load balancing algorithms and job allocations are main research
problems in areas of resourcemanagement of future internet. In this paper, we introduce a load balancingmodel for future internet.
We formulate the static load balancing problem in themodel proposed above as noncooperative game among users and cooperative
game among processors. Based on this model, we derive a load balancing algorithm for computing center. Finally, we execute the
algorithm presented in this paper with another three algorithms for comparison purpose. The advantages of our algorithm are
better scalability to the model, improving system performance, and low cost on maintaining system information.

1. Introduction

Due to rapid development, Internet has become one of the
most important infrastructures in information society. All
countries in the world have considered Internet’s sustainable
development as an important method to occupy information
technology and strategic demands for enhancing interna-
tional competitiveness.Therefore, all countries have launched
the research programs for future Internet. FIND under US
National Natural Science Foundation mainly develops the
future Internet architecture and answers “what Internet will
be in the next 15 years, and how it will run.” GENI project
mainly studies the future Internet from the aspect of security,
mobility, and sensor network and will build a large open
experimental platform which could truly verify the future
Internet’s architectural design. European 4WARD and FIRE
as well as Japanese AKARI have also carried out the study on
the future Internet [1–5]. China also launched the National
Basic Research Program “Service-oriented Future Internet
Structure and Mechanism Research.” As one part of this
program, this paper focuses on load balancing for computing
resources of future internet.

The concept of load balancing is a little different between
different researchers in different research areas. There is no

description for load balancing in future internet. During our
research on future internet, we find that users in future inter-
netmay only have a screen used to get access to internet, while
all the calculations, the storages, the application services, and
some other services provided by our PC nowadays are all
offered by internet in future. So in this paper, we define the
load balancing of future internet as a mechanism aiming to
spread the whole internet’s computing load, traffic load, and
other items depending on networks’ resources self-adaptively
and self-organizationally to each resource center equally, to
spread the whole work load to each working node in each
resource center, to minimize the average task response time
to users, to maximize the utilization of whole internet, and to
establish a green future internet. In this paper, we focus on
the computing load in computing center of future internet.

1.1. Load Balancing Algorithm. In traditional research, load
balancing algorithms can be classified as centralized (e.g.,
[6, 7]) and decentralized (e.g., [8, 9]). In the centralized
approach, there is only one nodemaking load balancing deci-
sions, and all the information have to go through this node.
All the jobs in the system are allocated by this node to the
other nodes to be processed. So there may be the single point

Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2014, Article ID 959782, 11 pages
http://dx.doi.org/10.1155/2014/959782

http://dx.doi.org/10.1155/2014/959782

2 Journal of Applied Mathematics

of failure. In decentralized approach, all nodes involved in
the load balancing decisions. Though, it is more robust than
the centralized one, it is costly for many nodes to maintain
load balancing information of whole system in decentralized
approach. Most decentralized approaches have each node
obtaining andmaintaining only partial information locally to
make suboptimal decisions [10].

According to the stage that the load balancing algorithm
implements on, load balancing algorithm can be divided
into static (e.g., [6, 11, 12]) and dynamic (e.g., [13–15]). In
static load balancing algorithm, all the information about the
system is known in advance, and the load balancing strategy
has been made by load balancing algorithm at compile time.
This load balancing strategy will be kept constantly during
runtime of the system. In contrast, dynamic algorithm is
implemented at running time, and the load balancing strate-
gies change according to the real statement of the system.
Though, the dynamic algorithm has better adaptability, it is
sensitive to the accuracy of the load information or state-
ment of system. It may cause terrible mistakes for dynamic
approach if the accuracy of information is slightly less than
100%, and in real system 100% accuracy is impossible to
achieve.

In recent years, the so-called hybrid scheduling has been
receiving some attention [16, 17]. It combines the advantages
of static and dynamic algorithms andminimizes their relative
inherent disadvantages.

1.2. Related Work. For load balancing problem, plenty of
work has been done. For example, Bryhni et al. summarized
load balancing algorithms in the area of scalable web service
for comparison purpose [18], and Lu et al. proposed a novel
load balancing algorithm for dynamic scalable web services
[19]. Soror et al. considered a common resource consolidation
scenario, in which several database management system
instances, each running in a virtual machine, are sharing a
common pool of physical computing resources [20].

Most of researchers resolved load balancing problem by
using game theory under the environment of distributed
computing [11], grid computing [6, 12, 21, 22], and clus-
ter computing [23, 24]. Viscolani characterized the pure-
strategyNash equilibria in a gamewith two competing profit-
maximizingmanufacturers who have access to a set of several
advertising media [25]. Nathani et al. proposed dynamic
planning based scheduling algorithm to maximize resource
utilization [26]. Ye and Chen investigated noncooperative
games on two resource allocation problems: the server load
balancing and the VM placement problems, having proved
the existence of a Nash equilibrium for both games [27]. Wu
et al. modeled a cooperative behavior control game where
the individual utility function is derived from the energy
efficiency in terms of the global max-min fairness with the
outage performance constraint [28]. Kong et al. investigated
the problem of virtual resource allocation in noncooperative
cloud environment, where computing resources are provided
dynamically in pay-as-you-go manners and virtual machines
can selfishly request resource to maximize its own benefit
[29].

Recently, with the cloud technology development, many
scientists shift their attentions to cloud and data center
environment [30–34]. Khiyaita et al. gave an overview of load
balancing in the cloud computing such as DNS, ZXTM LB,
and AMAZON LOAD BALANCING by exposing the most
important research challenges [35]. And we find that scal-
ability, energy efficiency, and green computing are another
three objects for load balancing research in now and future,
according to [28, 36–39]. As future internet is a new research
area, there is few work for load balancing using game theory
approach.

In this paper, we present a load balancingmodel for future
internet. Then we propose a semidecentralized solution to
the load balancing problem of future internet. This solution
is also a hybrid approach that combines a noncooperative
game among users and a cooperative game among processors
(NOCOG). In this model, all the nodes do not need to
maintain as much information as in traditional method.
So the advantages of our algorithm are better scalability to
the model, improving system performance, better fairness
between processor nodes, and low-cost on maintaining sys-
tem information.

In Section 2, we discuss a load balancingmodel for future
internet firstly. Then we formulate the static load balancing
problem in the model presented above as noncooperative
game among users and cooperative game among processors.
And we derive a load balancing algorithm for future internet,
described in Sections 3 and 4. Finally, we compare the
algorithmproposed in this paperwith the other three existing
algorithms, described in Section 5.

2. System Model for Load Balancing in
Future Internet

During our research on future internet from the viewpoint
of management, we believe that the future internet is easily
accessed, hierarchical, virtualized, perceptional, and person-
alized. As shown in Figure 1, future internet is virtualized
into three management layers. Level 1 is a national layer of
Resource control and processing center; level 2 is a region
layer of Resource control and processing center; level 3 is
networks routing nodes that can offer storage and calculating
services. Users can get services from internet by accessing
to the internet through their Phones, Pads, or some other
devices. We assume that all the jobs sent by users can be
considered as the requests to network resources. When users
send requests to level 3, and if level 3 cannot deal with these
requests, these requests may be sent to the upper level. So
no matter what layer sending requests is, it acts as a role of
user and the upper layer acts as the resource center. Based on
this, we present a load balancing model for future internet, as
shown in Figure 2.

The load balancing model for future internet proposed
in this paper consists of 𝑝 users, 𝑛 load managers, and 𝑛 ∗
𝑚 processors. All users generate the jobs/requests and send
them to the resource center. The jobs arrive at the resource
center and are allocated to processors to be processed by load

Journal of Applied Mathematics 3

Level 1

Level 2

Level 3

Figure 1: Architecture of future internet.

managers. In this paper, we assume the resource center as
computing center offering calculation services.

In this model, all users send jobs to computing center,
the jobs are received by load managers randomly, a load
manager can get jobs from many users, and jobs from a
user can be received by more than one load manager; a
load manager dispatches the jobs to the processors which is
managed as soon as it receives them; a job may be executed
by a allocated processor and wouldn’t be dispatched again
to another processor; each processor maintains a queue that
holds jobs to be executed; each job is processed on a first-
come-first-serve (FCFS) basis and then sends the results back
to users.

We call processors managed by a load manager and this
load manager a cluster, and information and job allocation
of a cluster are charged by the load manager. In this model,
user 𝑖 generates jobs and sends them to computing center
with an average job generation rate 𝐺

𝑖
; load manager 𝑗

with average job/request arrival rate 𝑅𝑗 is in charge of
dispatching jobs/requests it receives to a processor 𝑘 it
manages with an job sending rate 𝑆𝑗

𝑘
; a processor 𝑘managed

by load manager 𝑗 is characterized by average processing
rate 𝑃𝑗

𝑘
and send the result back to users after execution.

The vector 𝑆𝑗 = [𝑆
𝑗

1
, 𝑆
𝑗

2
, 𝑆
𝑗

3
, . . . , 𝑆

𝑗

𝑚
]
𝑇

is called the load
balancing strategy of cluster 𝑗 managed by load manager
𝑗. The vector 𝑆 = [𝑆

1
, 𝑆
2
, 𝑆
3
, . . . , 𝑆

𝑛
]
𝑇 is called the load

balancing strategy profile of the whole cloud center. The
vector 𝑔𝑖 = [𝑔1

𝑖
, 𝑔
2

𝑖
, 𝑔
3

𝑖
, . . . , 𝑔

𝑛

𝑖
]
𝑇 is called the job allocation

strategy of user 𝑖, and 𝑔 = [𝑔1, 𝑔2, 𝑔3, . . . , 𝑔𝑝]𝑇 is called the
load balancing strategy profile of the whole game.

Most of the previous work on static load balancing
formulates the problem as cooperative game among proces-
sors, whose main objective is to minimize overall expected
response time. Though, fairness index of processors can be
reached, fairness between users is difficult to achieve. In this
mechanism, some users may still wait for the response of
their jobs, while other users’ jobs have been processed and

sent the results back to users, as this mechanism ignores the
selfish character of the users. In the real world, users make
their jobs allocation strategies to get the minimal response
time. So the noncooperative approach has been proposed. By
simulation, we find that it has bad fairness among processors
in noncooperative approach. According to these above, we
formulate the load balancing problem in future internet as
noncooperative game among users. Then we formulate the
load balancing problem in a cluster as cooperative game
among processors. Our algorithm improves the fairness
among processors and the expected system time.

3. Load Balancing Algorithm as
Noncooperative Game among Users

A load manager dispatches the jobs to the processors it
manage as soon as it receives them; there is no waiting queue
at the load manager. So we consider a cluster managed by
a load manager as a super processor with an average job
processing rate, 𝜎𝑗:

𝜎
𝑗
=

𝑚

∑

𝑘=1

𝑃
𝑗

𝑘
, (1)

where 𝑚 is the number of processors managed by load
manager 𝑗. And each cluster is modeled as an M/M/1
(poisson arrivals and exponentially distributed processing
times) queuing system [40, 41]. In order to ensure that the
model is effective, the average job arrival rate 𝑅𝑗 must be less
than the total average processing rate of cluster 𝑗:

𝑅
𝑗
< 𝜎
𝑗
. (2)

𝑔
𝑗

𝑖
presents the fraction of workload that user 𝑖 sends to load

manager 𝑗, where 𝑔𝑗
𝑖
is
𝑛

∑

𝑗=1

𝑔
𝑗

𝑖
= 1, (3)

𝑔
𝑗

𝑖
≥ 0. (4)

As is shown in Figure 2, the problem is to decide how
to distribute jobs received from a user to clusters, and once
𝑔
𝑖
= [𝑔
1

𝑖
, 𝑔
2

𝑖
, . . . , 𝑔

𝑛

𝑖
]
𝑇 is determined by using our algorithm

proposed in this paper, cluster 𝑗 receives the jobs from user 𝑖
at a rate given by

𝑅
𝑗
=

𝑝

∑

𝑖=1

𝑔
𝑗

𝑖
∗ 𝐺
𝑖
. (5)

Completion time of a job in such a queuing system
involves transfer time and residence time in computing center
which consists of executing time of the job andwaiting time at
the queue. As each cluster is modeled as an M/M/1 queueing
system at the point of loadmanager, so the expected response
time of a job at cluster 𝑗 is given by

𝑇
𝑗
(𝑔
𝑖
) =

1

𝜎𝑗 − 𝑅𝑗
=

1

𝜎𝑗 − ∑
𝑝

𝑖=1
𝑔
𝑗

𝑖
∗ 𝐺
𝑖

. (6)

4 Journal of Applied Mathematics

User 1

User 2

User 3

User p

Load manager 1

Load manager 2

Load manager n

...

Processor 1

Processor 2

Processor m

Processor 1

Processor 2

Processor m

Processor 1

Processor 2

Processor m

...

...

...

......

Figure 2: Load balancing model for future internet.

We introduce a new variable 𝑡
𝑖𝑗
that defines the trans-

ferring time from user 𝑖 to cluster 𝑗, and it may be relevant
to the average size of a job, the distance between user and
computing center, and the bandwidth available for users and
some other factors. Thus, the overall expected response time
of user 𝑖 with its job allocation decision 𝑔

𝑖
= [𝑔
1

𝑖
, 𝑔
2

𝑖
, . . . , 𝑔

𝑛

𝑖
]
𝑇

is

𝑇
𝑖
(𝑔
𝑖
) =

𝑛

∑

𝑗=1

𝑔
𝑗

𝑖
∗ [𝑇
𝑗
(𝑔
𝑖
) + 𝑡
𝑖𝑗
]

=

𝑛

∑

𝑗=1

𝑔
𝑗

𝑖
∗ (

1

𝜎𝑗 − ∑
𝑝

𝑖=1
𝑔
𝑗

𝑖
∗ 𝐺
𝑖

+ 𝑡
𝑖𝑗
) .

(7)

The goal of a user is to find a load balancing strat-
egy 𝑔

𝑖
such that 𝑇

𝑖
(𝑔
𝑖
) is minimized, and the decision

of a user depends on the load balancing strategy of the
other users. For noncooperative game, a Nash equilibrium
can be achieved that no user can decrease its average
expected response time by unilaterally changing its strategy
[42, 43].

So the problem can be translated to the following opti-
mization problem [44]: minimizing the expected response
time of a user 𝑖 given by (7) with the constrains given by (2),
(3), and (4). From (7) it can be easily shown that 𝜕𝑇

𝑖
(𝑔)/𝜕𝑔

𝑗

𝑖
≥

0 and 𝜕
2
𝑇
𝑖
(𝑔)/𝜕𝑔

𝑗

𝑖

2

≥ 0; this means that 𝑇
𝑖
(𝑔) is a convex

function in𝑔𝑗
𝑖
and all the constrains (2), (3), and (4) are linear.

The first order Kuhn-Tucker (KT) conditions are necessary
and sufficient for optimality. The Lagrangian is

Lagrange

=

𝑛

∑

𝑗=1

(
𝑔
𝑗

𝑖

𝜎𝑗 − ∑
𝑝

𝑖=1
𝑔
𝑗

𝑖
∗ 𝐺
𝑖

+ 𝑔
𝑗

𝑖
𝑡
𝑖𝑗
) − 𝛼(

𝑛

∑

𝑗=1

𝑔
𝑗

𝑖
− 1) .

(8)

The KT conditions imply that 𝑔𝑖 = [𝑔1
𝑖
, 𝑔
2

𝑖
, 𝑔
3

𝑖
, . . . , 𝑔

𝑛

𝑖
]
𝑇

is the optimal solution to minimize (7) if and only if 𝛼 ≥ 0
exists. The necessary conditions are

𝜕Lagrange
𝜕𝑔
𝑗

𝑖

= 0,

𝜕Lagrange
𝜕𝛼

= 0.

(9)

Herewe introduce a variable𝜎𝑗
𝑖
, representing the available

processing rate at cluster 𝑗 as seen by user 𝑖. 𝜎𝑗
𝑖
is given by (10).

Attention, the higher average processing rate a cluster has,
the higher fraction of jobs are assigned to it, and the available
processing rate of a cluster is

𝜎
𝑗

𝑖
= 𝜎
𝑗
−

𝑝

∑

𝑞=1,1 ̸= 𝑖

𝑔
𝑗

𝑞
∗ 𝐺
𝑞
. (10)

According to (10), we can get
𝑝

∑

𝑖=1

𝑔
𝑗

𝑖
∗ 𝐺
𝑖
= 𝜎
𝑗
− 𝜎
𝑗

𝑖
+ 𝑔
𝑗

𝑖
∗ 𝐺
𝑖
. (11)

Journal of Applied Mathematics 5

Solving (9), we get the following:

𝛼 =
𝜎
𝑗

𝑖

(𝜎
𝑗

𝑖
− 𝑔
𝑗

𝑖
∗ 𝐺
𝑖
)
2
+ 𝑡
𝑖𝑗
, (12)

𝑔
𝑗

𝑖
=
𝜎
𝑗

𝑖
− √𝜎
𝑗

𝑖
/ (𝛼 − 𝑡

𝑖𝑗
)

𝐺
𝑖

. (13)

Due to constrain (4), we have𝑔𝑗
𝑖
= 0, and set this equation

to (12):

𝛼 =
1

𝜎
𝑗

𝑖

+ 𝑡
𝑖𝑗
. (14)

If we consider all the 𝑛 clusters in (12) and (13), the
equation may show us how negative 𝑔𝑗

𝑖
occurs. These are

due to the cluster with low processing rate. So some clusters
should be excluded, and the fraction of jobs assigned to these
clusters should be set to 0. We sort the cluster according to
(15), and 𝑠1 < 𝑠2 < 𝑠3 < ⋅ ⋅ ⋅ < 𝑠𝑛, where 𝑠𝑗 is given by

𝑠
𝑗
=
1

𝜎
𝑗

𝑖

+ 𝑡
𝑖𝑗
. (15)

This means that there exists an index 𝑟 (1 ≤ 𝑟 ≤ 𝑛),
making 𝑔𝑟

𝑖
= 0 (𝑝 ≤ 𝑟 ≤ 𝑛). So we get the minimum index

𝑟, which satisfies the inequality below (16), according to (3):

min
1≤𝑟≤𝑛

𝑟 :
∑
𝑟

𝑗=1
𝜎
𝑗

𝑖

∑
𝑟

𝑗=1
𝜎
𝑗

𝑖
− 𝐺
𝑖

≤ √𝑠𝑟 − 𝑡𝑖𝑗. (16)

We get 𝛼, where 𝛼 satisfies (17):

√𝛼 − 𝑡𝑖𝑗 =
∑
𝑟

𝑗=1
√𝜎
𝑗

𝑖

∑
𝑟

𝑗=1
𝜎
𝑗

𝑖
− 𝐺
𝑖

. (17)

Finally 𝑔𝑗
𝑖
is given by (18):

𝑔
𝑗

𝑖
=

{{{

{{{

{

𝜎
𝑗

𝑖
− √𝜎
𝑗

𝑖
/ (𝛼 − 𝑡

𝑖𝑗
)

𝐺
𝑖

1 ≤ 𝑗 < 𝑟

0 others.
(18)

Algorithm for noncooperative game among users: (see
Algorithm 1).

4. Cooperative Game among
Processors of a Cluster

A Cluster 𝑗 with average job arrival rate 𝑅𝑗 should dispatch
jobs to the processors he manages immediately when he
receives these jobs from users. Then the processors execute
these jobs and send the result back to users. As mentioned
in Section 4, each processor maintains a waiting queue and
executes a job at a time with FCFS. We model each processor
an M/M/1 queuing system. Here, we ignore the transfer

time of a job from a load manager to a processor, as they
are connected with an inner communication network in
computing center. So the response time of a job in a cluster
consists of its processing time (𝑇proc) and waiting time (𝑇wait)
in the queue:

𝑇

= 𝑇

proc + 𝑇

wait. (19)

We get the average response time of a job at a processor 𝑘
in a cluster 𝑗, 𝑇𝑗

𝑘
:

𝑇
𝑗

𝑘
=

1

𝑃
𝑗

𝑘
− 𝑆
𝑗

𝑘

, (20)

where 𝑃𝑗
𝑘
presents the average processing rate of processor 𝑘

in cluster 𝑗 and 𝑆𝑗
𝑘
is the sending rate of load manager 𝑗 to

processor 𝑘 it manages. As a job will not be transferred to
another processor after being dispatched to a processor 𝑘, 𝑆𝑗

𝑘

is also the job arrival rate of processor 𝑘 of cluster 𝑗. And all
the jobs dispatched by loadmanagers should be executed; that
is

𝑅
𝑗
=

𝑚

∑

𝑘=1

𝑆
𝑗

𝑘
. (21)

Now we formulate this problem as a cooperative game
among processors of a cluster, where (22) is the cost function
of a processor. All the processors work cooperatively to finish
all the jobs as fast as possible. So theNash bargaining solution
is determined by solving the following optimization problem:

Min
𝑆
𝑗

𝑘

𝑇
𝑗
=

𝑚

∑

𝑘=1

ln(1

𝑃
𝑗

𝑘
− 𝑆
𝑗

𝑘

) , (22)

S.t. 𝑆
𝑗

𝑘
≥ 0, (23)

𝑅
𝑗
=

𝑚

∑

𝑘=1

𝑆
𝑗

𝑘
. (24)

From (22) it can be easily shown that 𝜕𝑇𝑗/𝜕𝑆𝑗
𝑘
≥ 0 and

𝜕
2
𝑇
𝑗
/𝜕𝑆
𝑗

𝑘

2

≥ 0; this means that 𝑇𝑗 is a convex function in
𝑆
𝑗

𝑘
, and all the constrains (23) and (24) are linear. The first-

order Kuhn-Tucker conditions are necessary and sufficient
for optimality. The Lagrangian is

Lagrange =
𝑚

∑

𝑘=1

ln(1

𝑃
𝑗

𝑘
− 𝑆
𝑗

𝑘

) − 𝛽(𝑅
𝑗
−

𝑚

∑

𝑘=1

𝑆
𝑗

𝑘
) . (25)

The Kuhn-Tucker conditions imply that 𝑅𝑗, 𝑗 =

1, 2, . . . , 𝑛, is the optimal solution to (22) if and only if 𝛽 ≥ 0,
such that

𝜕Lagrange
𝜕𝑆
𝑗

𝑘

= 0,

𝜕Lagrange
𝜕𝛽

= 0.

(26)

6 Journal of Applied Mathematics

Input:
Users’ generating rate: [𝐺1, 𝐺2, 𝐺3, . . . , 𝐺𝑝];

Processors’ processing rate: [[

[

𝑃
1

1
⋅ ⋅ ⋅ 𝑃

𝑛

1

... d
...

𝑃
1

𝑚
⋅ ⋅ ⋅ 𝑃

𝑛

𝑚

]
]

]

;

The number of users, load managers, processors for each load manager: 𝑘, 𝑛,𝑚;
Transforming time: 𝑡

𝑖𝑗

Fault tolerant: 𝜀
Output:

Fraction of job assignment for each user: [[

[

𝑔
1

1
⋅ ⋅ ⋅ 𝑔

𝑛

1

... d
...

𝑔
1

𝑘
⋅ ⋅ ⋅ 𝑔

𝑛

𝑘

]
]

]

While (1) do

𝜎
𝑗

𝑖
← 𝜎
𝑗

𝑖
−

𝑝

∑
𝑞=1,𝑞!=𝑖

𝑔
𝑗

𝑞
∗ 𝐺
𝑞

For 𝑖 = 1, 2, 3, . . . , 𝑘
𝑃 ← 1; 𝛼 ← 0;

While (1) do

For 𝑗 = 1, 2, 3, . . . , 𝑟 do 𝑆 =

𝑟

∑

𝑗=1

𝜎
𝑗

𝑗
− √𝜎

𝑗

𝑖
/(𝛼 − 𝑡

𝑖𝑗
)

𝐺
𝑖

If (𝑠 ≤ √
1

𝜎
𝑝

𝑖

)𝑝 ← 𝑝 + 1; Else BREAK;

𝛼 ← (𝑠)
2
+ 𝑡
𝑖𝑗
;

For 𝑗 = 1, 2, 3, . . . , 𝑛

if (𝑗 < 𝑃) 𝑔𝑗
𝑖
=
𝜎
𝑗

𝑖
− √𝜎

𝑗

𝑖
/(𝛼 − 𝑡

𝑖𝑗
)

𝐺
𝑖

; else 𝑔𝑗
𝑖
← 0;

𝑇
𝑖
← 𝑇
𝑖
+

𝑔
𝑗

𝑖

𝜎
𝑗

𝑖
− 𝑔
𝑗

𝑖
𝐺
𝑖

+ 𝑔
𝑗

𝑖
𝑡
𝑖𝑗
;

For 𝑖 = 1, 2, 3, . . . , 𝑘 do
If (𝑇
𝑖
− 𝑇
𝑖

> 𝜀) 𝑇

𝑖

← 𝑇
𝑖
;

Else BREAK;

Algorithm 1

From (26), we may get the following:
1

𝑃
𝑗

𝑘
− 𝑆
𝑗

𝑘

− 𝛽 = 0. (27)

Solving (27) we get 𝑆𝑗
𝑘
the following:

𝑆
𝑗

𝑘
= 𝑃
𝑗

𝑘
−
1

𝛽
. (28)

Considering (24) and (28), we get (29), which determines
the Lagrange multiplayer 𝛽:

𝑅
𝑗
=

𝑚

∑

𝑘=1

𝑆
𝑗

𝑘
=

𝑚

∑

𝑘=1

(𝑃
𝑗

𝑘
−
1

𝛽
) . (29)

Due to the constrain 𝑆𝑗
𝑘
≥ 0, we set 𝑆𝑗

𝑘
= 0 into (28),

getting the following:

𝛽 =
1

𝑃
𝑗

𝑘

. (30)

If we consider all the𝑚 processors in (29), (28) may show
us how negative 𝑆𝑗

𝑘
occurs. These are due to the processors

with low processing rate. So some processors should be
excluded, and the arrival rate of these processors should be
set 0. We sort the processors by their value of 𝑡𝑗

𝑘
(𝑡
𝑗

1
< 𝑡
𝑗

2
<

𝑡
𝑗

3
< ⋅ ⋅ ⋅ < 𝑡

𝑗

𝑚
), where 𝑡𝑗

𝑘
satisfies the following (31):

𝑡
𝑗

𝑘
=
1

𝑃
𝑗

𝑘

. (31)

This means that there exists an index 𝑓 (1 ≤ 𝑓 ≤ 𝑚),
making 𝑃𝑗

𝑘
= 0 (𝑓 ≤ 𝑘 ≤ 𝑚). So we get the minimum index

𝑞, which satisfies the inequality below (32):

Min
1≤𝑓≤𝑚

𝑓 : 𝑅
𝑗
≤

𝑓

∑

𝑘=1

(𝑃
𝑗

𝑘
−
1

𝑡
𝑗

𝑞

) . (32)

Journal of Applied Mathematics 7

We get 𝛽 that satisfies (33) with index 𝑓 got in (32):

𝑅
𝑗
=

𝑓

∑

𝑘=1

(𝑃
𝑗

𝑘
−
1

𝛽
) . (33)

Finally 𝑆𝑗
𝑘
is given by (34) as follows:

𝑆
𝑗

𝑘
=
{

{

{

𝑃
𝑗

𝛽
−
1

𝛽
1 ≤ 𝑘 < 𝑓,

0 others.
(34)

Above all, 𝑆𝑗 = [𝑆𝑗
1
, 𝑆
𝑗

2
, 𝑆
𝑗

3
, . . . , 𝑆

𝑗

𝑚
]
𝑇

is the vector of load
allocation of cluster 𝑗, and 𝑆 = [𝑆1, 𝑆2, 𝑆3, . . . , 𝑆𝑛]𝑇 is the load
balancing profile of the whole cloud computing center.

Algorithm for cooperative game among processors in a
cluster is shown in Algorithm 2.

5. Results and Discussion

Weperform simulations to study the fairness between proces-
sors and between users at a certain utilization of computing
center, expected response time for users, and effect of system
load. In this simulation environment, there are 15 processors
managed by 4 load managers as shown in Table 1. And there
are 7 users generating jobs and sending them to computing
center; the relative job generation rates are shown in Table 2.

Processors numbered 1 to 4 aremanaged by loadmanager
1, processors numbered 5 to 8 aremanaged by loadmanager 2,
processors numbered 9 to 11 are managed by load manager 3,
and processors numbered 12 to 15 are managed by load man-
ager 4. Each relative processing rate is processing rate divided
by the lowest processing rate in the center. A user can send his
jobs to any loadmanager according to its job allocation policy,
which is made by gaming with the other users. Each relative
job generation rate is a user’s job generation rate divided
by total job generation rate of all users. A Load manager
allocates the jobs to processors it manages immediately when
it receives them from users. A processor maintains a waiting
queue modeled as M/M/1 queuing system, processes jobs
receiving from its load manager, and sends the results back
to users.

As we assume that the total job generation rate cannot
be faster than the total processing rate of center, the relative
job generation rate presents the proportion of a user’s job
generation rate to the total job generation rate of all the users.
Here we introduce a variable 𝜌, which presents the utilization
of computing center, and the real job generation rate of a user
is given by (35) as follows:

𝐺

𝑖
= 𝛾
𝑖
∗ 𝜌 ∗

𝑛

∑

𝑗=1

𝑚

∑

𝑘=1

𝑃
𝑗

𝑘
, (35)

where 𝑛 is the number of load manager, 𝑚 is processor
number of a cluster, and 𝛾

𝑖
presents the relative job generation

rate. During whole simulation, we assume that the average
communication delay time is 0.01 second.

During simulation, we implement another three algo-
rithms presented in [9, 10, 15] for comparision purpose.

Algorithm in [9] labeled as COG is formulated as a cooper-
ative game problem among brokers, but each broker needs
to maintain the information of all providers. The algorithm
in [10] labeled as NOG is formulated as a non-cooperative
game problem among users; the jobs are sent to the processor
directly according to the load balancing profile of users. And
algorithm in [15] labeled as PS is a proportional-scheme
algorithm; each user should maintain the information of all
processors. According to the information maintained, user 𝑖
in PS decides how to allocate its jobs to processer 𝑗 at a job
sending rate 𝜑

𝑖,𝑘
, where 𝜑

𝑖,𝑘
is given below:

𝜑
𝑖,𝑘
= 𝐺

𝑖
∗

𝑃
𝑗

𝑘

∑
𝑚

𝑘=1
𝑃
𝑗

𝑘

, (36)

where𝑚 is the number of processors in the system. All these
three algorithms are not hierarchical; jobs in these methods
are sent to the processors to be processed directly, while the
algorithm proposed in this paper is hierarchical, and the
computing center simulates a noncooperative game among
users then dispatches job to the load managers based on load
balancing profile got from our algorithm; and load managers
allocate them to processors.

5.1. Fairness. Fairness is an important measure of quality
to a load balancing algorithm. For users, fairness indicates
that each user has the same response time, and the scenario
that a user is still waiting for its response while the other
users have finished their jobs cannot exist. For processors,
fairness indicates that each processor has the same average
job completion time. If a load balancing algorithm is 100%
fair, the fairness index (FI) would be 1.0. The fairness index
FI is given by (37):

FI =
(∑
𝑛

𝑗=1
𝑇
𝑗

𝑘
)
2

𝑛 ∗ ∑
𝑛

𝑗=1
𝑇
𝑗

𝑘

, (37)

where 𝑇𝑗
𝑘
is the average completion time of processor 𝑘

managed by load manager 𝑗 discussed in [45]. In this part of
our simulation, the utilization of computing center is varied
from 10% to 90% increasing by 10%. In Figure 3, we present
the fairness index for different values of computing center
utilization ranging from 10% to 90% with 10% increase. It
can be observed that, for users, algorithms NOCOG and
PS maintain a fairness index of 1 over the whole range of
computing center utilization.TheNOGmethod has a fairness
index close to 1 at the low utilization of the computing center
andhas a fairness index of 1 at the high utilization.Conversely,
the fairness index of COG scheme is lower than that of
the other three schemes. For processors, with increasing the
utilization, the fairness index of NOCOGmethod is growing
up to 0.95 from 0.58, which is better than the PS and NOG
algorithms, while the COG scheme has a fairness index of 1
over the whole simulation. Above all, the algorithm proposed
in this paper improves the fairness index of processors in the
premise of guaranteeing the fairness of users, compared with
the traditional noncooperative method such as NOG. And at

8 Journal of Applied Mathematics

INPUT: Load Managers’ load vector/arriving rate: [𝑅1, 𝑅2, 𝑅3, . . . , 𝑅𝑛];

Processors’ processed rate: [[

[

𝑃
1

1
⋅ ⋅ ⋅ 𝑃

𝑛

1

... d
...

𝑃
1

𝑚
⋅ ⋅ ⋅ 𝑃

𝑛

𝑚

]
]

]

;

OUTPUT: Processors’ load vector/arriving rate: [[

[

𝑆
1

1
⋅ ⋅ ⋅ 𝑆

𝑛

1

... d
...

𝑆
1

𝑚
⋅ ⋅ ⋅ 𝑆

𝑛

𝑚

]
]

]

Initialization:
𝛽 ← 0; 𝑞 ← 1;

For 𝑗 = 1, 2, 3, . . . , 𝑛 do
If (𝑅𝑗 > 0)

For 𝑘 = 1, 2, 3, . . . , 𝑚 do // Sort the processors in increasing order of the equation below
such that 𝑡𝑗

1
< 𝑡
𝑗

2
< 𝑡
𝑗

3
< ⋅ ⋅ ⋅ < 𝑡

𝑗

𝑚

𝑡
𝑗

𝑘
←

1

𝑃
𝑗

𝑘

;

RIGHT← 0; // Find the minimum 𝑓 to satisfy the inequality

𝑅
𝑗
≤

𝑓

∑

𝑘=1

(𝑃
𝑗

𝑘
−
1

𝑡
𝑗

𝑓

)

While (𝑓 ≤ 𝑚) do
For 𝑘 = 1, 2, . . . , 𝑓 do

RIGHT← RIGHT + 𝑃𝑗
𝑘
−
1

𝑡
𝑗

𝑓

;

If (RIGHT ≥ 𝑅𝑗)
BREAK;

Else
𝑓 ← 𝑓 + 1

𝑎 ← 0; 𝑏 ← 1; SUM← 0; // Calculate 𝛼 using a binary search; sort 𝜎𝑖 in
increase order

While (1) do

𝛽 ←
𝑎 + 𝑏

2
;

For 𝑘 = 1, 2, 3, . . . , 𝑞 do
SUM← SUM + 𝑃

𝑗

𝑘
−
1

𝛽
;

If (SUM − 𝑅
𝑗
< 𝜀) BREAK

If (SUM > 𝑅
𝑗) 𝑏 ← 𝛽;
Else 𝑎 ← 𝛽;

For 𝑖 = 1, 2, 3, . . . , 𝑚 do
If (𝑖 ≤ 𝑞)

𝑆
𝑗

𝑘
= 𝑃
𝑗

𝑘
−
1

𝛽
;

Algorithm 2

the high utilization (from 70% to 90%), the processes fairness
index of NOCOG algorithm is very closed to that of COG
algorithm.

5.2. Response Time. In this simulation, we use the same
system configuration as before and set the utilization of
the cloud to 70%. According to the fairness definition, we
devise a job allocation method for each of the users in COG
algorithm:

𝐺
𝑗

𝑖
= 𝑅
𝑗
∗

𝐺
𝑖

∑
𝑝

𝑖=1
𝐺
𝑖

. (38)

And we devise a job allocation method for users in PS
algorithm:

𝐺
𝑗

𝑖
= 𝐺
𝑖
∗

𝑅
𝑗

∑
𝑛

𝑗=1
𝑅𝑗
. (39)

And the expeted job response time for each user is shown
in Figure 4, when the algorithm is at equilibrium.The average
job completion consists of transferring time to computing
center waiting time at the queue, and executing time of job
itself. Figure 4 shows that the NOCOG and PS algorithm
guarantee equal expected response time for all users but
with the disadvantage of a higher expected response time,

Journal of Applied Mathematics 9

Table 1: Configure information of computing center.

Load manager 1 2 3 4
Processor 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Processing rate 10 20 50 100 10 20 20 100 10 20 100 50 50 100 100
Relative processing rate 1 2 5 10 1 2 2 10 1 2 10 5 5 10 10

Fa
irn

es
s i

nd
ex

 o
f p

ro
ce

ss
or

s

Utilization

NOCOG
NOG

COG
PS

1.1

1

0.9

0.8

0.7

0.6

0.5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Utilization

NOCOG
NOG

COG
PS

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1.05

1

0.95

0.9

0.85

0.8

0.75

0.7

Fa
irn

es
s i

nd
ex

 o
f u

se
s

Figure 3: Fairness index versus utilization of computing center.

Table 2: Relative job generation rate of users.

User 1 2-3 4–6 7
Relative job generation rate 0.25 0.2 0.1 0.05

Ex
pe

ct
ed

 re
sp

on
se

 ti
m

e

COG
GBM
PS

User 1 User 2 User 3 User 4 User 5 User 6 User 7

0.30

0.25

0.20

0.15

0.10

0.05

0.00

Figure 4: Expected response time for each user.

while the COG algorithm has a better expected response
time for each user. We can also get that the NOCOG and PS
algorithms have a better fairness index.

5.3. Effect of System Load. In this part, we also vary the
computing center utilization from 10% to 90% with 10%

increase. All the simulation configurations are the same with
the two simulations above.We get the real job generation rate
of users via (35) then we calculate the load balancing profile
of cloud center and the average job completion time of each
processor.Then we get the average job completion time (avg)
of cloud center at the utilization of computing center varied
from 10% to 90% via (40):

avg =
∑
𝑛

𝑗=1
∑
𝑚

𝑘=1
𝑆
𝑗

𝑘
∗ 𝑇
𝑗

𝑘

∑
𝑛

𝑗=1
∑
𝑚

𝑘=1
𝑆
𝑗

𝑘

. (40)

Figure 5 shows the average system time of each algorithm
versus the utilization of computing center ranging from
10% to 90% with 10% increase. The average system time of
PS algorithm is always higher than that of the other three
algorithms, and the average system of COG algorithm is
always lower than that of the other three algorithms. At
the low utilization (from 10% to 40%) of computing center,
our NOCOG algorithm is better than NOG. At the middle
utilization (from 50% to 70%), the average system time of two
algorithms is nearly the same. And at the high utilization of
computing center, theNOCOGalgorithm is better thanNOG
again.

In Figure 6, it is shown howmany processors in the center
are participating in job processing for each algorithm. For
NOG and PS algorithms, all the processors participate in job
processing no matter what system load is. For NOCOG and
COG algorithms, the same number of processors is partic-
ipating in job processing at 10%, 20%, 40%, 80%, and 90%
load. And at another system load, there are less processors
participating in job processing of NOCOG algorithm than

10 Journal of Applied Mathematics
Av

er
ag

e s
ys

te
m

 ti
m

e (
s)

3.5

3

2.5

2

1.5

1

0.5

0

Utilization

NOCOG
NOG

COG
PS

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 5: Average system time versus computing center utilization.

Utilization

NOCOG
NOG

COG
PS

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

16

14

12

10

8

6

4

2

0

N
um

be
r o

f p
ar

tic
ip

at
in

g
pr

oc
es

so
rs

Figure 6: Number of participating processors versus system load.

those of COG algorithm. So our algorithm can achieve the
goal of energy conservation and emission reduction.

6. Conclusion

In this paper, we define the concept of load balancing in future
internet, discuss the probable architecture of future internet,
and present a new framework to solve problem for computing
center in future internet. As a cooperative game among
processors approach considers the minimal system executing
time as its goal; the fairness index of users is ignored.
Conversely, a noncooperative game among users approach
considers the minimal job response time of users as its goal;
the fairness index of processors is also ignored. At the same
time, we believe that the future internet is service-oriented,
so we solve the load balancing problem in future internet
from the perspective of users. According to the model we
establish, we formulate the problem as noncooperative game
among users and cooperative game among processors. From
the simulation results, we can draw conclusions that the
algorithm proposed in this paper improves the fairness index
of processors in the premise of guaranteeing the fairness
of users, improves the scalability and efficiency of system

compared with other noncooperative game methods among
users, and achieves the goal of energy conservation and
emission reduction.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This project was supported by National Basic Research Pro-
gramofChina (973 Program) underGrant no. 2012CB315805,
National Natural Science Foundation of China under Grant
no. 71172135 and no. 71231002, and the Fundamental
Research Funds for the Central Universities under Grant no.
2013RC0603.

References

[1] Future internet design (FIND) program, http://www.nets-
find.net/.

[2] L. Peterson, T. Anderson, D. Blumenthal et al., “GENI design
principles,” IEEE Computer, vol. 39, no. 9, pp. 102–105, 2006.

[3] N. Niebert, S. Baucke, I. El-Khayat et al., “The way 4 WARD to
the creation of a future internet,” in Proceedings of the IEEE 19th
International Symposium on Personal, Indoor and Mobile Radio
Communications (PIMRC ’08), pp. 1–5, September 2008.

[4] G. Anastasius, K. Arto, F. Serge, M. Martin, and P. Martin,
“Future internet research and experimentation: the FIRE initia-
tive,” ACM SIGCOMM Computer Communication Review, vol.
37, no. 3, pp. 89–92, 2007.

[5] H. Harai, “AKARI architecture design for new generation
network,” in Proceedings of the IEEE/LEOS Summer Topical
Meeting (LEOSST ’09), pp. 155–156, July 2009.

[6] R. Subrata, A. Y. Zomaya, and B. Landfeldt, “A cooperative game
framework for QoS guided job allocation schemes in grids,”
IEEE Transactions on Computers, vol. 57, no. 10, pp. 1413–1422,
2008.

[7] A. N. Tantawi and D. Towsley, “Optimal static load balancing in
distributed computer systems,” Journal of the ACM (JACM), vol.
32, no. 2, pp. 445–465, 1985.

[8] L. F. Bittencourt, F. K. Miyazawa, and A. L. Vignatti, “Dis-
tributed load balancing algorithms for heterogeneous players in
asynchronous networks,” Journal of Universal Computer Science,
vol. 18, no. 20, pp. 2771–2797, 2012.

[9] D. Grosu, A. T. Chronopoulos, and M. Y. Leung, “Load bal-
ancing in distributed systems: An approach using cooperative
games,” in Proceedings of the IEEE Abstracts and CD-ROM
Parallel and Distributed Processing Symposium (IPDPS ’02), pp.
52–61, 2002.

[10] D. Grosu and A. T. Chronopoulos, “Noncooperative load
balancing in distributed systems,” Journal of Parallel and Dis-
tributed Computing, vol. 65, no. 9, pp. 1022–1034, 2005.

[11] D. Grow and A. T. Chronopoulos, “A game-theoretic model
and algorithm for load balancing in distributed systems,” in
Proceeding of the 16th International Parallel and Distributed
Processing Symposium (IPDPS ’02), Fort Lauderdale, Fla, USA,
2002.

Journal of Applied Mathematics 11

[12] G. Murugaboopathi, V. Sujathabai, and T. K. S. R. Babu, “A
QoS based grid job allocation scheme using game theoretic
approach,” International Journal, vol. 2, no. 8, 2012.

[13] S. Penmatsa and A. T. Chronopoulos, “Dynamic multi-user
load balancing in distributed systems,” in Proceedings of the
21st International Parallel andDistributed Processing Symposium
(IPDPS ’07), pp. 1–10, March 2007.

[14] R. Schlagenhaft, M. Ruhwandl, H. Bauer, and C. Sporrer,
“Dynamic load balancing of a multi-cluster simulator on a
network of workstations,” in Proceedings of the 9th Workshop
on Parallel and Distributed Simulation (PADS ’95), pp. 175–180,
Lake Placid, NY, USA, June 1995.

[15] Y. C. Chow and W. H. Kohler, “Models for dynamic load
balancing in a heterogeneous multiple processor system,” IEEE
Transactions on Computers, vol. 100, no. 5, pp. 354–361, 1979.

[16] M. Avvenuti, L. Rizzo, and L. Vicisano, “A hybrid approach to
adaptive load sharing and its performance,” Journal of Systems
Architecture, vol. 42, no. 9-10, pp. 679–696, 1997.

[17] Y. Li, Y. Yang, M. Ma, and L. Zhou, “A hybrid load balancing
strategy of sequential tasks for grid computing environments,”
Future Generation Computer Systems, vol. 25, no. 8, pp. 819–828,
2009.

[18] H. Bryhni, E. Klovning, and Ø. Kure, “A Comparison of load
balancing techniques for scalable Web servers,” IEEE Network,
vol. 14, no. 4, pp. 58–64, 2000.

[19] Y. Lu, Q. Xie, G. Kliot, A. Geller, J. R. Larus, and A. Greenberg,
“Join-Idle-Queue: a novel load balancing algorithm for dynami-
cally scalable web services,” Performance Evaluation, vol. 68, no.
11, pp. 1056–1071, 2011.

[20] A. A. Soror, U. F.Minhas, A. Aboulnaga, K. Salem, P. Kokosielis,
and S. Kamath, “Automatic virtual machine configuration for
database workloads,” ACM Transactions on Database Systems,
vol. 35, no. 1, article 7, 2010.

[21] R. Subrata, A. Y. Zomaya, and B. Landfeldt, “Game-theoretic
approach for load balancing in computational grids,” IEEE
Transactions on Parallel and Distributed Systems, vol. 19, no. 1,
pp. 66–76, 2008.

[22] S. K. Goyal and M. Singh, “Adaptive and dynamic load balanc-
ing in grid using ant colony optimization,” International Journal
of Engineering and Technology, vol. 4, no. 9, p. 167, 2012.

[23] V. Ungureanu, B. Melamed, and M. Katehakis, “Effective load
balancing for cluster-based servers employing job preemption,”
Performance Evaluation, vol. 65, no. 8, pp. 606–622, 2008.

[24] Q. Zhang, A. Riska, W. Sun, E. Smirni, and G. Ciardo, “Work-
load-aware load balancing for clustered web servers,” IEEE
Transactions on Parallel and Distributed Systems, vol. 16, no. 3,
pp. 219–233, 2005.

[25] B. Viscolani, “Pure-strategy Nash equilibria in an advertis-
ing game with interference,” European Journal of Operational
Research, vol. 216, no. 3, pp. 605–612, 2012.

[26] A. Nathani, S. Chaudhary, and G. Somani, “Policy based
resource allocation in IaaS cloud,” Future Generation Computer
Systems, vol. 28, no. 1, pp. 94–103, 2012.

[27] D. Ye and J. Chen, “Non-cooperative games on multi-dimen-
sional resource allocation,” Future Generation Computer Sys-
tems, no. 6, pp. 1345–1352, 2013.

[28] D.Wu, Y. Cai, L. Zhou et al., “Cooperative strategies for energy-
aware ad hoc networks: a correlated equilibriumgame-theoretic
approach,” in Proceedings of the IEEE Transactions on Vehicular
Technology, vol. 62, no. 5, pp. 2303–2314, 2013.

[29] Z. Kong, C. Z. Xu, and M. Guo, “Mechanism design for
stochastic virtual resource allocation in non-cooperative cloud
systems,” inProceedings of the IEEE 4th International Conference
on Cloud Computing (CLOUD ’11), pp. 614–621, Washington,
DC, USA, July 2011.

[30] G. Xu, J. Pang, and X. Fu, “A load balancing model based on
cloud partitioning for the public cloud,” Tsinghua Science and
Technology, vol. 18, no. 1, pp. 34–39, 2013.

[31] S. Begum and C. S. R. Prashanth, “Review of Load Balancing in
Cloud Computing,” International Journal of Computer Science
Issues, vol. 10, no. 1, p. 343, 2013.

[32] M. Randles, D. Lamb, and A. Taleb-Bendiab, “A comparative
study into distributed load balancing algorithms for cloud
computing,” in Proceedings of the 24th IEEE International Con-
ference on Advanced Information Networking and Applications
Workshops (WAINA ’10), pp. 551–556, April 2010.

[33] S. C. Wang, K. Q. Yan, W. P. Liao, and S. S. Wang, “Towards
a load balancing in a three-level cloud computing network,”
in Proceedings of the 3rd IEEE International Conference on
Computer Science and Information Technology (ICCSIT ’10), vol.
1, pp. 108–113, July 2010.

[34] P. Membrey, D. Hows, and E. Plugge, “Load Balancing in the
Cloud,” in Practical Load Balancing, pp. 211–224, Apress, 2012.

[35] A. Khiyaita, M. Zbakh, and H. El Bakkali, “Load balancing
cloud computing: state of art,” in Proceedings of the National
Days of IEEE Network Security and Systems (JNS2 ’12), pp. 106–
109, Marrakech, Morocco, 2012.

[36] X. Meng, V. Pappas, and L. Zhang, “Improving the scalability
of data center networks with traffic-aware virtual machine
placement,” in Proceedings of the IEEE Conference on Computer
Communications (INFOCOM ’10), pp. 1–9, March 2010.

[37] D.Wu and Y. Cai, “A cooperative communication scheme based
on dynamic coalition formation game in clustered wireless
sensor networks,” in Proceedings of the 54th Annual IEEE Global
Telecommunications Conference: “Energizing Global Communi-
cations” (GLOBECOM ’11), pp. 1–6, December 2011.

[38] X. León and L. Navarro, “A Stackelberg game to derive the limits
of energy savings for the allocation of data center resources,”
Future Generation Computer Systems, vol. 29, no. 1, pp. 74–83,
2013.

[39] J. Baliga, R. W. A. Ayre, K. Hinton, and R. S. Tucker, “Green
cloud computing: balancing energy in processing, storage and
transport,” Proceedings of the IEEE, vol. 99, no. 1, pp. 149–167,
2010.

[40] N.Chee-Hock and S. Boon-He,QueueingModelling Fundamen-
tals, John Wiley & Sons, Chichester, UK, 2002.

[41] R. Jain,TheArt of Computer Systems Performance Analysis, John
Wiley & Sons, Chichester, UK, 1991.

[42] T. Basar, G. J. Olsder, and G. J. Clsder, Dynamic Noncooperative
GameTheory, Academic Press, London, UK, 1995.

[43] R. Gibbons, A Primer in GameTheory, Prentice Hall, 1992.
[44] J. C. Harsanyi and R. Selten, A General Theory of Equilibrium

Selection in Games, vol. 1, MIT Press Books, 1988.
[45] R. Jain, D. M. Chiu, and W. R. Hawe, A Quantitative Measure

of Fairness and Discrimination for Resource Allocation in Shared
Computer System, Eastern Research Laboratory, Digital Equip-
ment Corporation, 1984.

