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This paper investigates the errors of the solutions as well as the shadowing property of a class of nonlinear differential equations
which possess unique solutions on a certain interval for any admissible initial condition. The class of differential equations is
assumed to be approximated by well-posed truncated Taylor series expansions up to a certain order obtained about certain, in
general nonperiodic, sampling points 𝑡

𝑖
∈ [𝑡
0
, 𝑡
𝐽
] for 𝑖 = 0, 1, . . . , 𝐽 of the solution. Two examples are provided.

1. Introduction

This paper investigates the errors of the solutions of nonlinear
differential equations ̇𝑦(𝑡) = 𝑓(𝑦(𝑡), 𝑡), where𝑓 ∈ 𝐶

(𝑛+1)
(R𝑛×

(𝑡
0
, 𝑡
𝐽
);R𝑛), provided they exist and are unique for each given

admissible initial condition 𝑦(𝑡
0
) = 𝑦

0
, with respect to the

solutions of its approximate differential equations 𝑥̇(𝑡) =

∑
ℓ

𝑘=0
(𝑓
(𝑘)
(𝑥(𝑡
𝑖
), 𝑡
𝑖
)/𝑘!)(𝑥(𝑡) − 𝑥(𝑡

𝑖
))
𝑘; 𝑥(𝑡

0
) = 𝑥

0
, for any

given nonnegative integer ℓ ≤ 𝑛, obtained from truncated
Taylor expansions of the solutions about certain sampling
points 𝑡

𝑖
∈ [𝑡
0
, 𝑡
𝐽
] for 𝑖 = 0, 1, . . . , 𝐽. It is assumed that if a

unique solution exists on some interval [𝑡
0
, 𝑡
𝐽
] and that the

choice of the sampling points is such that the intersample
intervals [1–4] are subject to a certain maximum allowable
upper-bound then the error of the solution in the whole
interval [𝑡

0
, 𝑡
𝐽
] satisfies a prescribed norm bound. Using the

obtained results, the shadowing property [5–10] of the true
solution with respect to the approximate one is investigated
in the sense that “shadowing” initial conditions of the true
solution exist, for each initial condition of the approximate
differential equation, such that any approximated solution
trajectory on the interval of interest is arbitrarily close to
the true one under prescribed allowable maximum norms of

the error between both the true solution and the approximate
solutions. The problem is extended to the case when the
approximated solution is perturbed either by a sequence
of a certain allowable size at the sampling points or with
perturbation functions of a certain size in norm about the
whole considered interval. The main tool involved in the
analysis is an “ad hoc” use of a known preparatory theorem
to the celebrated Bernstein’s theorem, [11], which gives an
upper-bound for the maximum norm of the error in between
both the true and the approximate solutions. The results
are potentially extendable to functional equations involving
nonlinearities and the presence of delays subject to mixed
types of uncertainties [12–18]. On the other hand, different
characterizations of oscillatory solutions and limit oscillatory
solutions (limit cycles) have received important interest in the
literature concerning different types of nonlinear dynamic
continuous-time, discrete and hybrid systems, and differen-
tial equations [19–28]. The shadowing property is naturally
relevant for the characterization of limit oscillations. There-
fore, the formulation is applied in the second example to the
characterization of limit cycles generated as solutions to Van
der Pol’s equation.
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2. Calculation of the Exact Solution from
Taylor Series Expansion

Lemma 1. Assume that 𝑓 ∈ 𝐶
(𝑛+1)

((𝑎, 𝑏);R𝑛) and divide the
real interval (𝑎, 𝑏) into 𝐽 subintervals with points 𝑦

𝑛
∈ [𝑎, 𝑏]

such that

𝑎 ≡ 𝑦
0
< 𝑦
1
< 𝑦
2
< ⋅ ⋅ ⋅ < 𝑦

𝐽−1
< 𝑦
𝐽
≡ 𝑏. (1)

Then

𝑓 (𝑦
𝑖+1
)

= 𝑓 (𝑦
0
) + ∫

ℎ𝑖

0

𝑓 (𝑦 + 𝑦
0
) 𝑑𝑦

= 𝑓 (𝑦
0
) +

𝑖

∑

𝑗=−1

∫

ℎ𝑗+1

ℎ𝑗

𝑓 (𝑦 + 𝑦
0
) 𝑑𝑦

= 𝑓 (𝑦
0
) +

𝑖

∑

𝑗=−1

∫

ℎ𝑗

0

𝑓 (𝑦 + 𝑦
0
+ ℎ
𝑗
) 𝑑𝑦

= 𝑓 (𝑦
0
)

+

𝑖

∑

𝑗=−1

𝑛

∑

𝑘=0

𝑓
(𝑘)
(𝑐
𝑗
)

𝑘!
∫

ℎ𝑗

0

(𝑦 + 𝑦
0
+ ℎ
𝑗
− 𝑐
𝑗+1
)
𝑘

𝑑𝑦

+
1

𝑛!

𝑖

∑

𝑗=−1

∫

ℎ𝑗

0

∫

𝑦𝑗+1

𝑐𝑗+1

(𝑦 + 𝑦
0
+ ℎ
𝑗
− 𝑡)
𝑛

𝑓
(𝑛+1)

(𝑡) 𝑑𝑡 𝑑𝑦,

(2)

where ℎ
𝑛
= 𝑦
𝑛+1

− 𝑦
𝑛
, ℎ
𝑛
= 𝑦
𝑛+1

− 𝑦
0
= ∑
𝑛

𝑖=0
ℎ
𝑖
for 𝑛 =

0, 1, . . . , 𝐽 − 1 with ℎ
−1
= 0, and

𝑓 [𝑦
𝑖+1

(ℎ̃
𝑖+1
)]

= 𝑓 (𝑦
0
)

+

𝑖

∑

𝑗=−1

𝑛

∑

𝑘=0

𝑓
(𝑘)
(𝑐
𝑗
)

𝑘!
∫

ℎ𝑗

0

(𝑦 + 𝑦
0
+ ℎ
𝑗
− 𝑐
𝑗+1
)
𝑘

𝑑𝑦

+
1

𝑛!

𝑖

∑

𝑗=−1

∫

ℎ𝑗

0

∫

𝑦𝑗+1

𝑐𝑗+1

(𝑦 + 𝑦
0
+ ℎ
𝑗
− 𝑡)
𝑛

𝑓
(𝑛+1)

(𝑡) 𝑑𝑡 𝑑𝑦

+

𝑛

∑

𝑘=0

𝑓
(𝑘)
(𝑐
𝑖+1
)

𝑘!
∫

ℎ̃𝑖+1

0

(𝑦 + 𝑦
0
+ ℎ
𝑖
+ ℎ̃
𝑖+1

− 𝑐
𝑖+2
)
𝑘

𝑑𝑦

+
1

𝑛!
∫

ℎ̃𝑖+1

0

∫

𝑦𝑗+1

𝑐𝑗+1

(𝑦 + 𝑦
0
+ ℎ
𝑖
+ ℎ̃
𝑖+1

− 𝑡)
𝑛

𝑓
(𝑛+1)

(𝑡) 𝑑𝑡 𝑑𝑦;

(3)

∀𝑦 ∈ [𝑦
𝑖
, 𝑦
𝑖+1
] and any real 𝑐

𝑖
∈ [𝑦
𝑖
, 𝑦
𝑖+1
] for 𝑖 = 0, 1, . . . , 𝐽−1;

∀ℎ̃
𝑖
∈ [0, ℎ

𝑖
] for 𝑖 = 0, 1, . . . , 𝐽 − 2.

Proof. It follows from a well-known preparatory theorem to
Bernstein’s theorem [5] that

𝑓 (𝑦) =

𝑛

∑

𝑘=0

𝑓
(𝑘)
(𝑐
𝑖
)

𝑘!
(𝑦 − 𝑐

𝑖
)
𝑘

+
1

𝑛!
∫

𝑦

𝑐𝑖

(𝑦 − 𝑡)
𝑛
𝑓
(𝑛+1)

(𝑡) 𝑑𝑡.

(4)

Now, consider the nonlinear ordinary differential equa-
tion

̇𝑦 (𝑡) = 𝑓 (𝑦 (𝑡) , 𝑡) ; 𝑦 (𝑡
0
) = 𝑦
0 (5)

in the real interval R𝑛 × [𝑡
0
, 𝑡
𝐽
] such that 𝑓 ∈ 𝐶

(𝑛+1)
(R𝑛 ×

(𝑡
0
, 𝑡
𝐽
);R𝑛) is Lipschitz-continuous in [𝑦(𝑡

0
)−𝜃
0
, 𝑦(𝑡
0
)+𝜃
0
]×

[𝑡
0
, 𝑡
𝐽
]. The following result follows from Lemma 1.

Theorem 2. The unique solution of (5) in [𝑡
0
, 𝑡
𝐽
] is given by

𝑦 (𝑡) = 𝑦 (𝑡
0
)

+

𝑖−2

∑

𝑗=0

∫

ℎ𝑗

0

[

ℓ

∑

𝑘=0

𝑓
(𝑘)
(𝑦 (𝑡
𝑗
) , 𝑡
𝑗
)

𝑘!
(𝑦 (𝜏 + 𝑡

𝑗
) − 𝑦 (𝑡

𝑗
))
𝑘

+
1

ℓ!
∫

𝜏

0

(𝑦 (𝜎 + 𝑡
𝑗
) − 𝑦 (𝑡

𝑗
))
ℓ

×𝑓
(ℓ+1)

(𝑦 (𝜎 + 𝑡
𝑗
) , 𝜎 + 𝑡

𝑗
) 𝑑𝜎]𝑑𝜏

+ ∫

𝑡

𝑡𝑖−1

[

ℓ

∑

𝑘=0

𝑓
(𝑘)
(𝑦 (𝑡
𝑗
) , 𝑡
𝑗
)

𝑘!
(𝑦 (𝜏 + 𝑡

𝑖−1
) − 𝑦 (𝑡

𝑖−1
))
𝑘

+
1

ℓ!
∫

𝜏

0

(𝑦 (𝜎 + 𝑡
𝑖−1
) − 𝑦 (𝑡

𝑖−1
))
ℓ

× 𝑓
(ℓ+1)

(𝑦 (𝜎 + 𝑡
𝑖−1
) , 𝜎+𝑡

𝑖−1
) 𝑑𝜎]𝑑𝜏;

(6)

∀𝑡 ∈ [𝑡
𝑖−1
, 𝑡
𝑖
]; ∀𝑖 ∈ 𝐽 = {1, 2, . . . , 𝐽} and ∀ℓ(∈ Z

0+
) ≤ 𝑛,

where 𝑡
𝑖
∈ [𝑡
0
, 𝑡
𝐽
] are any arbitrary strictly ordered points such

that 𝑡
0
< 𝑡
1
< 𝑡
2
< ⋅ ⋅ ⋅ < 𝑡

𝐽−1
< 𝑡
𝐽
with ℎ

𝑖
= 𝑡
𝑖+1

− 𝑡
𝑖
for

𝑖 = 0, 1, . . . , 𝐽 − 1.

Proof. Note that 𝑓 ∈ 𝐶
(𝑛+1)

(R𝑛 × (𝑡
0
, 𝑡
𝐽
);R𝑛) is Lipschitz-

continuous in [𝑦(𝑡
0
) − 𝜃
0
, 𝑦(𝑡
0
) + 𝜃
0
] × [𝑡

0
, 𝑡
𝐽
] so that the

solution 𝑦(𝑡) on [𝑡
0
, 𝑡
𝐽
] is unique, provided that 𝑡

𝐽
= 𝑡
𝐽
(𝜃
0
, 𝑡
0
)

for the given 𝑡
0
∈ R and some 𝜃

0
∈ R𝑛 is such that 𝑦(𝑡) ∈

[𝑦(𝑡
0
) − 𝜃
0
, 𝑦(𝑡
0
) + 𝜃
0
]; ∀𝑡 ∈ [𝑡

0
, 𝑡
𝐽
] and 𝑡

𝐽
∈ (𝑡
0
, 𝑡
𝐽
] since

𝑓 : [𝑦(𝑡
0
) − 𝜃
0
, 𝑦(𝑡
0
) + 𝜃
0
] × [𝑡
0
, 𝑡
𝐽
] → R𝑛 is local Lipschitz-

continuous as a result. Such a unique solution is given by

𝑦 (𝑡) = 𝑦
𝑎
+ ∫

𝑡

𝑎

𝑓 (𝑦 (𝜏) , 𝜏) 𝑑𝜏; ∀𝑡 ∈ [𝑡
0
, 𝑡
𝐽
] . (7)
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Take any set of 𝐽 strictly ordered points 𝑡
𝑛
∈ [𝑡
0
, 𝑡
𝐽
] satisfying

𝑡
0
< 𝑡
1
< 𝑡
2
< ⋅ ⋅ ⋅ < 𝑡

𝐽−1
< 𝑡
𝐽
with ℎ

𝑖
= 𝑡
𝑖+1

− 𝑡
𝑖
for 𝑖 =

0, 1, . . . , 𝐽 − 1, so that

𝑦 (𝑡) = 𝑦 (𝑡
𝑖−1
) + ∫

𝑡

𝑡𝑖−1

𝑓 (𝑦 (𝜏) , 𝜏) 𝑑𝜏

= 𝑦 (𝑡
0
) +

𝑖−2

∑

𝑗=0

∫

𝑡𝑗+1

𝑡𝑗

𝑓 (𝑦 (𝜏) , 𝜏) 𝑑𝜏 + ∫

𝑡

𝑡𝑖−1

𝑓 (𝑦 (𝜏) , 𝜏) 𝑑𝜏;

(8)

∀𝑡 ∈ [𝑡
𝑖−1
, 𝑡
𝑖
]; ∀𝑖 ∈ 𝐽 = {1, 2, . . . , 𝐽}, with 𝑦(𝑡

0
), so that, by

choosing the real 𝑐
𝑖
∈ [𝑡
𝑖−1
, 𝑡
𝑖
] as 𝑐
𝑖
= 𝑡
𝑖
for 𝑖 = 0, 1, . . . , 𝐽 − 1,

one gets from (3) in the proof of Lemma 1 into (4):

𝑦 (𝑡) = 𝑦 (𝑡
0
)

+

𝑖−2

∑

𝑗=0

∫

ℎ𝑗

0

[

𝑛

∑

𝑘=0

𝑓
(𝑘)
(𝑦 (𝑡
𝑗
) , 𝑡
𝑗
)

𝑘!
(𝑦 (𝜏 + 𝑡

𝑗
) − 𝑦 (𝑡

𝑗
))
𝑘

+
1

𝑛!
∫

𝜏

0

(𝑦 (𝜎 + 𝑡
𝑗
) − 𝑦 (𝑡

𝑗
))
𝑛

×𝑓
(𝑛+1)

(𝑦 (𝜎 + 𝑡
𝑗
) , 𝜎 + 𝑡

𝑗
) 𝑑𝜎]𝑑𝜏

+ ∫

𝑡−𝑡𝑖−1

0

[

𝑛

∑

𝑘=0

𝑓
(𝑘)
(𝑦 (𝑡
𝑖−1
) , 𝑡
𝑖−1
)

𝑘!

× (𝑦 (𝜏 + 𝑡
𝑖−1
) − 𝑦 (𝑡

𝑖−1
))
𝑘

+
1

𝑛!
∫

𝜏

0

(𝑦 (𝜎 + 𝑡
𝑖−1
) − 𝑦 (𝑡

𝑖−1
))
𝑛

×𝑓
(𝑛+1)

(𝑦 (𝜎+𝑡
𝑖−1
) , 𝜎+𝑡

𝑖−1
) 𝑑𝜎]𝑑𝜏;

(9)

∀𝑡 ∈ [𝑡
𝑖−1
, 𝑡
𝑖
]; ∀𝑖 ∈ 𝐽 = {1, 2, . . . , 𝐽}. Note that, since 𝑓 ∈

𝐶
(𝑛+1)

(R𝑛 × (𝑡
0
, 𝑡
𝐽
);R𝑛), then 𝑓 ∈ 𝐶

(ℓ+1)
(R𝑛 × (𝑡

0
, 𝑡
𝐽
);R𝑛) for

any nonnegative integer ℓ ≤ 𝑛. Thus, we obtain the result
from a similar expression of (9) by replacing 𝑛 by ℓ(≤ 𝑛)

while truncating the Taylor series expansion by its (ℓ + 1)th
term.

A consequence ofTheorem 2 by using the same technique
of the solution construction is as follows.

Corollary 3. Consider the nonlinear ordinary differential
equation (5) with initial condition 𝑦(𝑡

0
) on the real interval

R𝑛 ×R
0+
, with initial conditions 𝑦(𝑗)(𝑡

0
) for 𝑗 = 0, 1, . . . , 𝑛 − 1,

such that𝑓 ∈ 𝐶
(𝑛+1)

(R𝑛×(𝑡
0
, 𝑡
𝐽
);R𝑛) is Lipschitz-continuous in

[𝑦(𝑡
0
) − 𝜃
0
, 𝑦(𝑡
0
) + 𝜃
0
] × [𝑡
0
, 𝑡
𝐽
] for some 𝜃

0
∈ R𝑛, and consider

also its ℓth order truncation

𝑥̇ (𝑡) =

ℓ

∑

𝑘=0

𝑓
(𝑘)
(𝑥 (𝑡
𝑖
) , 𝑡
𝑖
)

𝑘!
(𝑥 (𝑡) − 𝑥 (𝑡𝑖))

𝑘
;

𝑥 (𝑡
0
) = 𝑥
0

(10)

such that 𝑓(𝑘)(𝑦(𝑡), 𝑡) are bounded in [𝑦(𝑡
0
) − 𝜃, 𝑦(𝑡

0
) + 𝜃] ×

[𝑡
0
, 𝑡
𝐽
] for 𝑘 = 0, 1, . . . , ℓ + 1 for some nonnegative integer ℓ ≤

𝑛 and some 𝜃 ∈ 𝐵(𝜃
0
, 𝑅), where 𝐵(𝜃, 𝑅) = {𝑧 ∈ R𝑛 : ‖𝑧 −

𝜃
0
‖ ≤ 𝑅} for some positive real 𝑅 with 𝑥(𝑗)(𝑡

0
) = 𝑦

(𝑗)
(𝑡
0
) for

𝑗 = 0, 1, . . . , ℓ + 1.

Since 𝑓(𝑘)(𝑦(𝑡), 𝑡) are bounded in [𝑦(𝑡
0
) − 𝜃, 𝑦(𝑡

0
) + 𝜃] ×

[𝑡
0
, 𝑡
𝐽
] for 𝑘 = 0, 1, . . . , ℓ − 1, then the right-hand-side of (10)

is Lipschitz-continuous in [𝑦(𝑡
0
) − 𝜃, 𝑦(𝑡

0
) + 𝜃] × [𝑡

0
, 𝑡
𝐽
] ⊆

[𝑦(𝑡
0
) − 𝜃, 𝑦(𝑡

0
) + 𝜃] × [𝑡

0
, 𝑡
𝐽
]. Therefore, the unique solution

of the truncated differential equation (10) in [𝑎, 𝑏] is

𝑥 (𝑡) = 𝑥 (𝑡
0
)

+

ℓ

∑

𝑘=0

{

{

{

𝑖−2

∑

𝑗=0

∫

ℎ𝑗

0

[

𝑓
(𝑘)
(𝑥 (𝑡
𝑗
) , 𝑡
𝑗
)

𝑘!
(𝑥 (𝜏+𝑡

𝑗
)−𝑥 (𝑡

𝑗
))
𝑘

]𝑑𝜏

+ ∫

𝑡−𝑡𝑖−1

0

[
𝑓
(𝑘)
(𝑥 (𝑡
𝑖−1
) , 𝑡
𝑖−1
)

𝑘!

×(𝑥 (𝜎+𝑡
𝑖−1
)−𝑥 (𝑡

𝑖−1
))
𝑘
]𝑑𝜏

}

}

}

;

(11)

∀𝑡 ∈ [𝑡
𝑖−1
, 𝑡
𝑖
]; ∀𝑖 ∈ 𝐽 = {1, 2, . . . , 𝐽}, ∀ℓ(∈ Z

0+
) ≤ 𝑛, where

𝑡
𝑖
∈ [𝑡
0
, 𝑡
𝐽
] are arbitrary strictly ordered points such that 𝑡

0
<

𝑡
1
< 𝑡
2
< ⋅ ⋅ ⋅ < 𝑡

𝐽−1
< 𝑡
𝐽
with ℎ

𝑖
= 𝑡
𝑖+1
−𝑡
𝑖
for 𝑖 = 0, 1, . . . , 𝐽−1.

The error in between the exact solution of (10) and that of its
truncated form (5) is

𝑒 (𝑡) = 𝑦 (𝑡) − 𝑥 (𝑡)

=

𝑖−2

∑

𝑗=0

ℓ

∑

𝑘=0

∫

ℎ𝑗

0

(

𝑓
(𝑘)
(𝑦 (𝑡
𝑗
) , 𝑡
𝑗
)

𝑘!
(𝑦 (𝜏 + 𝑡

𝑗
) − 𝑦 (𝑡

𝑗
))
𝑘

−

𝑓
(𝑘)
(𝑥 (𝑡
𝑗
) , 𝑡
𝑗
)

𝑘!

×(𝑥 (𝜏 + 𝑡
𝑗
) − 𝑥 (𝑡

𝑗
))
𝑘

)𝑑𝜏

+
1

ℓ!

𝑖−2

∑

𝑗=0

∫

ℎ𝑗

0

∫

𝜏

0

(𝑦 (𝜎 + 𝑡
𝑗
) − 𝑦 (𝑡

𝑗
))
ℓ

× 𝑓
(ℓ+1)

(𝑦 (𝜎 + 𝑡
𝑗
) , 𝜎 + 𝑡

𝑗
) 𝑑𝜎 𝑑𝜏

+

ℓ

∑

𝑘=0

∫

𝑡−𝑡𝑖−1

0

(
𝑓
(𝑘)
(𝑦 (𝑡
𝑖−1
) , 𝑡
𝑖−1
)

𝑘!

× (𝑦 (𝜏 + 𝑡
𝑖−1
) − 𝑦 (𝑡

𝑖−1
))
𝑘

−
𝑓
(𝑘)
(𝑥 (𝑡
𝑖−1
) , 𝑡
𝑖−1
)

𝑘!

×(𝑥 (𝜏 + 𝑡
𝑖−1
) − 𝑥 (𝑡

𝑖−1
))
𝑘
)𝑑𝜏
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+
1

ℓ!
∫

𝑡−𝑡𝑖−1

0

∫

𝜏

0

(𝑦 (𝜎 + 𝑡
𝑖−1
) − 𝑦 (𝑡

𝑖−1
))
ℓ

× 𝑓
(ℓ+1)

(𝑦 (𝜎 + 𝑡
𝑖−1
) , 𝜎 + 𝑡

𝑖−1
) 𝑑𝜎 𝑑𝜏;

(12)

∀𝑡 ∈ [𝑡
𝑖−1
, 𝑡
𝑖
]; ∀𝑖 ∈ 𝐽 = {1, 2, . . . , 𝐽} and ∀ℓ(∈ Z

0+
) ≤ 𝑛.

Proof. Property (i) follows directly Theorem 2 applied to the
truncated differential equation (10) leading to the solution (11)
in [𝑡
0
, 𝑡
𝐽
]. Property (ii) follows from (6) and (11).

Now, a preparatory result follows to be then used to
guarantee sufficiency-type errors results in between the true
and the approximate solutions in the interval [𝑎, 𝑏].

Lemma 4. Assume that the following hypothesis holds.
(A1) 𝑓(𝑦(𝑡), 𝑡) and its first (ℓ+1) derivatives are uniformly

bounded from above on a bounded subset of their existence
domain with the specific boundedness constraint:

sup
𝑦(𝑡)∈[𝑦(𝑡0)−𝜃,𝑦(𝑡𝐽)+𝜃],𝑡∈[𝑡0 ,𝑡𝐽]

󵄩󵄩󵄩󵄩
𝑓 (𝑦 (𝑡) , 𝑡)

󵄩󵄩󵄩󵄩

≤ 𝐾 sup
𝑦(𝑡)∈[𝑦(𝑡0)−𝜃,𝑦(𝑡𝐽)+𝜃],𝑡∈[𝑡0 ,𝑡𝐽]

󵄩󵄩󵄩󵄩
𝑦 (𝑡)

󵄩󵄩󵄩󵄩
+ 𝐾
1
,

(13a)

sup
𝑦(𝑡)∈[𝑦(𝑡0)−𝜃,𝑦(𝑡𝐽)+𝜃],𝑡∈[𝑡0 ,𝑡𝐽]

󵄩󵄩󵄩󵄩󵄩
𝑓
(𝑗)
(𝑦 (𝑡) , 𝑡)

󵄩󵄩󵄩󵄩󵄩

≤ 𝐾 sup
𝑦(𝑡)∈[𝑦(𝑡0)−𝜃,𝑦(𝑡𝐽)+𝜃],𝑡∈[𝑡0 ,𝑡𝐽]

󵄩󵄩󵄩󵄩󵄩
𝑓
(𝑗−1)

(𝑦 (𝑡) , 𝑡)
󵄩󵄩󵄩󵄩󵄩
+ 𝐾
1
,

(13b)

for 𝑗 = 0, 1, . . . , ℓ + 1 and some 𝐾,𝐾
1
∈ R
0+

with 𝐾 < 1 if
𝐾
1
∈ R
+
. Then, the following properties hold.

(i) Assume that the intersample intervals ℎ
𝑖
= 𝑡
𝑖+1

− 𝑡
𝑖
for

𝑖 = 0, 1, . . . , 𝐽 − 1 fulfill the constraint

ℎ
𝑖
≤ ℎ

≤ min(𝑎
𝑖
,

1 − 𝜌
𝑥
/2

Λ
𝑥
(1−𝜌
𝑥
/2)
ℓ
,

𝜌
𝑥

2Λ
𝑥
(1−𝜌
𝑥
/2)
ℓ+1
(𝐽−1+𝜌

𝑥
/2)

)

(14)

for 𝑖 = 0, 1, . . . , 𝐽 − 1 and any given real constant 𝜌
𝑥
∈ (0, 2),

where

Λ
𝑥
=

ℓ

∑

𝑘=0

𝐾
𝑘

𝑘!
( sup
𝑦(𝑡)∈[𝑦(𝑡0)−𝜃,𝑦(𝑡𝐽)+𝜃],𝑡∈[𝑡0 ,𝑡𝐽]

󵄩󵄩󵄩󵄩
𝑓 (𝑦 (𝑡) , 𝑡)

󵄩󵄩󵄩󵄩
)

+

𝐾
1
(1 − 𝐾

ℓ+1
)

1 − 𝐾

(15)

𝑎
𝑖
:= min arg(𝑡 (∈ R

+
) > 𝑡
𝑖
:
󵄩󵄩󵄩󵄩
𝑥 (𝑡) − 𝑥 (𝑡𝑖)

󵄩󵄩󵄩󵄩
≤
𝜌
𝑥

2
) ;

∀𝑡 ∈ [𝑡
𝑖
, 𝑡
𝑖+1
) , 𝑖 = 0, 1, . . . , 𝐽 − 1.

(16)

Then, the approximated solution fulfills sup
𝑡∈[𝑡0 ,𝑡𝐽]

‖𝑥(𝑡) −

𝑥(𝑡
0
)‖ ≤ 𝜌

𝑥
/2 provided that

𝑡
1
= min arg(𝑡 (∈ R

+
) > 𝑡
0
:
󵄩󵄩󵄩󵄩
𝑥 (𝑡) − 𝑥 (𝑡0)

󵄩󵄩󵄩󵄩
≤
𝜌
𝑥

2
) .

(17)

(ii) Assume that the intersample intervals ℎ
𝑖
= 𝑡
𝑖+1

− 𝑡
𝑖
for

𝑖 = 0, 1, . . . , 𝐽 − 1 fulfill the constraint

ℎ
𝑖
≤ ℎ

≤ min(𝑏
𝑖
,

1 − 𝜌/2

Λ(1 − 𝜌/2)
ℓ
,

𝜌

2Λ(1 − 𝜌/2)
ℓ+1

(𝐽 − 1 + 𝜌/2)

)

(18)

for 𝑖 = 0, 1, . . . , 𝐽 − 1 and any given real constant 𝜌 ∈ (0, 1),
where

Λ =

ℓ+1

∑

𝑘=0

𝐾
𝑘

𝑘!

[

[

( sup
𝑦(𝑡)∈[𝑦(𝑡0)−𝜃,𝑦(𝑡𝐽)+𝜃],𝑡∈[𝑡0 ,𝑡𝐽]

󵄩󵄩󵄩󵄩
𝑓 (𝑦 (𝑡) , 𝑡)

󵄩󵄩󵄩󵄩
)

+

𝐾
1
(1 − 𝐾

𝑘
)

1 − 𝐾

]

]

(19)

𝑏
𝑖
:= min arg(𝑡 > 𝑡

𝑖
:
󵄩󵄩󵄩󵄩
𝑦 (𝑡) − 𝑦 (𝑡𝑖)

󵄩󵄩󵄩󵄩
≤
𝜌

2
) ;

∀𝑡 ∈ [𝑡
𝑖
, 𝑡
𝑖+1
) , 𝑖 = 0, 1, . . . , 𝐽 − 1.

(20)

Then, the true solution fulfills sup
𝑡∈[𝑡0 ,𝑡𝐽]

‖𝑦(𝑡) − 𝑦(𝑡
0
)‖ ≤ 𝜌/2

provided that

𝑡
1
= min arg(𝑡 (∈ R

+
) > 𝑡
0
:
󵄩󵄩󵄩󵄩
𝑦 (𝑡) − 𝑦 (𝑡0)

󵄩󵄩󵄩󵄩
≤
𝜌

2
) .

(21)

(iii) If 𝜌
𝑥
= 𝜌 ∈ (0, 1) and, furthermore,

ℎ
𝑖
≤ ℎ

≤ min(𝑐
𝑖
,

1 − 𝜌/2

Λ(1 − 𝜌/2)
ℓ
,

𝜌

2Λ(1 − 𝜌/2)
ℓ+1

(𝐽 − 1 + 𝜌/2)

) ;

𝑖 = 0, 1, . . . , 𝐽 − 1,

(22)

𝑐
𝑖
:= min arg(𝑡 > 𝑡

𝑖
: max (󵄩󵄩󵄩󵄩𝑦 (𝑡) − 𝑦 (𝑡𝑖)

󵄩󵄩󵄩󵄩
,
󵄩󵄩󵄩󵄩
𝑥 (𝑡) − 𝑥 (𝑡𝑖)

󵄩󵄩󵄩󵄩
)

≤
𝜌

2
) ; ∀𝑡 ∈ [𝑡

𝑖
, 𝑡
𝑖+1
) , 𝑖 = 0, 1, . . . , 𝐽 − 1,

(23)

𝑡
1
= min arg(𝑡 (∈ R

+
)

> 𝑡
0
: max (󵄩󵄩󵄩󵄩𝑦 (𝑡) − 𝑦 (𝑡0)

󵄩󵄩󵄩󵄩
,
󵄩󵄩󵄩󵄩
𝑥 (𝑡) − 𝑥 (𝑡0)

󵄩󵄩󵄩󵄩
)

≤
𝜌

2
)

(24)
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then the true, the approximated and the error solution fulfill

sup
𝑡∈[𝑡0 ,𝑡𝐽]

󵄩󵄩󵄩󵄩
𝑦 (𝑡) − 𝑦 (𝑡0)

󵄩󵄩󵄩󵄩
≤
𝜌

2
,

sup
𝑡∈[𝑡0 ,𝑡𝐽]

󵄩󵄩󵄩󵄩
𝑥 (𝑡) − 𝑥 (𝑡0)

󵄩󵄩󵄩󵄩
≤
𝜌

2
,

(25)

and the error in between them, 𝑒(𝑡) = 𝑦(𝑡) − 𝑥(𝑡), fulfills

sup
𝑡∈[𝑡0 ,𝑡𝐽]

󵄩󵄩󵄩󵄩
𝑒 (𝑡) − 𝑒 (𝑡0)

󵄩󵄩󵄩󵄩
≤ 𝜌. (26)

Proof. Proceeding recursively, one gets from Assumption A1
that

sup
𝑦(𝑡)∈[𝑦(𝑡0)−𝜃,𝑦(𝑡𝐽)+𝜃],𝑡∈[𝑡0 ,𝑡𝐽]

󵄩󵄩󵄩󵄩󵄩
𝑓
(𝑗)
(𝑦 (𝑡) , 𝑡)

󵄩󵄩󵄩󵄩󵄩

≤ 𝐾 sup
𝑦(𝑡)∈[𝑦(𝑡0)−𝜃,𝑦(𝑡𝐽)+𝜃],𝑡∈[𝑡0 ,𝑡𝐽]

󵄩󵄩󵄩󵄩󵄩
𝑓
(𝑗−1)

(𝑦 (𝑡) , 𝑡)
󵄩󵄩󵄩󵄩󵄩
+ 𝐾
1

≤ 𝐾
2 sup
𝑦(𝑡)∈[𝑦(𝑡0)−𝜃,𝑦(𝑡𝐽)+𝜃],𝑡∈[𝑡0 ,𝑡𝐽]

󵄩󵄩󵄩󵄩󵄩
𝑓
(𝑗−1)

(𝑦 (𝑡) , 𝑡)
󵄩󵄩󵄩󵄩󵄩

+ 𝐾
1 (1 + 𝐾)

≤ 𝐾
𝑘
𝐹
0
+ 𝐾
1
(

𝑘−1

∑

𝑖=0

𝐾
𝑖
) ≤ 𝐾

𝑘
𝐹
0
+

𝐾
1
(1 − 𝐾

𝑘
)

1 − 𝐾

≤ 𝐹
0
+

𝐾
1

1 − 𝐾

(27)

if 𝐾 < 1 and𝐾
1
̸= 0, and

sup
𝑦(𝑡)∈[𝑦(𝑡0)−𝜃,𝑦(𝑡𝐽)+𝜃],𝑡∈[𝑡0 ,𝑡𝐽]

󵄩󵄩󵄩󵄩󵄩
𝑓
(𝑘)
(𝑦 (𝑡) , 𝑡)

󵄩󵄩󵄩󵄩󵄩
≤ 𝐾
𝑘
𝐹
0
, (28)

if 𝐾
1
= 0, where

𝐹
0
= sup
𝑦(𝑡)∈[𝑦(𝑡0)−𝜃,𝑦(𝑡𝐽)+𝜃],𝑡∈[𝑡0 ,𝑡𝐽]

󵄩󵄩󵄩󵄩󵄩
𝑓
(0)
(𝑦 (𝑡) , 𝑡)

󵄩󵄩󵄩󵄩󵄩

= sup
𝑦(𝑡)∈[𝑦(𝑡0)−𝜃,𝑦(𝑡𝐽)+𝜃],𝑡∈[𝑡0 ,𝑡𝐽]

󵄩󵄩󵄩󵄩
𝑓 (𝑦 (𝑡) , 𝑡)

󵄩󵄩󵄩󵄩
< +∞.

(29)

Case (a). If 𝐾 < 1 and 𝐾
1
̸= 0 proceed by complete induction

by assuming that sup
𝑡∈[𝑡0,𝑡𝑖]

‖𝑥(𝑡) − 𝑥(𝑡
0
)‖ ≤ 𝜌

𝑥
/2 since the

condition (𝑡(∈ R
+
) > 𝑡
𝑖
: ‖𝑥(𝑡) − 𝑥(𝑡

𝑖
)‖ ≤ 𝜌

𝑥
/2) guarantees

that sup
𝑡∈[𝑡0 ,𝑡1]

‖𝑥(𝑡) − 𝑥(𝑡
0
)‖ ≤ 𝜌

𝑥
/2. Thus, one gets from (11)

that
󵄩󵄩󵄩󵄩
𝑥 (𝑡) − 𝑥 (𝑡𝑖)

󵄩󵄩󵄩󵄩

≤

ℓ

∑

𝑘=0

𝑖

∑

𝑗=0

ℎ
𝑗

𝑘!
(𝐾
𝑘
𝐹
0
+

𝐾
1
(1 − 𝐾

𝑘
)

1 − 𝐾
)(

𝜌
𝑥

2
)

𝑘 (30)

=

ℓ

∑

𝑘=0

𝑖−1

∑

𝑗=0

ℎ
𝑗

𝑘!
(𝐾
𝑘
𝐹
0
+

𝐾
1
(1 − 𝐾

𝑘
)

1 − 𝐾
)(

𝜌
𝑥

2
)

𝑘

+

ℓ

∑

𝑘=0

ℎ
𝑖

𝑘!
(𝐾
𝑘
𝐹
0
+

𝐾
1
(1 − 𝐾

𝑘
)

1 − 𝐾
)
󵄩󵄩󵄩󵄩
𝑥 (𝑡) − 𝑥 (𝑡𝑖)

󵄩󵄩󵄩󵄩

𝑘

≤

ℓ

∑

𝑘=0

𝑖−1

∑

𝑗=0

ℎ
𝑗

𝑘!
(𝐾
𝑘
𝐹
0
+

𝐾
1
(1 − 𝐾

𝑘
)

1 − 𝐾
)(

𝜌
𝑥

2
)

𝑘

+

ℓ

∑

𝑘=0

ℎ
𝑖

𝑘!
(𝐾
𝑘
𝐹
0
+

𝐾
1
(1 − 𝐾

𝑘
)

1 − 𝐾
)
󵄩󵄩󵄩󵄩
𝑥 (𝑡) − 𝑥 (𝑡𝑖)

󵄩󵄩󵄩󵄩

𝑘

= Λ
𝑥
(

ℓ

∑

𝑘=0

(
𝜌
𝑥

2
)

𝑘

)(

𝑖−1

∑

𝑗=0

ℎ
𝑗
)

+ ℎ
𝑖
Λ[

ℓ

∑

𝑘=0

(
󵄩󵄩󵄩󵄩
𝑥 (𝑡) − 𝑥 (𝑡𝑖)

󵄩󵄩󵄩󵄩

𝑘
)]

≤ 𝑖ℎΛ
𝑥
(

ℓ

∑

𝑘=0

(
𝜌
𝑥

2
)

𝑘

)

+ ℎ
𝑖
Λ
𝑥
(

ℓ

∑

𝑘=0

(
󵄩󵄩󵄩󵄩
𝑥 (𝑡) − 𝑥 (𝑡𝑖)

󵄩󵄩󵄩󵄩

𝑘−1
))

󵄩󵄩󵄩󵄩
𝑥 (𝑡) − 𝑥 (𝑡𝑖)

󵄩󵄩󵄩󵄩
;

∀𝑡 ∈ [𝑡
𝑖
, 𝑡
𝑖+1
) ,

(31)

where Λ
𝑥
= ∑
ℓ

𝑘=0
(1/𝑘!)(𝐾

𝑘
𝐹
0
+ (𝐾
1
(1 − 𝐾

𝑘
)/(1 − 𝐾))) and

ℎ ≥ max
0≤𝑖≤𝐽−1

ℎ
𝑖
, with ℎ

𝑖
= 𝑡
𝑖+1

− 𝑡
𝑖
, for 𝑖 = 0, 1, . . . , 𝐽 − 1, so

that

[1 − ℎ
𝑖
Λ
𝑥
(

ℓ

∑

𝑘=0

(
󵄩󵄩󵄩󵄩
𝑥 (𝑡) − 𝑥 (𝑡𝑖)

󵄩󵄩󵄩󵄩

𝑘−1
))]

×
󵄩󵄩󵄩󵄩
𝑥 (𝑡) − 𝑥 (𝑡𝑖)

󵄩󵄩󵄩󵄩
≤ 𝑖ℎΛ

𝑥
(

ℓ

∑

𝑘=0

(
𝜌
𝑥

2
)

𝑘

)

=

𝑖ℎΛ
𝑥
(1 − (𝜌

𝑥
/2)
ℓ+1
)

1 − 𝜌
𝑥
/2

,

(32)

or
󵄩󵄩󵄩󵄩
𝑥 (𝑡) − 𝑥 (𝑡𝑖)

󵄩󵄩󵄩󵄩

≤

𝑖ℎΛ
𝑥
(1 − (𝜌

𝑥
/2)
ℓ+1
)

[1 − ℎ
𝑖
Λ
𝑥
(∑
ℓ

𝑘=0
(
󵄩󵄩󵄩󵄩
𝑥 (𝑡) − 𝑥 (𝑡𝑖)

󵄩󵄩󵄩󵄩

𝑘−1
))] (1 − 𝜌

𝑥
/2)

≤

𝑖ℎΛ
𝑥
(1 − (𝜌

𝑥
/2)
ℓ+1
)

[1 − ((ℎ
𝑖
Λ
𝑥
(1 − (𝜌

𝑥
/2)
ℓ
)) / (1 − 𝜌

𝑥
/2))] (1 − 𝜌

𝑥
/2)

≤
𝜌
𝑥

2

(33)
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provided that 0 < 𝜌
𝑥

< 2, and 1 > ℎ
𝑖
Λ
𝑥
(∑
ℓ

𝑘=0
(‖𝑥(𝑡) −

𝑥(𝑡
𝑖
)‖
𝑘−1

)) which is guaranteed if ℎ
𝑖

< min(𝑎
𝑖
, (1 −

𝜌
𝑥
/2)/(Λ

𝑥
(1 − 𝜌

𝑥
/2)
ℓ
)) holds with 𝑎

𝑖
for 𝑖 = 0, 1, . . . , 𝐽 − 1,

defined in (16), provided that ‖𝑥(𝑡) − 𝑥(𝑡
𝑗
)‖ ≤ 𝜌

𝑥
/2; ∀𝑡 ∈

[𝑡
𝑗
, 𝑡
𝑗+1
) for 𝑗(≤ 𝑖) = 0, 1, . . . , 𝑖 − 1, and then (33) and ℎ

𝑗
<

((1 − 𝜌
𝑥
/2)/(Λ

𝑥
(1 − 𝜌

𝑥
/2)
ℓ
)) for 𝑗 = 0, 1, . . . , 𝑖 − 1 are jointly

guaranteed for the given 𝑖 = 0, 1, . . . , 𝐽 − 1 if

ℎ
𝑖

< min(
1 − 𝜌
𝑥
/2

Λ
𝑥
(1−𝜌
𝑥
/2)
ℓ
,

𝜌
𝑥

2Λ
𝑥
(1−𝜌
𝑥
/2)
ℓ+1

(𝐽−1+𝜌
𝑥
/2)

)

(34)

provided that ‖𝑥(𝑡) − 𝑥(𝑡
𝑗
)‖ ≤ 𝜌

𝑥
/2 for 𝑡 ∈ [𝑡

𝑗
, 𝑡
𝑗+1
) for 𝑗 =

0, 1, . . . , 𝑖 − 1, the last condition being identical to

𝑡
𝑖+1

≤ 𝑎
𝑖
:= min arg(𝑡 > 𝑡

𝑖
:
󵄩󵄩󵄩󵄩
𝑥 (𝑡) − 𝑥 (𝑡𝑖)

󵄩󵄩󵄩󵄩
≤
𝜌
𝑥

2
) . (35)

The above two conditions (34)-(35) reduce to (14). Then, one
gets from complete induction from (31), if (14) holds, the
following.

sup
𝑡∈[𝑡0,𝑡𝑖]

‖𝑥(𝑡) − 𝑥(𝑡
𝑖
)‖ ≤ 𝜌

𝑥
/2 ⇒ sup

𝑡∈[𝑡0 ,𝑡𝑖+1)
‖𝑥(𝑡) −

𝑥(𝑡
𝑖
)‖ ≤ 𝜌

𝑥
/2 and one gets also by continuity extension,

sup
𝑡∈[𝑡0,𝑡]

‖𝑥(𝑡)−𝑥(𝑡
0
)‖ ≤ 𝜌

𝑥
/2; ∀𝑡 ∈ [𝑡

0
, 𝑡
𝐽
]. Hence, we got

the result for Case (a).

Case (b). If 𝐾
1
= 0 then

󵄩󵄩󵄩󵄩
𝑥 (𝑡) − 𝑥 (𝑡𝑖)

󵄩󵄩󵄩󵄩

≤ 𝑖ℎΛ
𝑥0
(

ℓ

∑

𝑘=0

(
𝜌
𝑥

2
)

𝑘

)

+ ℎ
𝑖
Λ
𝑥0
(

ℓ

∑

𝑘=0

(
󵄩󵄩󵄩󵄩
𝑥 (𝑡) − 𝑥 (𝑡𝑖)

󵄩󵄩󵄩󵄩

𝑘−1
))

󵄩󵄩󵄩󵄩
𝑥 (𝑡) − 𝑥 (𝑡𝑖)

󵄩󵄩󵄩󵄩
;

(36)

∀𝑡 ∈ [𝑡
𝑖
, 𝑡
𝑖+1
), where Λ

𝑥0
= ∑
ℓ

𝑘=0
((𝐾
𝑘
𝐹
0
)/(𝑘!)) ≤ Λ

𝑥
, so that

(1−ℎΛ
𝑥0
)‖𝑥(𝑡)−𝑥(𝑡

𝑖
)‖ ≤ 𝑖ℎΛ

𝑥0
𝐸 for 𝑖 = 0, 1, . . . , 𝐽 and, thus,

one gets the following.
‖𝑥(𝑡) − 𝑥(𝑡

𝑖
)‖ ≤ ((𝑖ℎΛ

𝑥0
𝐸)/(1 − ℎΛ

𝑥0
)) ≤ 𝜌

𝑥
/2; ∀𝑡 ∈

[𝑡
𝑖
, 𝑡
𝑖+1
) for 𝑖 = 0, 1, . . . , 𝐽 and one gets from complete

induction the same conclusion sup
𝑡∈[𝑡0 ,𝑡]

‖𝑥(𝑡)−𝑥(𝑡
0
)‖ ≤ 𝜌

𝑥
/2;

∀𝑡 ∈ [𝑡
0
, 𝑡
𝐽
) as in Case (a) provided that (14) holds. Then,

(14) guarantees Property (i) for both Cases (a) and (b). Then,
Property (i) has been proven.

Property (ii) is proven “mutatis-mutandis” by noting that
Λ ≥ Λ

𝑥
from (15) and (19) and noting also that 𝑎

𝑖
in (16)

is replaced with 𝑏
𝑖
in (20) so that the admissible intersample

interval satisfying the constraint (14) is replaced by such an
interval satisfying the constraint (18). Finally, Property (iii)
follows from Properties (i)-(ii) by equalizing 𝜌

𝑥
and 𝜌 to take

a maximum value less than 1/2.

The following comments address the fact that it is not
necessary to deal with the solution of the true differential
equation (5) to calculate upper-bounds of the solution and
error in Lemma 4.

Remark 5. Note that one gets by direct integration from (5)
that

󵄩󵄩󵄩󵄩
𝑦 (𝑡)

󵄩󵄩󵄩󵄩

≤ sup
𝑡0≤𝜏≤𝑡𝐽

󵄩󵄩󵄩󵄩
𝑦 (𝜏)

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩
𝑦 (𝑡
0
)
󵄩󵄩󵄩󵄩
+ (𝑡
𝐽
− 𝑡
0
)𝐾 sup
𝑡0≤𝜏≤𝑡𝐽

󵄩󵄩󵄩󵄩
𝑦 (𝜏)

󵄩󵄩󵄩󵄩

(37)

leading to

sup
𝑡0≤𝑡≤𝑡𝐽

󵄩󵄩󵄩󵄩
𝑦 (𝑡)

󵄩󵄩󵄩󵄩
≤

𝐾 (𝑡
𝐽
− 𝑡
0
)

1 − 𝐾 (𝑡
𝐽
− 𝑡
0
)

󵄩󵄩󵄩󵄩
𝑦 (𝑡
0
)
󵄩󵄩󵄩󵄩

if
𝐽−1

∑

𝑖=0

ℎ
𝑖
<
1

𝐾
.

(38)

Thus, (25)-(26) might be guaranteed with sup
𝑡0≤𝑡≤𝑡𝐽

‖𝑦(𝑡) −

𝑦(𝑡
0
)‖ ≤ (1/(1 − 𝐾(𝑡

𝐽
− 𝑡
0
)))‖𝑦(𝑡

0
)‖ ≤ (𝜌/2) if ‖𝑦(𝑡

0
)‖ ≤

(𝜌/2)(1 − 𝐾(𝑡
𝐽
− 𝑡
0
)) < (𝜌/2). Thus, there is no need to

compute the solution of the true differential equation (5) and
sup
𝑡𝑖≤𝑡<𝑡𝑖+1

‖𝑦(𝑡) − 𝑦(𝑡
0
)‖ ≤ (𝜌/2) for 𝑖 = 0, 1, . . . , 𝐽 − 1 in (20)

and (23) if ‖𝑦(𝑡
0
)‖ ≤ (𝜌/2)(1 − 𝐾(𝑡

𝐽
− 𝑡
0
)).

One gets directly from Lemma 4 the subsequent result.

Theorem 6. Assume the conditions (13a) and (13b) and (22)–
(24) of Lemma 4(iii). Then

max( max
0≤𝑖≤𝐽−1

󵄩󵄩󵄩󵄩
𝑒 (𝑡
𝑖+1
) − 𝑒 (𝑡

𝑖
)
󵄩󵄩󵄩󵄩
,
󵄩󵄩󵄩󵄩
𝑒 (𝑡) − 𝑒 (𝑡0)

󵄩󵄩󵄩󵄩
) ≤ 𝜌 < 1;

max
𝑡∈[𝑡0,𝑡𝐽]

‖𝑒 (𝑡)‖ ≤
󵄩󵄩󵄩󵄩
𝑒 (𝑡
0
)
󵄩󵄩󵄩󵄩
+ 𝜌;

(39)

∀𝑡 ∈ [𝑡
0
, 𝑡
𝐽
], and

max
0≤𝑖≤𝐽−1

󵄩󵄩󵄩󵄩
𝑒 (𝑡) − 𝑒 (𝑡𝑖)

󵄩󵄩󵄩󵄩
≤ 𝜌;

∀𝑡 ∈ [𝑡
𝑖
, 𝑡
𝑖+1
] for 𝑖 = 0, 1, . . . , 𝐽 − 1

(40)

for 𝑖 = 0, 1, . . . , 𝐽 − 1.

3. Orbits of the Exact Solution,
Pseudo-Orbits of the Approximated
Solution, and the Shadowing Property

Now, consider a perturbed solution (11) of the approximated
differential equation (10) associated with a perturbation
𝑥(𝑡
𝑖
) = 𝑥(𝑡

−

𝑖
) + 𝑔(𝑡

𝑖
) with {𝑔(𝑡

𝑖
)} ⊂ R𝑛 at 𝑡 = 𝑡

𝑖
fulfilling

‖𝑔(𝑡
𝑖
)‖ ≤ 𝑔

𝑖
≤ 𝑔 for some given 𝑔 ∈ R, ∀𝑖 ∈ 𝐽. Note

that a perturbation at the initial 𝑡 = 𝑡
0
is considered by

choosing 𝑥(𝑡
0
) = 𝑦(𝑡

0
) + 𝑔
0
for some nonzero 𝑔

0
= 𝑔(𝑡
0
) ∈

R. The perturbed solution can be generated, in particular,
from impulsive controls of amplitudes 𝑔(𝑡

𝑖
) at the sequence
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{𝑡
𝑖
: 𝑖 ∈ 𝐽}. The exact and approximate solutions (6) and (11)

in [𝑡
0
, 𝑡
𝐽
], provided that they exist, are

𝑦 (𝑡) = 𝑦 (𝑡
𝑖
)

+

ℓ

∑

𝑘=0

∫

𝑡−𝑡𝑖

0

𝑓
(𝑘)
(𝑦 (𝑡
𝑖
) , 𝑡
𝑖
)

𝑘!
(𝑦 (𝜏 + 𝑡

𝑖
) − 𝑦 (𝑡

𝑖
))
𝑘
𝑑𝜏

+
1

ℓ!
∫

𝑡−𝑡𝑖

0

∫

𝜏

0

(𝑦 (𝜎 + 𝑡
𝑗
) − 𝑦 (𝑡

𝑗
))
ℓ

× 𝑓
(ℓ+1)

(𝑦 (𝜎 + 𝑡
𝑗
) , 𝜎 + 𝑡

𝑗
) 𝑑𝜎 𝑑𝜏;

∀𝑡 ∈ [𝑡
𝑖
, 𝑡
𝑖+1
] , 𝑖 = 0, 1, . . . , 𝐽 − 1,

(41)

𝑥 (𝑡) = 𝑥 (𝑡
𝑖
)

+

ℓ

∑

𝑘=0

∫

𝑡−𝑡𝑖

0

𝑓
(𝑘)
(𝑥 (𝑡
𝑖
) , 𝑡
𝑖
)

𝑘!
(𝑥 (𝜏 + 𝑡

𝑖
) − 𝑥 (𝑡

𝑖
))
𝑘
𝑑𝜏

+ 𝑈 (𝑡 − 𝑡
𝑖+1
) 𝑔 (𝑡
𝑖+1
) ;

∀𝑡 ∈ [𝑡
𝑖
, 𝑡
𝑖+1
] , 𝑖 = 0, 1, . . . , 𝐽 − 1,

(42)

where 𝑈(𝑡) is the Heaviside function. The error between the
exact and perturbed approximated solutions becomes

𝑒 (𝑡) = 𝑒 (𝑡
𝑖
)

+

ℓ

∑

𝑘=0

∫

𝑡−𝑡𝑖

0

(
𝑓
(𝑘)
(𝑦 (𝑡
𝑖
) , 𝑡
𝑖
)

𝑘!
(𝑦 (𝜏 + 𝑡

𝑖
) − 𝑦 (𝑡

𝑖
))
𝑘

−
𝑓
(𝑘)
(𝑥 (𝑡
𝑖
) , 𝑡
𝑖
)

𝑘!

× (𝑥 (𝜏 + 𝑡
𝑖
) − 𝑥 (𝑡

𝑖
))
𝑘
)𝑑𝜏

+
1

ℓ!
∫

𝑡−𝑡𝑖

0

∫

𝜏

0

(𝑦 (𝜎 + 𝑡
𝑗
) − 𝑦 (𝑡

𝑗
))
ℓ

× 𝑓
(ℓ+1)

(𝑦 (𝜎 + 𝑡
𝑗
) , 𝜎 + 𝑡

𝑗
) 𝑑𝜎 𝑑𝜏

− 𝑈 (𝑡 − 𝑡
𝑖+1
) 𝑔 (𝑡
𝑖+1
) ;

(43)

∀𝑡 ∈ [𝑡
𝑖
, 𝑡
𝑖+1
]; 𝑖 = 0, 1, . . . , 𝐽 − 1. Now, one gets from (25)-(26)

of Lemma 4:
󵄩󵄩󵄩󵄩
𝑒 (𝑡) − 𝑒 (𝑡𝑖)

󵄩󵄩󵄩󵄩

≤

ℓ

∑

𝑘=0

2
𝑘+1

𝑘!
(𝑡 − 𝑡
𝑖
)𝑀
𝑖𝑘
(
𝜌

2
)

𝑘

+
1

ℓ!
(𝑡 − 𝑡
𝑖
)
2
2
ℓ
𝑀
𝑖,ℓ+1

(
𝜌

2
)

ℓ

+ 𝑔
𝑖
; ∀𝑡 ∈ [𝑡

𝑖
, 𝑡
𝑖+1
] ,

(44)

where

𝑀
𝑖𝑘
= sup
𝑦(𝑡)∈[𝑦(𝑡𝑖)−𝜃,𝑦(𝑡𝑖)+𝜃],𝑡∈[𝑡𝑖 ,𝑡𝑖+1]

󵄩󵄩󵄩󵄩󵄩
𝑓
(𝑗)
(𝑦 (𝑡) , 𝑡)

󵄩󵄩󵄩󵄩󵄩

≤ 𝐾
𝑘
𝐹
0
+

𝐾
1
(1 − 𝐾

𝑘
)

1 − 𝐾

≤
𝐾
𝑘+1

𝜌

2
+

𝐾
1
(1 − 𝐾

𝑘
)

1 − 𝐾
≤
𝜌

2
+

𝐾
1

1 − 𝐾

(45)

from (27) and one gets after using the triangle inequality,

󵄩󵄩󵄩󵄩
𝑒 (𝑡) − 𝑒 (𝑡𝑖)

󵄩󵄩󵄩󵄩

≤

𝑚

∑

𝑗=𝑖

(

ℓ

∑

𝑘=0

2
𝑘+1

𝑘!
(𝑡 − 𝑡
𝑗
) [

𝐾
𝑘+1

𝜌

2
+

𝐾
1
(1 − 𝐾

𝑘
)

1 − 𝐾
](

𝜌

2
)

𝑘

+
1

ℓ!
(𝑡 − 𝑡
𝑗
)
2

2
ℓ

×[
𝐾
ℓ+2
𝜌

2
+

𝐾
1
(1 − 𝐾

ℓ+1
)

1 − 𝐾
](

𝜌

2
)

ℓ

+ 𝑔
𝑗
) ;

(46)

∀𝑡 ∈ [𝑡
𝑖+𝑚

, 𝑡
𝑖+𝑚+1

] for𝑚 = 0, 1, . . . , 𝐽 − 𝑖 − 1; 𝑖 = 0, 1, . . . , 𝐽 − 1.
One obtains easily from (46), either by complete induction or
via recursive calculation, that

󵄩󵄩󵄩󵄩
𝑒 (𝑡) − 𝑒 (𝑡𝑖)

󵄩󵄩󵄩󵄩

≤

𝐽−1

∑

𝑗=0

(

ℓ

∑

𝑘=0

2
𝑘+1

𝑘!
(𝑡 − 𝑡
𝑗
)[
𝐾
𝑘+1

𝜌

2
+

𝐾
1
(1 − 𝐾

𝑘
)

1 − 𝐾
](

𝜌

2
)

𝑘

+
1

ℓ!
(𝑡 − 𝑡
𝑗
)
2

2
ℓ

× [
𝐾
ℓ+2
𝜌

2
+

𝐾
1
(1 − 𝐾

ℓ+1
)

1 − 𝐾
](

𝜌

2
)

ℓ

+𝑔
𝑗
)

(47a)

≤ 𝐽ℎ(

ℓ

∑

𝑘=0

2
𝑘+1

𝑘!
[
𝐾
𝑘+1

𝜌

2
+

𝐾
1
(1 − 𝐾

𝑘
)

1 − 𝐾
](

𝜌

2
)

𝑘

+
𝐽ℎ

ℓ!
2
ℓ

×[
𝐾
ℓ+2
𝜌

2
+

𝐾
1
(1 − 𝐾

ℓ+1
)

1 − 𝐾
](

𝜌

2
)

ℓ

) + 𝐽𝑔,

(47b)
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‖𝑒 (𝑡)‖ ≤
󵄩󵄩󵄩󵄩
𝑒 (𝑡
0
)
󵄩󵄩󵄩󵄩

+

𝐽−1

∑

𝑗=0

(𝑡−𝑡
𝑗
)(

ℓ

∑

𝑘=0

2
𝑘+1

𝑘!
[
𝐾
𝑘+1

𝜌

2
+

𝐾
1
(1−𝐾

𝑘
)

1−𝐾
](

𝜌

2
)

𝑘

+
1

ℓ!
(𝑡 − 𝑡
𝑗
) 2
ℓ

× [
𝐾
ℓ+2
𝜌

2
+

𝐾
1
(1 − 𝐾

ℓ+1
)

1 − 𝐾
]

× (
𝜌

2
)

ℓ

+ 𝑔
𝑗
)

(47c)

≤
󵄩󵄩󵄩󵄩
𝑒 (𝑡
0
)
󵄩󵄩󵄩󵄩

+ 𝐽ℎ(

ℓ

∑

𝑘=0

2
𝑘+1

𝑘!
[
𝐾
𝑘+1

𝜌

2
+

𝐾
1
(1 − 𝐾

𝑘
)

1 − 𝐾
](

𝜌

2
)

𝑘

+
𝐽ℎ

ℓ!
2
ℓ
[
𝐾
ℓ+2
𝜌

2
+

𝐾
1
(1 − 𝐾

ℓ+1
)

1 − 𝐾
](

𝜌

2
)

ℓ

)

+ 𝐽𝑔;

(47d)

∀𝑡 ∈ [𝑡
0
, 𝑡
0
+ ∑
𝐽−1

𝑖=0
ℎ
𝑖
](⊆ [𝑡

0
, 𝑡
0
+ 𝐽ℎ]) with ℎ

𝑖
= 𝑡
𝑖+1

− 𝑡
𝑖
for

𝑖 = 0, 1, . . . , 𝐽 − 1 and any given nonnegative integer ℓ ≤ 𝑛.
The following result follows directly from the above equations
andTheorem 6.

Theorem 7. Consider an approximated perturbed solution
(42) under a forcing perturbation sequence {𝑔(𝑡

𝑖
)} ⊂ R𝑛 at

𝑡 = 𝑡
𝑖
fulfilling ‖𝑔(𝑡

𝑖
)‖ ≤ 𝑔

𝑖
≤ 𝑔 ≥ ‖𝑒(𝑡

0
)‖ for 𝑖 = 1, 2, . . . and

some 𝑔 ∈ R
+
. Then, there are numbers ℎ ∈ R

+
, 𝐽 = 𝐽(ℎ) ∈ Z

+
,

𝜀
1
= 𝜀
1
(ℎ, 𝑔) ∈ R

+
, and 𝜀 = 𝜀(𝜀

1
, ‖𝑒(𝑡
0
)‖) such that

max( max
0≤𝑖≤𝐽−1

󵄩󵄩󵄩󵄩
𝑒 (𝑡
𝑖+1
) − 𝑒 (𝑡

𝑖
)
󵄩󵄩󵄩󵄩
,max
𝑡∈R0+

󵄩󵄩󵄩󵄩
𝑒 (𝑡) − 𝑒 (𝑡0)

󵄩󵄩󵄩󵄩
) ≤ 𝜀
1
;

max
𝑡∈R0+

‖𝑒 (𝑡)‖ ≤ 𝜀

(48)

on [𝑡
0
, 𝑡
𝐽
] for any strictly ordered sequence of (𝐽+1)nonnegative

real numbers {𝑡
𝑖
: 𝑖 = 0, 1, . . . , 𝐽}, subject to the constraints

𝑡
𝐽
= 𝑡
0
+

𝐽−1

∑

𝑖=0

ℎ
𝑖
,

ℎ
𝑖
= 𝑡
𝑖+1

− 𝑡
𝑖
≤ ℎ,

𝑖 = 0, 1, . . . , 𝐽 − 1

(49)

satisfying the constraints (22)–(24) of Lemma 4 subject to (18).

Proof. Note that fixing ∑𝐽−1
𝑖=0

ℎ
𝑖
= 𝑡
𝐽
− 𝑡
0
≤ 𝐽ℎ, with ℎ =

max
0≤𝑖≤𝐽−1

(𝑡
𝑖+1
−𝑡
𝑖
), and the use of (46), (47a), and (47b) leads

to
󵄩󵄩󵄩󵄩
𝑒 (𝑡) − 𝑒 (𝑡𝑖)

󵄩󵄩󵄩󵄩

≤

𝐽−1

∑

𝑖=0

(ℎ
𝑖
(

ℓ

∑

𝑘=0

2
𝑘+1

𝑘!
[
𝐾
𝑘+1

𝜌

2
+

𝐾
1
(1 − 𝐾

𝑘
)

1 − 𝐾
](

𝜌

2
)

𝑘

+
1

ℓ!
ℎ2
ℓ

×[
𝐾
ℓ+2
𝜌

2
+

𝐾
1
(1 − 𝐾

ℓ+1
)

1 − 𝐾
](

𝜌

2
)

ℓ

) + 𝑔
𝑖
)

≤ 𝜀
1
= 𝜌 +

𝐽−1

∑

𝑖=0

𝑔
𝑖
,

(50a)
󵄩󵄩󵄩󵄩
𝑒 (𝑡) − 𝑒 (𝑡𝑖)

󵄩󵄩󵄩󵄩

≤ 𝐽ℎ(

ℓ

∑

𝑘=0

2
𝑘+1

𝑘!
[
𝐾
𝑘+1

𝜌

2
+

𝐾
1
(1 − 𝐾

𝑘
)

1 − 𝐾
](

𝜌

2
)

𝑘

+
1

ℓ!
ℎ2
ℓ
[
𝐾
ℓ+2
𝜌

2
+

𝐾
1
(1 − 𝐾

ℓ+1
)

1 − 𝐾
](

𝜌

2
)

ℓ

)

+ 𝐽𝑔 ≤ 𝜀
1
= 𝜌 + 𝐽𝑔;

(50b)

∀𝑡 ∈ [𝑡
0
, 𝑡
𝐽
]; 𝑖 = 0, 1, . . . , 𝐽 − 1 by using Lemma 4 and

Theorem 6 for any given prefixed 𝜌 ∈ R
+
. The result then

follows since 𝑔
0
= ‖𝑒(𝑡

0
)‖ ≤ 𝑔 and either

𝜀 = 𝜀
1
+
󵄩󵄩󵄩󵄩
𝑒 (𝑡
0
)
󵄩󵄩󵄩󵄩
, 𝜀

1
= 𝜌 +

𝐽−1

∑

𝑖=0

𝑔
𝑖
,

𝐽−1

∑

𝑖=0

ℎ
𝑖
(

ℓ

∑

𝑘=0

2
𝑘+1

𝑘!
[
𝐾
𝑘+1

𝜌

2
+

𝐾
1
(1 − 𝐾

𝑘
)

1 − 𝐾
](

𝜌

2
)

𝑘

+
ℎ

ℓ!
2
ℓ
[
𝐾
ℓ+2
𝜌

2
+

𝐾
1
(1 − 𝐾

ℓ+1
)

1 − 𝐾
](

𝜌

2
)

ℓ

) ≤ 𝜌

(51)

or

𝜀 = 𝜀
1
+
󵄩󵄩󵄩󵄩
𝑒 (𝑡
0
)
󵄩󵄩󵄩󵄩
, 𝜀

1
= 𝜌 + 𝐽𝑔,

ℎ(

ℓ

∑

𝑘=0

2
𝑘+1

𝑘!
[
𝐾
𝑘+1

𝜌

2
+

𝐾
1
(1 − 𝐾

𝑘
)

1 − 𝐾
](

𝜌

2
)

𝑘

+
1

ℓ!
ℎ2
ℓ
[
𝐾
ℓ+2
𝜌

2
+

𝐾
1
(1 − 𝐾

ℓ+1
)

1 − 𝐾
](

𝜌

2
)

ℓ

) ≤ 𝜌;

(52)

and the result has been proven.



Abstract and Applied Analysis 9

The following result extends Theorem 7 with results of
Theorem 6 for the case when both the exact and approx-
imated differential equations are subject to a piecewise-
continuous bounded disturbance which might be dependent
on the solution and also can have finite step discontinuities in
the sequence {𝑡

𝑖
: 𝑖 = 0, 1, . . . , 𝐽}.

Theorem 8. Consider the forced versions of the differential
equations (5) and (10):

̇𝑦 (𝑡) = 𝑓 (𝑦 (𝑡) , 𝑡) + 𝑔 (𝜏, 𝑦 (𝜏)) , 𝑦 (𝑡
0
) = 𝑦
0
, (53)

𝑥̇ (𝑡) =

ℓ

∑

𝑘=0

𝑓
(𝑘)
(𝑥 (𝑡
𝑖
) , 𝑡
𝑖
)

𝑘!
(𝑥 (𝑡) − 𝑥 (𝑡𝑖))

𝑘
+ 𝑔 (𝜏, 𝑥 (𝜏)) ,

𝑥 (𝑡
0
) = 𝑥
0

(54)

under the additive forcing perturbation 𝑔 ∈ 𝐶
(𝑛+1)

(R𝑛 ×
(𝑡
0
, 𝑡
𝐽
);R𝑛) satisfying Assumption (A2) of Lemma 4 fulfilling

𝑔(𝑦(𝑡), 𝑡) = 𝜆(𝑡)𝑦(𝑡) and 𝑔(𝑥(𝑡), 𝑡) = 𝜆(𝑡)𝑥(𝑡)+𝑈(𝑡−𝑡
𝑖+1
)𝑔
𝑖+1

;
∀𝑡 ∈ [𝑡

𝑖
, 𝑡
𝑖+1
] with ‖𝑔

𝑖+1
‖ ≤ 𝑔 for 𝑖 = 0, 1, . . . , 𝐽 − 1 and some

𝑔 ∈ R
+
and 𝜆 : [𝑡

0
, 𝑡
𝐽
] → R𝑛 being a bounded piecewise-

continuous function. Then, there are numbers ℎ ∈ R
+
, 𝐽 =

𝐽(ℎ) ∈ Z
+
, 𝜀
1
= 𝜀
1
(ℎ, 𝑔) ∈ R

+
and 𝜀 = 𝜀(𝜀

1
, ‖𝑒(𝑡
0
)‖) such

that

max( max
0≤𝑖≤𝐽−1

󵄩󵄩󵄩󵄩
𝑒 (𝑡
𝑖+1
) − 𝑒 (𝑡

𝑖
)
󵄩󵄩󵄩󵄩
,max
𝑡∈R0+

󵄩󵄩󵄩󵄩
𝑒 (𝑡) − 𝑒 (𝑡0)

󵄩󵄩󵄩󵄩
) ≤ 𝜀
1
,

max
𝑡∈R0+

‖𝑒 (𝑡)‖ ≤ 𝜌

(55)

on [𝑡
0
, 𝑡
𝐽
] for a strictly ordered finite set of (𝐽 + 1) nonnegative

real numbers {𝑡
𝑖
: 𝑖 = 0, 1, . . . , 𝐽}, subject to the constraints

𝑡
𝐽
= 𝑡
0
+ ∑
𝐽−1

𝑖=0
ℎ
𝑖
, ℎ
𝑖
= 𝑡
𝑖+1

− 𝑡
𝑖
≤ ℎ; 𝑖 = 0, 1, . . . , 𝐽 − 1, the

constraints (22)–(24) subject to (18), and either

𝐽−1

∑

𝑖=0

ℎ
𝑖
𝜆
𝑖
< 1, (56a)

𝐽−1

∑

𝑖=0

𝑔
𝑖
< ∞, 𝑔 ≥

∑
𝐽−1

𝑖=0
ℎ
𝑖
𝜆
𝑖

1 − ∑
𝐽−1

𝑖=0
ℎ
𝑖
𝜆
𝑖

󵄩󵄩󵄩󵄩
𝑒 (𝑡
0
)
󵄩󵄩󵄩󵄩
, (56b)

or

𝐽ℎ𝜆 < 1, (57a)

𝐽𝑔 < ∞, 𝑔 ≥
𝐽ℎ𝜆

1 − 𝐽ℎ𝜆

󵄩󵄩󵄩󵄩
𝑒 (𝑡
0
)
󵄩󵄩󵄩󵄩
. (57b)

Proof. Fix∑𝐽−1
𝑖=0

ℎ
𝑖
= 𝑡
𝐽
−𝑡
0
≤ 𝐽ℎ, with ℎ = max

0≤𝑖≤𝐽−1
(𝑡
𝑖+1
−𝑡
𝑖
).

Equations (53)-(54) have the following solutions:

𝑦 (𝑡) = 𝑦 (𝑡
𝑖
)

+

ℓ

∑

𝑘=0

∫

𝑡−𝑡𝑖

0

(
𝑓
(𝑘)
(𝑦 (𝑡
𝑖
) , 𝑡
𝑖
)

𝑘!
(𝑦 (𝜏 + 𝑡

𝑖
) − 𝑦 (𝑡

𝑖
))
𝑘

+
1

ℓ!
∫

𝜏

0

(𝑦 (𝜎 + 𝑡
𝑗
) − 𝑦 (𝑡

𝑗
))
ℓ

× 𝑓
(ℓ+1)

(𝑦 (𝜎 + 𝑡
𝑗
) , 𝜎 + 𝑡

𝑗
) 𝑑𝜎

+𝑔 (𝑦 (𝜏) , 𝜏) ) 𝑑𝜏,

(58)

𝑥 (𝑡) = 𝑥 (𝑡
𝑖
)

+ ∫

𝑡−𝑡𝑖

0

(

ℓ

∑

𝑘=0

𝑓
(𝑘)
(𝑥 (𝑡
𝑖
) , 𝑡
𝑖
)

𝑘!
(𝑥 (𝜏 + 𝑡

𝑖
) − 𝑥 (𝑡

𝑖
))
𝑘

+𝑔 (𝑥 (𝜏) , 𝜏) ) 𝑑𝜏

+ 𝑈 (𝑡 − 𝑡
𝑖+1
) 𝑔
𝑖+1
;

(59)

∀𝑡 ∈ [𝑡
𝑖
, 𝑡
𝑖+1
], 𝑖 = 0, 1, . . . , 𝐽 − 1. Note that

𝑔 (𝑦 (𝑡) , 𝑡) − 𝑔 (𝑥 (𝑡) , 𝑡) = 𝜆 (𝑡) (𝑦 (𝑡) − 𝑥 (𝑡)) = 𝜆 (𝑡) 𝑒 (𝑡) .

(60)

Thus, the error between both of them becomes

𝑒 (𝑡) = 𝑒 (𝑡
𝑖
)

+

ℓ

∑

𝑘=0

∫

𝑡−𝑡𝑖

0

(
𝑓
(𝑘)
(𝑦 (𝑡
𝑖
) , 𝑡
𝑖
)

𝑘!
(𝑦 (𝜏 + 𝑡

𝑖
) − 𝑦 (𝑡

𝑖
))
𝑘

−
𝑓
(𝑘)
(𝑥 (𝑡
𝑖
) , 𝑡
𝑖
)

𝑘!
(𝑥 (𝜏 + 𝑡

𝑖
) − 𝑥 (𝑡

𝑖
))
𝑘

+𝑔 (𝑒 (𝜏) , 𝜏) ) 𝑑𝜏

+
1

ℓ!
∫

𝑡−𝑡𝑖

0

∫

𝜏

0

(𝑦 (𝜎 + 𝑡
𝑗
) − 𝑦 (𝑡

𝑗
))
ℓ

× 𝑓
(ℓ+1)

(𝑦 (𝜎 + 𝑡
𝑗
) , 𝜎 + 𝑡

𝑗
) 𝑑𝜎 𝑑𝜏

− 𝑈 (𝑡 − 𝑡
𝑖+1
) 𝑔 (𝑥 (𝑡

𝑖+1
) , 𝑡
𝑖+1
) ;

(61)
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∀𝑡 ∈ [𝑡
𝑖
, 𝑡
𝑖+1
]. Then, (45) leads to

‖𝑒 (𝑡)‖

≤
󵄩󵄩󵄩󵄩
𝑒 (𝑡
𝑖
)
󵄩󵄩󵄩󵄩
+ (𝑡 − 𝑡

𝑖
)

× (

ℓ

∑

𝑘=0

2
𝑘+1

𝑘!
[
𝐾
𝑘+1

𝜌

2
+

𝐾
1
(1 − 𝐾

𝑘
)

1 − 𝐾
](

𝜌

2
)

𝑘

+
1

ℓ!
(𝑡 − 𝑡
𝑖
) 2
ℓ

× [
𝐾
ℓ+2
𝜌

2
+

𝐾
1
(1 − 𝐾

ℓ+1
)

1 − 𝐾
](

𝜌

2
)

ℓ

+ 𝑔
𝑖+1
) ;

(62)

∀𝑡 ∈ [𝑡
𝑖
, 𝑡
𝑖+1
], 𝑖 = 0, 1, . . . , 𝐽 − 1. Then

sup
𝑡𝑖≤𝑡≤𝑡𝑖+1

(‖𝑒 (𝑡)‖)

≤
󵄩󵄩󵄩󵄩
𝑒 (𝑡
𝑖
)
󵄩󵄩󵄩󵄩
+ (𝑡 − 𝑡

𝑖
)

× (

ℓ

∑

𝑘=0

2
𝑘+1

𝑘!
[
𝐾
𝑘+1

𝜌

2
+

𝐾
1
(1 − 𝐾

𝑘
)

1 − 𝐾
](

𝜌

2
)

𝑘

+
1

ℓ!
(𝑡 − 𝑡
𝑖
) 2
ℓ

×[
𝐾
ℓ+2
𝜌

2
+

𝐾
1
(1 − 𝐾

ℓ+1
)

1 − 𝐾
](

𝜌

2
)

ℓ

+ 𝑔
𝑖+1
)

+ ℎ
𝑖
𝜆
𝑖
sup
𝑡𝑖≤𝜏≤𝑡𝑖+1

(‖𝑒 (𝜏)‖) + 𝑔

(63)

so that, since 1 > ℎ
𝑖
𝜆
𝑖
, where 𝜆

𝑖
= max

𝑡𝑖≤𝜏≤𝑡𝑖+1
|𝜆(𝜏)| for 𝑖 =

0, 1, . . . , 𝐽 − 1, one gets

sup
𝑡𝑖≤𝑡≤𝑡𝑖+1

(‖𝑒 (𝑡)‖)

≤
1

1 − ℎ
𝑖
𝜆
𝑖

× (
󵄩󵄩󵄩󵄩
𝑒 (𝑡
𝑖
)
󵄩󵄩󵄩󵄩

+ (

ℓ

∑

𝑘=0

2
𝑘+1

𝑘!
ℎ
𝑖
[
𝐾
𝑘+1

𝜌

2
+

𝐾
1
(1 − 𝐾

𝑘
)

1 − 𝐾
](

𝜌

2
)

𝑘

+
1

ℓ!
(𝑡 − 𝑡
𝑖
) 2
ℓ

×[
𝐾
ℓ+2
𝜌

2
+

𝐾
1
(1−𝐾

ℓ+1
)

1 − 𝐾
](

𝜌

2
)

ℓ

+𝑔
𝑖+1
))

(64)

which implies
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

sup
𝑡𝑖≤𝑡≤𝑡𝑖+1

(‖𝑒 (𝑡)‖ −
󵄩󵄩󵄩󵄩
𝑒 (𝑡
𝑖
)
󵄩󵄩󵄩󵄩
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
ℎ
𝑖
𝜆
𝑖

1 − ℎ
𝑖
𝜆
𝑖

󵄩󵄩󵄩󵄩
𝑒 (𝑡
𝑖
)
󵄩󵄩󵄩󵄩
+

1

1 − ℎ
𝑖
𝜆
𝑖

× (

ℓ

∑

𝑘=0

2
𝑘+1

𝑘!
ℎ
𝑖
[
𝐾
𝑘+1

𝜌

2
+

𝐾
1
(1 − 𝐾

𝑘
)

1 − 𝐾
](

𝜌

2
)

𝑘

+
1

ℓ!
ℎ
2

𝑖
2
ℓ

×[
𝐾
ℓ+2
𝜌

2
+

𝐾
1
(1 − 𝐾

ℓ+1
)

1 − 𝐾
](

𝜌

2
)

ℓ

+ 𝑔
𝑖+1
) .

(65)

If∑𝐽−1
𝑖=0

ℎ
𝑖
𝜆
𝑖
< 1, we also get (66)-(67) below from (65) as well

as (68)-(69) if, in addition, 𝐽ℎ𝜆 < 1:
sup
𝑡0≤𝑡≤𝑡𝐽

(‖𝑒 (𝑡)‖)

≤
1

1 − ∑
𝐽−1

𝑖=0
ℎ
𝑖
𝜆
𝑖

× (
󵄩󵄩󵄩󵄩
𝑒 (𝑡
0
)
󵄩󵄩󵄩󵄩

+

𝐽−1

∑

𝑖=0

ℎ
𝑖
(

ℓ

∑

𝑘=0

2
𝑘+1

𝑘!
[
𝐾
𝑘+1

𝜌

2
+

𝐾
1
(1 − 𝐾

𝑘
)

1 − 𝐾
](

𝜌

2
)

𝑘

+
1

ℓ!
ℎ
𝑖
2
ℓ

× [
𝐾
ℓ+2
𝜌

2
+

𝐾
1
(1 − 𝐾

ℓ+1
)

1 − 𝐾
](

𝜌

2
)

ℓ

)

+

𝐽−1

∑

𝑖=0

𝑔
𝑖
) ,

(66)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

sup
𝑡0≤𝑡≤𝑡𝐽

(‖𝑒 (𝑡)‖ −
󵄩󵄩󵄩󵄩
𝑒 (𝑡
0
)
󵄩󵄩󵄩󵄩
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
∑
𝐽−1

𝑖=0
ℎ
𝑖
𝜆
𝑖

1 − ∑
𝐽−1

𝑖=0
ℎ
𝑖
𝜆
𝑖

× (
󵄩󵄩󵄩󵄩
𝑒 (𝑡
0
)
󵄩󵄩󵄩󵄩

+

𝐽−1

∑

𝑖=0

ℎ
𝑖
(

ℓ

∑

𝑘=0

2
𝑘+1

𝑘!
[
𝐾
𝑘+1

𝜌

2
+

𝐾
1
(1 − 𝐾

𝑘
)

1 − 𝐾
](

𝜌

2
)

𝑘

+
1

ℓ!
ℎ
𝑖
2
ℓ

× [
𝐾
ℓ+2
𝜌

2
+

𝐾
1
(1 − 𝐾

ℓ+1
)

1 − 𝐾
](

𝜌

2
)

ℓ

)

+

𝐽−1

∑

𝑖=0

𝑔
𝑖
)

(67)
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sup
𝑡0≤𝑡≤𝑡𝐽

(‖𝑒 (𝑡)‖)

≤
1

1 − 𝐽ℎ𝜆

× (
󵄩󵄩󵄩󵄩
𝑒 (𝑡
0
)
󵄩󵄩󵄩󵄩

+ 𝐽ℎ(

ℓ

∑

𝑘=0

2
𝑘+1

𝑘!
[
𝐾
𝑘+1

𝜌

2
+

𝐾
1
(1 − 𝐾

𝑘
)

1 − 𝐾
](

𝜌

2
)

𝑘

+
1

ℓ!
ℎ2
ℓ

×[
𝐾
ℓ+2
𝜌

2
+

𝐾
1
(1 − 𝐾

ℓ+1
)

1 − 𝐾
](

𝜌

2
)

ℓ

)

+𝐽𝑔) ,

(68)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

sup
𝑡0≤𝑡≤𝑡𝐽

(‖𝑒 (𝑡)‖ −
󵄩󵄩󵄩󵄩
𝑒 (𝑡
0
)
󵄩󵄩󵄩󵄩
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
𝐽ℎ𝜆

1 − 𝐽ℎ𝜆

× 𝐽ℎ(

ℓ

∑

𝑘=0

2
𝑘+1

𝑘!
[
𝐾
𝑘+1

𝜌

2
+

𝐾
1
(1 − 𝐾

𝑘
)

1 − 𝐾
](

𝜌

2
)

𝑘

+
1

ℓ!
ℎ2
ℓ

× [
𝐾
ℓ+2
𝜌

2
+

𝐾
1
(1 − 𝐾

ℓ+1
)

1 − 𝐾
](

𝜌

2
)

ℓ

)

+ 𝐽𝑔,

(69)

where 𝜆 = max
0≤𝑡≤𝑡𝐽

|𝜆(𝑡)| = max
0≤𝑖≤𝐽−1

max
𝑡𝑖≤𝜏≤𝑡𝑖+1

|𝜆(𝜏)| =

max
0≤𝑖≤𝐽−1

𝜆
𝑖
. Property (i) follows from (65)-(66)

by defining 𝜀
0
, 𝜀
1
, and 𝜀 as in (51) since 𝑔 ≥

max(max
0≤𝑖≤𝐽−1

‖𝑔
𝑖+1
‖, ((∑

𝐽−1

𝑖=0
ℎ
𝑖
𝜆
𝑖
)/(1 − ∑

𝐽−1

𝑖=0
ℎ
𝑖
𝜆
𝑖
))‖𝑒(𝑡
0
)‖)

and Property (ii) follows from (67)-(68) by defining 𝜌, 𝜀
1
,

and 𝜀 as in (52) since 𝑔 ≥ max(max
0≤𝑖≤𝐽−1

‖𝑔
𝑖+1
‖, ((𝐽ℎ𝜆)/(1 −

𝐽ℎ𝜆))‖𝑒(𝑡
0
)‖). Thus, the result has been proven.

Now, three definitions are given concerning the so-called
pseudo-orbits, as a counterpart to the true sampled trajectory
solution, or orbit, of finite size 𝐽 of the approximate solutions
and their perturbed versionwithin the given classes of pertur-
bations.The related concepts are relevant for then quantifying
the maximum errors among the real and approximated
solutions and parallel issues concerning their counterparts
under perturbations of the studied types. More specifically
refer to the following.

Definition 9. A sampling sequence 𝑡̂
𝐽
= {𝑡
𝑖
: 𝑖 = 0, 1, . . . , 𝐽}

of strictly ordered sampling points with ℎ
𝑖
= 𝑡
𝑖+1

− 𝑡
𝑖
≤ ℎ;

𝑖 = 0, 1, . . . , 𝐽 − 1 is said to be in the class 𝐶
𝐽ℎ

= {𝑡
𝑖
∈ 𝑡̂
𝐽
:

𝑡
𝑖+1

− 𝑡
𝑖
≤ ℎ; 𝑖 = 0, 1, . . . , 𝐽 − 1}.

Note from Definition 9 that ℎ ≤ ℎ
󸀠
⇒ 𝐶
𝐽ℎ

⊆ 𝐶
𝐽ℎ
󸀠 and

that 𝑡̂
𝐽
≡ {𝑡
𝑖
: 𝑖 = 0, 1, . . . , 𝐽 − 1} ⊂ 𝐶

𝐽ℎ
⇒ 𝑡
𝐽
− 𝑡
0
≤ 𝐽ℎ.

Definition 10. A sequence 𝑥
𝐽
= {𝑥(𝑡

𝑖
) : 𝑖 = 0, 1, . . . , 𝐽 − 1}

of 𝐽 samples of the solution of an approximate differential
equation (10) is a 𝛿-pseudo 𝐽-orbit of sampling sequence
𝑡̂
𝐽
for some 𝛿 ∈ R

+
and is denoted by 𝑂(𝑥

𝐽
, Γ, 𝛿) if

max
𝑡∈[𝑡0 ,𝑡𝐽]

‖𝑒(𝑡)‖ ≤ 𝛿.

If the integer 𝐽 and the real 𝑡
𝐽
are infinite, the correspond-

ing trajectory solutions are referred to as complete pseudo-
orbits and orbits.The solution of the true differential equation
(5) is a 𝐽-orbit of sampling sequence 𝑡̂

𝐽
. The continuous

approximate (resp., true) solution for [𝑡
0
, 𝑡
𝐽
] is the 𝛿-pseudo

𝐽-orbit (resp., 𝐽-orbit) of sampling sequence 𝑡̂
𝐽
.The perturbed

solutions under the forcing perturbations of Theorems 7 and
8 are denoted in a similar way leading to the corresponding
perturbed pseudo-orbits.

Definition 11. The set of all the 𝛿-pseudo 𝐽-orbits 𝑂(𝑥
𝐽
, Γ, 𝛿)

with max
𝑡∈[𝑡0 ,𝑡𝐽]

‖𝑒(𝑡)‖ ≤ 𝛿, for some 𝛿 ∈ R
+
, obtained for any

sampling sequence 𝑡̂
𝐽
∈ 𝐶
𝐽ℎ
, is said to be the class 𝐶𝑂(𝐶

𝐽ℎ
, 𝛿)

of 𝛿-pseudo 𝐽-orbits of sampling sequence 𝑡̂
𝐽
.

The mapping which generates the true solution
sequences, for given initial conditions and sampling
sequence, has the shadowing property if there is an arbitrarily
close orbit for any given 𝛿-pseudo-orbit 𝑂(𝑥

𝐽
, Γ, 𝛿) in the

following precise sense.

Definition 12. The set 𝑌̂
𝐽
of true solution sequences 𝑦

𝐽
=

{𝑦(𝑡
𝑖
) : 𝑡
𝑖
∈ 𝑡̂
𝐽
, 𝑖 = 0, 1, . . . , 𝐽 − 1} of sampling sequence 𝑡̂

𝐽

possesses the shadowing property on the corresponding set
of approximate solutions if, for each given 𝛿 ∈ R

+
, there is

some 𝑦
0
= 𝑦
0
(𝛿) for which a 𝑂(𝑥

𝐽
, Γ, 𝛿) exists. It is said that

𝑦
0
= 𝑦
0
(𝛿) shadows 𝑂(𝑥

𝐽
, Γ, 𝛿).

The subsequent result establishes that if the set of true
solution sequences has the shadowing property then the class
𝐶𝑂(𝐶

𝐽ℎ
, 𝛿) of 𝛿-pseudo 𝐽-orbits of sampling sequence 𝑡̂

𝐽
is

nonempty for any 𝛿 ∈ R
+
.

Proposition 13. If the set 𝑌̂
𝐽
of true solution sequences of

sampling sequence 𝑡̂
𝐽
possesses the shadowing property then

𝐶𝑂(𝐶
𝐽ℎ
, 𝛿) is nonempty for any 𝛿 ∈ R

+
.

Note that 𝐶𝑂(𝐶
𝐽ℎ
, 𝜌) = ⋃

Γ∈𝐶𝐽ℎ
𝑂(𝑥
𝐽
, Γ, 𝜌) and note also

that𝐶𝑂(𝐶
𝐽ℎ
, 𝜌) ⊆ 𝐶𝑂(𝐶

𝐽ℎ
󸀠 , 𝜌) for any ℎ󸀠 ≥ ℎ.The subsequent

result relies on Theorem 7 and Definition 11 for a class of
pseudo-orbits 𝐶𝑂(𝐶

𝐽ℎ
, 𝜌) defined by a sampling sequence

class 𝐶
𝐽ℎ
. In fact, the characterization becomes global for

all approximated solutions on a finite interval [𝑡
0
, 𝑡
𝐽
] for

sampling intervals ℎ
𝑖
= 𝑡
𝑖+1

− 𝑡
𝑖
≤ ℎ; 𝑖 = 0, 1, . . . , 𝐽 −

1 and initial conditions subject to a maximum allowable
deviation with respect to the initial condition of the true
solution provided that the approximate solution exists in a
global (rather than local) definition domain.
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The so-called shadowing properties, [5–9], of the true
solutions with respect to the approximated ones rely on the
physical meaning that for sets of appropriate initial condi-
tions, the true solution is arbitrarily close to its approximate
version on a certain interval [𝑡

0
, 𝑡
𝐽
]where both solutions exist

and are unique. Based onTheorems 6, 7, and 8, the shadowing
properties of the true solution to the approximated solution,
those ones being the nominal one or the perturbed ones
under the class of perturbations of Theorems 7 and 8, are
now discussed. It is seen that the shadowing properties at
sampling points under Theorems 6, 7, and 8 guarantee the
corresponding properties in [𝑡

0
, 𝑡
𝐽
].

The shadowing properties of true solutions of pseudo-
orbits for constrained sampling sequences according to the
constraints of Theorem 6 are addressed in the subsequent
result.

Proposition 14. Consider the true and approximated solu-
tions associated with the differential equations (5) and (10)
satisfying the hypotheses and conditions of Theorem 6. Then,
such a set of solutions lies in the class 𝐶𝑂(𝐶

𝐽ℎ
, 𝜀) of 𝜀-pseudo

𝐽-orbits of sampling sequence 𝑡̂
𝐽
= 𝑡̂
𝐽
(𝜌) for 𝜌 ≤ 𝜀, subject

to one of the constraints (13a), (13b), (22)–(24) (Lemma 4,
Theorem 6), belonging to a sampling sequence class 𝐶

𝐽ℎ
for any

𝜌, 𝜀 ∈ R
+
with arbitrary 𝜌 ≤ 𝜀 and any given 𝜀. Also, there is

a 𝑦
0
= 𝑦
0
(𝜀) which shadows each 𝑂(𝑥

𝐽
, Γ, 𝜀) ∈ 𝐶𝑂(𝐶

𝐽ℎ
, 𝜀) for

each given 𝜀 ∈ R
+
and 𝜌 ≤ 𝜀.

Proof. One gets fromTheorem 6 that

max
𝑡∈[𝑡0,𝑡𝐽]

‖𝑒 (𝑡)‖ ≤ 𝜀 =
󵄩󵄩󵄩󵄩
𝑒 (𝑡
0
)
󵄩󵄩󵄩󵄩
+ 𝜌 (70)

for an initial condition 𝑦(𝑡
0
) of the true differential equation

fulfilling |‖𝑦(𝑡
0
)‖ − ‖𝑥(𝑡

0
)‖| ≤ ‖𝑒(𝑡

0
)‖ and any given real

constants 𝜀 ≥ 𝜌 > 0. This defines families of initial conditions
𝑦
0
= 𝑦
0
(𝜀) of the true differential equation which shadow

each𝑂(𝑥
𝐽
, Γ, 𝜀) ∈ 𝐶𝑂(𝐶

𝐽ℎ
, 𝜀) for each given 𝜀 ∈ R

+
and 𝜌 ≤ 𝜀.

For any given 𝜀 ∈ R
+
, it suffices to take 0 < 𝜌 ≤ 𝜀 to zero in

(22)–(24) of Lemma 4 and (39)-(40) in Theorem 6 to fix an
admissible sampling sequence 𝑡̂

𝐽
= 𝑡̂
𝐽
(𝜀) and then to get the

result.

The perturbed approximated differential equations
referred to in Theorems 8 and 7, which is a particular case
of Theorem 8 for 𝑔(𝑥(𝑡), 𝑡) being zero for 𝑡 ∉ 𝑡̂

𝐽
, that is for

nonsampling points, are analyzed in the subsequent result
which generalizes Proposition 14.

Theorem 15. Consider the true and approximated solutions
(58) and (59) associated with the differential equations sat-
isfying the hypotheses and conditions of Theorem 8. Then,
such a set of solutions lies in the class 𝐶𝑂(𝐶

𝐽ℎ
, 𝜀) of 𝜀-

pseudo 𝐽-orbits of sampling sequence 𝑡̂
𝐽

= 𝑡̂
𝐽
(𝜌), for

some 𝜌 > 0, subject to one of the constraints (13a),
(13b), (22)–(24), and (39)-(40) (Lemma 4, Theorem 6) and
to either (56a) or (56b) (Theorem 8) with 𝜌 ≤ 𝜀 −

∑
𝐽−1

𝑖=0
𝑔
𝑖
and any arbitrary 𝜀 ∈ R

+
, belonging to a sampling

sequence class 𝐶
𝐽ℎ
. Also, there is an initial condition 𝑦

0
=

𝑦
0
(𝜀) which shadows each 𝑂(𝑥

𝐽
, Γ, 𝜀) ∈ 𝐶𝑂(𝐶

𝐽ℎ
, 𝜀) for

each given 𝜌, 𝜀 ∈ R
+
with the perturbation fulfilling ∑𝐽−1

𝑖=0
𝑔
𝑖
<

𝜀.

Proof. One gets from (55) in Theorem 8 together with either
(51) or (52) that

max
𝑡∈[𝑡0 ,𝑡𝐽]

‖𝑒 (𝑡)‖ ≤ 𝜀 =
󵄩󵄩󵄩󵄩
𝑒 (𝑡
0
)
󵄩󵄩󵄩󵄩
+ 𝜌 +

𝐽−1

∑

𝑖=0

𝑔
𝑖

(71)

with any arbitrary real constant 0 < 𝜌 ≤ 𝜀 − ∑
𝐽−1

𝑖=0
𝑔
𝑖
,

provided that ∑𝐽−1
𝑖=0

𝑔
𝑖
< 𝜀, and any given real constant 𝜀 for

an (shadowing) initial condition 𝑦(𝑡
0
) of the true differential

equation fulfilling
󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩
𝑦 (𝑡
0
)
󵄩󵄩󵄩󵄩
−
󵄩󵄩󵄩󵄩
𝑥 (𝑡
0
)
󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨

≤
󵄩󵄩󵄩󵄩
𝑒 (𝑡
0
)
󵄩󵄩󵄩󵄩

≤ min(𝜀 − 𝜌 −
𝐽−1

∑

𝑖=0

𝑔
𝑖
,
1 − ∑

𝐽−1

𝑖=0
ℎ
𝑖
𝜆
𝑖

∑
𝐽−1

𝑖=0
ℎ
𝑖
𝜆
𝑖

𝑔) .

(72)

Note that a sufficient condition guaranteeing (69) is

󵄩󵄩󵄩󵄩
𝑒 (𝑡
0
)
󵄩󵄩󵄩󵄩
≤ min(𝜀 − 𝜀

0
− 𝐽𝑔,

1 − ∑
𝐽−1

𝑖=0
ℎ
𝑖
𝜆
𝑖

∑
𝐽−1

𝑖=0
ℎ
𝑖
𝜆
𝑖

𝑔) (73)

since 𝑔 ≥ ((∑
𝐽−1

𝑖=0
ℎ
𝑖
𝜆
𝑖
)/(1 − ∑

𝐽−1

𝑖=0
ℎ
𝑖
𝜆
𝑖
))‖𝑒(𝑡
0
)‖ from (56b) in

Theorem 8. Thus, it suffices to take 0 < 𝜌 ≤ 𝜀 to zero in
either (39) or (40) inTheorem 6 to fix an admissible sampling
sequence 𝑡̂

𝐽
= 𝑡̂
𝐽
(𝜀) so as to get the result.

Remark 16. A particular case ofTheorem 15 for the perturba-
tions (42) which are defined only at sampling instants, which
has been discussed inTheorem 7, is obtained by the particular
constraint below obtained from (72) and (73):

󵄩󵄩󵄩󵄩
𝑒 (𝑡
0
)
󵄩󵄩󵄩󵄩
≤ 𝜀 − 𝜌 − 𝐽𝑔 ≤ 𝜀 − 𝜌 −

𝐽−1

∑

𝑖=0

𝑔
𝑖
. (74)

Remark 17. Note that the condition ∑
∞

𝑖=0
ℎ
𝑖
𝜆
𝑖
≤ 𝜒 < 1

of applicability in Theorems 8 and 15 when 𝐽 is infinity
can be considered in certain cases when the perturbation
vanishes asymptotically as, for instance, when it vanishes as
an exponential rate.

4. Simulation Examples

This section contains two numerical examples regarding the
theoretical results obtained in Sections 2 and 3.

Example 1. Thefirst example is concerned with the nonlinear
model describing the human heart rate during treadmill
exercise [29], whose equations are given by

̇𝑦
1
= −𝑎
1
𝑦
1
+ 𝑎
2
𝑦
2
,

̇𝑦
2
= −𝑎
3
𝑦
2
+ 𝑎
4

𝑦
1

1 + 𝑒
−(𝑐𝑦1−𝑎5)

(75)
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with 𝑐 = 1, 𝑎
1
= 2.2, 𝑎

2
= 19.96, 𝑎

3
= 0.0831, 𝑎

4
= 0.002526,

and 𝑎
5
= 8.32. This model, with an external control input,

has been used to design training protocols for patients with
cardiovascular problems [29]. Figure 1 shows the evolution of
this system with initial conditions 𝑦

1
(0) = 𝑦

2
(0) = 1 on the

time interval [0, 50] seconds.

For the system (75), the nonlinear function 𝑓(𝑦) is given
by

𝑓 (𝑦) = 𝑓 (𝑦
1
, 𝑦
2
) = [

−𝑎
1
𝑦
1
+ 𝑎
2
𝑦
2

−𝑎
3
𝑦
2
+ 𝑎
4

𝑦
1

1 + 𝑒
−(𝑐𝑦1−𝑎5)

] . (76)

The first step to apply the results stated in Section 2 and
obtain a truncated approximate model for (75) is to verify
that conditions (13a) and (13b) hold. One way to check
this fact is to depict the norms of the state vector of the
function 𝑓(𝑦) and of its derivative 𝑓󸀠(𝑦) and observe their
behavior. Thus, the following Figures 2 and 3 show the time
evolution of these norms. In particular, Figure 2 shows the
values of the 2-norm of the state, ‖𝑦‖

2
, and the function,

‖𝑓(𝑦)‖
2
. The supremum of these norms on this interval are

sup
𝑡∈[0,50]

‖𝑦‖
2
= 8.94 and sup

𝑡∈[0,50]
‖𝑓(𝑦)‖

2
= 17.84. On

the other hand, Figure 3 shows the difference between the
norm of the function, ‖𝑓(𝑦)‖

2
, and the norm of its derivative

‖𝑓
󸀠
(𝑦)‖
2
. As it can be appreciated, this difference is positive

implying that the linear approximation of the function is
always bounded by the function itself.The supremumof these
two norms on this interval is sup

𝑡∈[0,50]
‖𝑓(𝑦)‖

2
= 17.84 and

sup
𝑡∈[0,50]

‖𝑓
󸀠
(𝑦)‖
2
= 17.76. In this way, if we choose 𝐾 =

0.997 and𝐾
1
= 9, we have

17.84 = sup
𝑡∈[0,50]

󵄩󵄩󵄩󵄩
𝑓(𝑦)

󵄩󵄩󵄩󵄩2
< 0.997 sup

𝑡∈[0,50]

󵄩󵄩󵄩󵄩
𝑦
󵄩󵄩󵄩󵄩2
+ 9 = 17.91,

17.76 = sup
𝑡∈[0,50]

󵄩󵄩󵄩󵄩󵄩
𝑓
󸀠
(𝑦)

󵄩󵄩󵄩󵄩󵄩2
< 0.997 sup

𝑡∈[0,50]

󵄩󵄩󵄩󵄩
𝑓(𝑦)

󵄩󵄩󵄩󵄩2
= 17.78.

(77)

Hence, it is corroborated that both (13a) and (13b) hold.
Notice that from a practical point of view, the analytical
determination of the constants 𝐾 and 𝐾

1
used in (13a) and

(13b) is not necessary since a simple numerical experiment
allows us to verify these upper-bounds. In consequence,
the results stated in Section 2 can be applied in practical
situations easily.

Once the basic conditions have been checked, a truncated
approximate model (10) is generated for this problem by
considering ℓ = 1 < 2 = 𝑛. Thus, we have

𝑥̇ = 𝑓 (𝑥
𝑖
) + 𝐽 (𝑥

𝑖
) (𝑥 (𝑡) − 𝑥𝑖) , (78)

where

𝑓
󸀠
(𝑥
𝑖
) = 𝐽 (𝑥

𝑖
) = (

−𝑎
1

𝑎
2

𝐽
21

−𝑎
3

) ,

𝐽
21
=

𝑎
4
(1 + 𝑒

−(𝑐𝑥𝑖1−𝑎5)) + 𝑎
4
𝑐𝑥
𝑖1
𝑒
−(𝑐𝑥𝑖1−𝑎5)

(1 + 𝑒
−(𝑐𝑥𝑖1−𝑎5))

2

(79)

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

7

8

9

Time (s)

y1(t)

y2(t)

Figure 1: State evolution for the system (75).
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Figure 2: Relation between the 2-norms of the state, 𝑦, and the
function, 𝑓(𝑦).

Time (s)
0 5 10 15 20 25 30 35 40 45 50

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

||f(y)||2 − ||f󳰀(y)||2

Figure 3: Relation between the 2-norms of the function, 𝑓(𝑦), and
its derivative, 𝑓󸀠(𝑦).
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Figure 4: Error between the actual system and the approximate
model.
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Figure 5: Effect of the variation of the sampling time, ℎ, in the error
of the first state variable, 𝑥

1
(𝑡).

with initial conditions 𝑦
1
(0) = 𝑦

2
(0) = 𝑥

1
(0) = 𝑥

2
(0) = 1.

The sampling instants {𝑡
𝑖
} have been chosen uniformly in

time as 𝑡
𝑖
− 𝑡
𝑖−1

= ℎ = 1.5 s. The error between the actual and
the approximate model with this sampling time is depicted in
Figure 4.

As it can be deduced from Figure 4, the error is very low
and, therefore, the exact solution is shadowed by the solution
of the approximate model. An important feature appears
at this point which is how we should select the sampling
time. Lemma 4 and Theorem 6 contain the analytical results
providing the formal background on how to select it. How-
ever, from a practical point of view a trial-error procedure
can be employed to obtain an appropriate sampling time.
Thus, Figures 5 and 6 show how a variation in the sampling
time impacts the error between the complete system and the
approximate model. Figure 5 displays the impact on the first
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Figure 6: Effect of the variation of the sampling time, ℎ, in the error
of the second state variable, 𝑥

2
(𝑡).

state variable while Figure 6 depicts the influence in the sec-
ond one. As it is displayed in Figures 5 and 6, the larger the
sampling time is, the larger the error between both systems
is, as well. Hence, if we fix an upper-bound for the desired
error, we may start with a tentative value for the sampling
time and increase it if the maximum of the error is below that
threshold or decrease it if the error exceeds the desired bound.
This procedure allows us to tune an appropriate sampling
time by just conducting a series of numerical experiments.
Therefore, the mathematical results presented in Section 2
can be applied in a practical way with little effort since the
computation of the bounds is not explicitly necessary to
construct the approximate truncated model. Afterwards, this
approximate model could be used for simulation or control
design purposes. For instance, the obtained affine model
could simplify the design of the controller with respect to the
case when the original nonlinear model is used.

Example 2. The second example is related to the Van der Pol
equation which exhibits a limit cycle as it is widely known.
The equations are given by

̇𝑦
1
= 𝑦
2
,

̇𝑦
2
= 𝜇 (1 − 𝑦

2

1
) 𝑦
2
− 𝑦
1

(80)

with 𝜇 = 1, output 𝑧(𝑡) = 𝑦
1
(𝑡), initial conditions 𝑦

1
(0) = 4

and 𝑦
2
(0) = −0.5, and

𝑓 (𝑦) = 𝑓 (𝑦
1
, 𝑦
2
) = [

𝑦
2

𝜇 (1 − 𝑦
2

1
) 𝑦
2
− 𝑦
1

] . (81)

The phase portrait of the Van der Pol equation is depicted in
Figure 7.

In this case, the results introduced in Section 3 regarding
the error between the actual and the approximate model
in the presence of bounded perturbations will be used as
a tool to analyze the stability of the limit cycle. Thus,
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Figure 7: Phase portrait of the Van der Pol equation.
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Figure 8: Phase portrait of the actual and approximate systems.

the approximate truncated model is given with ℓ = 1 < 2 = 𝑛

by

𝑥̇ = 𝑓 (𝑥
𝑖
) + 𝐽 (𝑥

𝑖
) (𝑥 (𝑡) − 𝑥𝑖) , (82)

where

𝑓
󸀠
(𝑥
𝑖
) = 𝐽 (𝑥

𝑖
) = (

0 1

𝐽
21

𝐽
22

) ,

𝐽
21
= −2𝜇𝑥

𝑖1
𝑥
𝑖2
− 1,

𝐽
21
= 𝜇 − 𝜇𝑥

2

𝑖1
.

(83)

In this example, the sampling points 𝑥
𝑖
will be generated by

using the constant amplitude difference sampling criterion
(CADSC) introduced in [4] as amethod to generate sampling
points in discretization procedures. This method is proposed
as a way to generate the sequence of sampling points in a
practical way, which shows that the application of the pre-
sented theories to real problems is feasible.Thus, the CADSC
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Figure 9: Zoom on the phase portrait of the actual and approximate
systems.
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Figure 10: Effect of the variation of the sampling threshold 𝛿 in the
approximate model.

method proposes to generate a new sampling point when the
continuous-time output differs from the previous sampled
one a certain threshold. Mathematically,

𝑡
𝑖+1

= arg min (𝑅
0
+϶𝑡 > 𝑡

𝑖
:
󵄨󵄨󵄨󵄨
𝑥
1 (𝑡) − 𝑥1 (𝑡𝑖)

󵄨󵄨󵄨󵄨
= 𝛿
𝑖
∈ 𝑅
+
) ,

(84)

where 𝛿
𝑖
denotes the variation threshold. For this example,

consider a constant threshold with a value of 𝛿
𝑖
= 𝛿 = 0.15.

Figures 8 and 9 display the solution of the actual and the
approximate systems.

It can be appreciated in Figures 8 and 9 that the solution
of the actual system is shadowed by one of the approximate
models, confirming the results stated in Proposition 14. As
the threshold 𝛿 on the sampling criterion enlarges, the
sampling takes place in a more separate way, a fact that
degrades the quality of the approximate solution as Figure 10
reveals.



16 Abstract and Applied Analysis

0 1 2 3 4

0

1

2

3

Perturbation increases

x1(t)

−2

−2

−1

−1
−3
−3

x
2
(t
)

Figure 11: Stability of the limit cycle under increasing perturbations.
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Figure 10 shows that the larger the threshold is, the
smaller the approximation capabilities of the truncatedmodel
is. This feature is due to the fact that a larger threshold
implies a greater separation between the sampling points. In
Figure 10, 𝛿 is modified from 0.15 to 0.4. Thus, as Lemma 4
states, a large intersampling period might lead to higher
errors in the approximated model. At this point we can
introduce a bounded perturbation 𝑔(𝑡

𝑖
) at sampling points

to analyze the stability of the limit cycle. For this, we can
firstly select a value for the threshold 𝛿 in such a way that
the solution of the approximate model shadows the one
of the actual system. Afterwards, we can apply different
perturbations to the system in an increasing way. If the
limit cycle preserves its shape under this scheme, this would
indicate that it is stable. This procedure has been applied in
Figure 11.

Since the shape of the limit cycle is maintained, the
stability of the original system is deduced from one of the
approximate truncated models. Moreover, the shadowing
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(𝑡) for different values for 𝜇.

property can be interpreted in terms of stability of the limit
cycle in the following way. If the error between the solutions
of the actual system and the approximate one under the same
perturbation is less in a system 𝐴 than in another system 𝐵,
this means that 𝐴 is more stable than 𝐵. Thus, the shadowing
property can be viewed as a concept to measure the relative
stability of systems by using its Taylor series expansion and
construction of approximate models. For instance, consider
the van del Pol equation with three different values of 𝜇 ∈

{0.1, 1, 2}. The behavior of the van der Pol equation depends
on the value of 𝜇 as it is widely recognized. Thus, the
approximate perturbed model can be used to compute the
error between the actual and reduced models in each case
and determine for which value of 𝜇 the Van der Pol equation
is “more stable,” that is, has a greater relative stability. Thus,
we fix the perturbation amplitude to 𝑔(𝑡

𝑖
) = 0.35 and carry

out some numerical experiments with the different values for
𝜇. In this way, Figure 12 displays the error in the first state
variable between the actual and approximate models while
Figure 13 shows the error in the second state variable for each
value of 𝜇.

Figures 12 and 13 show that the larger 𝜇 is, the larger the
peak error is. Therefore, in this case, systems with smaller
𝜇 have a greater relative stability. Finally, this approximate
affine model could be used, as in the previous example, to
design a control system based on a reduced model, rather
than using the complete nonlinear one. In conclusion, the
results presented in the previous sections have been applied
in some case studies with little effort, a fact that backs up its
potential practical applications.
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