
Research Article
The Larger Bound on the Domination Number of
Fibonacci Cubes and Lucas Cubes

Shengzhang Ren1,2

1 School of Mathematics and Computer Science, Shaanxi University of Technology Hanzhong, Shaanxi 723001, China
2Department of Mathematics, Lanzhou University Lanzhou, Gansu 730000, China

Correspondence should be addressed to Shengzhang Ren; renshengzhang1980@163.com

Received 18 September 2013; Revised 9 January 2014; Accepted 19 January 2014; Published 4 March 2014

Academic Editor: Yuantong Gu

Copyright © 2014 Shengzhang Ren. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Let Γ
𝑛
and Λ

𝑛
be the 𝑛-dimensional Fibonacci cube and Lucas cube, respectively. Denote by Γ[𝑢

𝑛,𝑘,𝑧
] the subgraph of Γ

𝑛
induced

by the end-vertex 𝑢
𝑛,𝑘,𝑧

that has no up-neighbor. In this paper, the number of end-vertices and domination number 𝛾 of Γ
𝑛
and Λ

𝑛

are studied. The formula of calculating the number of end-vertices is given and it is proved that 𝛾(Γ[𝑢
𝑛,𝑘,𝑧

]) ≤ 2
𝑘−1

+ 1. Using these
results, the larger bound on the domination number 𝛾 of Γ

𝑛
and Λ

𝑛
is determined.

1. Introduction

The Fibonacci cube and Lucas cube were presented in [1, 2],
respectively. Because their many properties (see [1–7]) such
as domination number, 2-packing number, and observability
can be applied to interconnection networks [1].

However, the number of vertices of Fibonacci cube Γ
𝑛
and

Lucas cube Λ
𝑛
grows rapidly as 𝑛 increases. So it is hard

to calculate exactly the number of domination number of
Fibonacci cubes and Lucas cubes. The lower bound on the
domination number of Fibonacci cubes and Lucas cubes is
determined in [3, 6], respectively. In this paper, we will give a
larger bound on the domination number of Fibonacci cubes
and Lucas cubes using construction method. We begin with
some basic definitions.

Graphs considered in this paper are finite, simple, con-
nected, and undirected. Let 𝑄

𝑛
be the 𝑛-dimensional hyper-

cube with 𝑛 > 0. A Fibonacci string 𝑏
1
𝑏
2
⋅ ⋅ ⋅ 𝑏
𝑛
of order 𝑛 is a

binary string of length 𝑛 without two consecutive ones. The
Fibonacci cube Γ

𝑛
(see Figure 1) is the subgraph of𝑄

𝑛
induced

by the Fibonacci strings of length 𝑛, whose vertices are the
Fibonacci strings of length 𝑛, and two vertices are joined by an
edge if theirHammingdistance is exactly 1. AFibonacci string
𝑏
1
𝑏
2
⋅ ⋅ ⋅ 𝑏
𝑛
is a Lucas string if 𝑏

1
𝑏
𝑛
= 0. The Lucas cube Λ

𝑛

is the subgraph of 𝑄
𝑛
induced by the Lucas strings of length

𝑛. It is well known that |𝑉(Γ
𝑛
)| = 𝐹

𝑛+2
and |𝑉(Λ

𝑛
)| = 𝐿

𝑛
,

where 𝐹
𝑛
and 𝐿

𝑛
are Fibonacci numbers and Lucas numbers,

respectively. Recall that the Fibonacci numbers and Lucas
numbers form a sequence of positive integers 𝐹

𝑛
and 𝐿

𝑛
,

respectively, where 𝐹
1
= 1, 𝐹

2
= 1, and 𝐹

𝑛
= 𝐹
𝑛−1

+ 𝐹
𝑛−2

and 𝐿
1
= 1, 𝐿

2
= 3, and 𝐿

𝑛
= 𝐿
𝑛−1

+ 𝐿
𝑛−2

for 𝑛 > 2.
For a connected graph 𝐺, the distance 𝑑

𝐺
(𝑢, V) between

vertices 𝑢 and V is the usual shortest path distance. For 0 ≤

𝑘 ≤ 𝑛, 𝑛 ≥ 1, let Γ
𝑛,𝑘

be the set of vertices of Γ
𝑛
that contain 𝑘

ones. Hence Γ
𝑛,𝑘

is the set of vertices of Γ
𝑛
at distance 𝑘 from

𝑏
1
𝑏
2
⋅ ⋅ ⋅ 𝑏
𝑛
, 𝑏
𝑖
= 0, 1 ≤ 𝑖 ≤ 𝑛. Λ

𝑛,𝑘
is defined analogously. If

𝑢V ∈ Γ
𝑛
, where 𝑢 ∈ Γ

𝑛,𝑘
and V ∈ Γ

𝑛,𝑘−1
for 𝑘 ≥ 1, then we call V

a down-neighbor of 𝑢 and 𝑢 an up-neighbor of V.
If a vertex 𝑢 has no up-neighbor, we call it an end-vertex

and denote by 𝜎(Γ
𝑛
) the number of end-vertices of Γ

𝑛
. Let

𝑢
𝑛,𝑘,𝑧

(0 ≤ 𝑘 ≤ 𝑛/2, 𝑧 ≥ 0, 𝑛 ≥ 1) be an end-vertex with string
length 𝑛, where 𝑘, 𝑧 are the number of ones and consecutive
0
2, respectively. We denote by Γ[𝑢

𝑛,𝑘,𝑧
] the subgraph of Γ

𝑛

induced by the end-vertex 𝑢
𝑛,𝑘,𝑧

, whose strings of vertices
were obtained from string of the vertex 𝑢

𝑛,𝑘,𝑧
by changing 𝑖

ones into 𝑖 zeroes (𝑖 = 0, 1, 2, . . . , 𝑘) and any two vertices have
an edge if their Hamming distance is exactly 1 (see Figure 2).

Let 𝐺 be a graph. Then 𝐷 ⊆ 𝑉(𝐺) is a dominating set if
every vertex from 𝑉(𝐺) \ 𝐷 is adjacent to some vertex from
𝐷. The domination number 𝛾(𝐺) is the minimum cardinality
of a dominating set of 𝐺.
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Figure 1: Γ
1
, Γ
2
, Γ
3
, and Γ

4
.

All graph-theoretical terms and concepts used but unex-
plained in this paper are standard, and that can be found in
many textbooks such as [8].

2. The Larger Bound on the Domination
Number of Fibonacci Cubes

In this section, we will determine the larger bound on the
domination number of Fibonacci cubes. Firstly, we mention
the following properties of Fibonacci cubes which will be
used later.

Lemma 1 (see [3]). Let 𝑛 ≥ 3 and 𝑘 ≥ 2. Then any different
𝑢, V ∈ Γ

𝑛,𝑘
have different sets of down-neighbors.

Lemma 2 (see [6]). For any 𝑛 ≥ 4, 𝛾(Γ
𝑛
) ≥ ⌈(𝐹

𝑛
− 3)/(𝑛 − 2)⌉.

Lemma 3. Let 𝑢
𝑛,𝑘,𝑧

be an end-vertex with string length 𝑛,
where 𝑘 and 𝑧 are the number of ones and consecutive 0

2,
respectively. Then 𝛾(Γ[𝑢

𝑛,𝑘,𝑧
]) ≤ 2

𝑘−1

+ 1 (see Figure 2).

Proof. Let𝐶𝑚
𝑛
= (𝑛⋅(𝑛−1) ⋅ ⋅ ⋅ (𝑛−𝑚+1))/(𝑚⋅(𝑚−1) ⋅ ⋅ ⋅ 2 ⋅1),

and it will be frequently used in latter. Let 𝑢 = 𝑢
𝑛,𝑘,𝑧

, and V𝑗
ℎ
be

a vertex with 𝑑
Γ[𝑢
𝑛,𝑘,𝑧
]
(𝑢, V𝑗
ℎ
) = 𝑗 (1 ≤ ℎ ≤ 𝐶

𝑗

𝑘
, 𝑗 = 1, 2, . . . , 𝑘),

and

Φ = {𝑢, V1
1
, V1
2
, . . . , V1

⌊𝐶
1

𝑘
/2⌋
, V2
1
, V2
2
, . . . ,

V2
⌊𝐶
2

𝑘
/2⌋
, . . . , V𝑘−1

1
, V𝑘−1
2

, . . . , V𝑘−1
⌊𝐶
𝑘−1

𝑘
/2⌋
, V𝑘
1
} ,

(1)

whose subset {V𝑖
1
, V𝑖
2
, . . . , V𝑖

⌊𝐶
𝑖

𝑘
/2⌋
} (𝑖 = 2, 3, . . . , 𝑘 − 1) contains

all vertices {V𝑖
ℎ

| 1 ≤ ℎ ≤ 𝐶
𝑖

𝑘
} such that satisfy the

condition 𝑑
Γ[𝑢
𝑛,𝑘,𝑧
]
(V𝑖−1
𝑙

, V𝑖
ℎ
) ̸= 1 for 𝑙 = 1, 2, . . . , ⌊𝐶

𝑖−1

𝑘
/2⌋. We

will prove that Φ is a dominating set. In order to prove that
Φ is a dominating set. It suffices to prove that any ⌊𝐶

𝑖−1

𝑘
/2⌋

vertices in {V𝑖−1
1

, V𝑖−1
2

, . . . , V𝑖−1
𝐶
𝑖−1

𝑘

} can dominate ⌊𝐶𝑖
𝑘
/2⌋ vertices

in {V𝑖
1
, V𝑖
2
, . . . , V𝑖

𝐶
𝑖

𝑘

}. If𝐶𝑖−1
𝑘

≥ 𝐶
𝑖

𝑘
, the result is obviously correct.

We assume that 𝐶𝑖−1
𝑘

< 𝐶
𝑖

𝑘
. From Lemma 1, we know that

any different V𝑖−1
ℎ

, V𝑖−1
𝑙

∈ 𝑉(Γ[𝑢
𝑛,𝑘,𝑧

]) (1 ≤ ℎ, 𝑙 ≤ 𝐶
𝑖−1

𝑘
, ℎ ̸= 𝑙)

have different sets of down-neighbors and have at most one
common down-neighbor vertex. Since each vertex V𝑖−1

ℎ
has

exactly 𝑘 − 𝑖 + 1 ones. If 𝑘 − 𝑖 + 2 ≥ ⌊𝐶
𝑖−1

𝑘
/2⌋, then the number

101001

100001

001000

000000

001001

100000 000001

101000

Figure 2: Γ[𝑢
𝑛,𝑘,𝑧

], 𝑢
𝑛,𝑘,𝑧

= 101001.

of vertices dominated by vertices set {V𝑖−1
1

, V𝑖−1
2

, . . . , V𝑖−1
⌊𝐶
𝑖−1

𝑘
/2⌋
} is

at least as follows:

⌊𝐶
𝑖−1

𝑘
/2⌋

∑

𝑗=1

(𝑘 − 𝑖 − 𝑗 + 2) = ⌊

𝐶
𝑖−1

𝑘
(2𝑘 − 2𝑖 + 3 − ⌊𝐶

𝑖−1

𝑘
/2⌋)

4
⌋

≥ ⌊
𝐶
𝑖−1

𝑘
(𝑘 − 𝑖 + 1)

4
⌋

= ⌊
𝑖𝐶
𝑖

𝑘

4
⌋ ≥ ⌊

𝐶
𝑖

𝑘

2
⌋ (Since 𝑖 ≥ 2) .

(2)

If 𝑘−𝑖+2 < ⌊𝐶
𝑖−1

𝑘
/2⌋, there must exist integer𝑚 such that

𝑚 < ⌊𝐶
𝑖−1

𝑘
/2⌋ and 𝑘 − 𝑖 − 𝑚 + 1 = 0, and then the number of

vertices dominated by vertices set {V𝑖−1
1

, V𝑖−1
2

, . . . , V𝑖−1
⌊𝐶
𝑖−1

𝑘
/2⌋
} is at

least as follows:

𝑚

∑

𝑗=1

(𝑘 − 𝑖 − 𝑗 + 2) = 𝐶
𝑖

𝑘
> ⌊

𝐶
𝑖

𝑘

2
⌋ . (3)

Therefore the set Φ is a dominating set, and

|Φ| = 2 +

𝑘−1

∑

𝑖=1

⌊
𝐶
𝑖

𝑘

2
⌋ ≤ 2
𝑘−1

+ 1. (4)

This completes our proof.

Theorem 4. Let 𝜎(Γ
𝑛
) be the number of end-vertices in Γ

𝑛
.

Then the followings hold.
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(i) If 𝑛 (𝑛 = 2𝑝 + 1) is odd, then

𝜎 (Γ
2𝑝+1

)

=

{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{

{

1 +

(𝑝−1)/3

∑

𝑘=1

(𝐶
2𝑘−1

𝑝−𝑘
+ 𝐶
2𝑘

𝑝−𝑘
)

+

(𝑝+2)/3

∑

𝑘=1

(𝐶
2𝑘−2

𝑝−𝑘
+ 𝐶
2𝑘−1

𝑝−𝑘
) if 𝑛 ≡ 0 mod 3;

1 +

𝑝/3

∑

𝑘=1

(𝐶
2𝑘−1

𝑝−𝑘
+ 𝐶
2𝑘

𝑝−𝑘
)

+

𝑝/3

∑

𝑘=1

(𝐶
2𝑘−2

𝑝−𝑘
+ 𝐶
2𝑘−1

𝑝−𝑘
) if 𝑛 ≡ 1 mod 3;

1 +

(𝑝+1)/3

∑

𝑘=1

(𝐶
2𝑘−1

𝑝−𝑘
+ 𝐶
2𝑘

𝑝−𝑘
)

+

(𝑝+1)/3

∑

𝑘=1

(𝐶
2𝑘−2

𝑝−𝑘
+ 𝐶
2𝑘−1

𝑝−𝑘
) if 𝑛 ≡ 2 mod 3.

(5)

(ii) If 𝑛 (𝑛 = 2𝑝) is even, then

𝜎 (Γ
2𝑝
)

=

{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{

{

1 +

𝑝/3

∑

𝑘=1

(𝐶
2𝑘−2

𝑝−𝑘
+ 𝐶
2𝑘−1

𝑝−𝑘
)

+

(𝑝+3)/3

∑

𝑘=2

(𝐶
2𝑘−3

𝑝−𝑘
+ 𝐶
2𝑘−2

𝑝−𝑘
) if 𝑛 ≡ 0 mod 3;

1 +

(𝑝+1)/3

∑

𝑘=1

(𝐶
2𝑘−2

𝑝−𝑘
+ 𝐶
2𝑘−1

𝑝−𝑘
)

+

(𝑝+1)/3

∑

𝑘=2

(𝐶
2𝑘−3

𝑝−𝑘
+ 𝐶
2𝑘−2

𝑝−𝑘
) if 𝑛 ≡ 1 mod 3;

1 +

(𝑝+2)/3

∑

𝑘=1

(𝐶
2𝑘−2

𝑝−𝑘
+ 𝐶
2𝑘−1

𝑝−𝑘
)

+

(𝑝+2)/3

∑

𝑘=2

(𝐶
2𝑘−3

𝑝−𝑘
+ 𝐶
2𝑘−2

𝑝−𝑘
) if 𝑛 ≡ 2 mod 3.

(6)

Proof. We prove only that the theorem is correct if 𝑛 (𝑛 =

2𝑝 + 1) is odd and 𝑛 ≡ 0 mod 3. And the proofs of the others
cases are similar. End-vertices of Γ

𝑛
can be divided into two

cases as follows.
Case 1. The end-vertices set is composed of end-vertices with
strings form 1𝑏

2
𝑏
3
⋅ ⋅ ⋅ 𝑏
𝑛
.

Case 2.The end-vertices set is composed of end-vertices with
strings form 0𝑏

2
𝑏
3
⋅ ⋅ ⋅ 𝑏
𝑛
.

In Case 1, since 𝑛 = 2𝑝 + 1 and 𝑛 ≡ 0 mod 3, then end-
vertices {𝑢

𝑛,𝑘,𝑧
} are divided into ((4𝑝−1)/3)+1 cases with 𝑧 =

0, 1, 2, . . . , (4𝑝 − 1)/3. Therefore the number of end-vertices
with strings form 1𝑏

2
𝑏
3
⋅ ⋅ ⋅ 𝑏
𝑛
is

1 +

(𝑝−1)/3

∑

𝑘=1

(𝐶
2𝑘−1

𝑝−𝑘
+ 𝐶
2𝑘

𝑝−𝑘
) . (7)

In Case 2, as similar as Case 1, end-vertices {𝑢
𝑛,𝑘,𝑧

} are
divided into ((4𝑝 + 2)/3) + 1 cases with 𝑧 = 0, 1, 2, . . . , (4𝑝 +

2)/3. Then the number of end-vertices with strings form
0𝑏
2
𝑏
3
⋅ ⋅ ⋅ 𝑏
𝑛
is

(𝑝+2)/3

∑

𝑘=1

(𝐶
2𝑘−2

𝑝−𝑘
+ 𝐶
2𝑘−1

𝑝−𝑘
) . (8)

Therefore

𝜎 (Γ
2𝑝+1

) = 1 +

(𝑝−1)/3

∑

𝑘=1

(𝐶
2𝑘−1

𝑝−𝑘
+ 𝐶
2𝑘

𝑝−𝑘
)

+

(𝑝+2)/3

∑

𝑘=1

(𝐶
2𝑘−2

𝑝−𝑘
+ 𝐶
2𝑘−1

𝑝−𝑘
) 𝑛 ≡ 0 mod 3.

(9)

This completes our proof.

Nowwe give the larger bound on the domination number
of Fibonacci cubes as follows.

Theorem 5. Let 𝑛 > 4. Then for the Fibonacci cube Γ
𝑛
the

followings hold.

(i) If 𝑛 (𝑛 = 2𝑝 + 1) is odd, then

⌈
𝐹
𝑛
− 3

𝑛 − 2
⌉

≤ 𝛾 (Γ
𝑛
)

≤

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

2
𝑝

+ 2 +

(𝑝−1)/3

∑

𝑘=1

(𝐶
2𝑘−1

𝑝−𝑘
+ 𝐶
2𝑘

𝑝−𝑘
) (2
𝑝−𝑘

− 1)

+

(𝑝+2)/3

∑

𝑘=1

(𝐶
2𝑘−2

𝑝−𝑘
+ 𝐶
2𝑘−1

𝑝−𝑘
) (2
𝑝−𝑘

− 1)

if 𝑛 ≡ 0 mod 3;

2
𝑝

+ 2 +

𝑝/3

∑

𝑘=1

(𝐶
2𝑘−1

𝑝−𝑘
+ 𝐶
2𝑘

𝑝−𝑘
) (2
𝑝−𝑘

− 1)

+

𝑝/3

∑

𝑘=1

(𝐶
2𝑘−2

𝑝−𝑘
+ 𝐶
2𝑘−1

𝑝−𝑘
) (2
𝑝−𝑘

− 1)

if 𝑛 ≡ 1 mod 3;

2
𝑝

+ 2 +

(𝑝+1)/3

∑

𝑘=1

(𝐶
2𝑘−1

𝑝−𝑘
+ 𝐶
2𝑘

𝑝−𝑘
) (2
𝑝−𝑘

− 1)

+

(𝑝+1)/3

∑

𝑘=1

(𝐶
2𝑘−2

𝑝−𝑘
+ 𝐶
2𝑘−1

𝑝−𝑘
) (2
𝑝−𝑘

− 1)

if 𝑛 ≡ 2 mod 3.

(10)
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(ii) If 𝑛 (𝑛 = 2𝑝) is even, then

⌈
𝐹
𝑛
− 3

𝑛 − 2
⌉

≤ 𝛾 (Γ
𝑛
)

≤

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

2
𝑝−1

+ 2 +

𝑝/3

∑

𝑘=1

(𝐶
2𝑘−2

𝑝−𝑘
+ 𝐶
2𝑘−1

𝑝−𝑘
) (2
𝑝−𝑘

− 1)

+

(𝑝+3)/3

∑

𝑘=2

(𝐶
2𝑘−3

𝑝−𝑘
+ 𝐶
2𝑘−2

𝑝−𝑘
) (2
𝑝−𝑘

− 1)

if 𝑛 ≡ 0 mod 3;

2
𝑝−1

+ 2 +

(𝑝+1)/3

∑

𝑘=1

(𝐶
2𝑘−2

𝑝−𝑘
+ 𝐶
2𝑘−1

𝑝−𝑘
) (2
𝑝−𝑘

− 1)

+

(𝑝+1)/3

∑

𝑘=2

(𝐶
2𝑘−3

𝑝−𝑘
+ 𝐶
2𝑘−2

𝑝−𝑘
) (2
𝑝−𝑘

− 1)

if 𝑛 ≡ 1 mod 3;

2
𝑝−1

+ 2 +

(𝑝+2)/3

∑

𝑘=1

(𝐶
2𝑘−2

𝑝−𝑘
+ 𝐶
2𝑘−1

𝑝−𝑘
) (2
𝑝−𝑘

− 1)

+

(𝑝+2)/3

∑

𝑘=2

(𝐶
2𝑘−3

𝑝−𝑘
+ 𝐶
2𝑘−2

𝑝−𝑘
) (2
𝑝−𝑘

− 1)

if 𝑛 ≡ 2 mod 3.

(11)

Proof. According to the process of proof of Lemma 3, there
must exist a dominating set of Γ[𝑢

𝑛,𝑘,𝑧
] with the string form

1𝑏
2
⋅ ⋅ ⋅ 𝑏
𝑛
(or 0𝑏

2
⋅ ⋅ ⋅ 𝑏
𝑛
) such that it contains the vertex with

the string form 10
𝑛−1 (or 010

𝑛−2). So all dominating sets
of Γ[𝑢

𝑛,𝑘,𝑧
] of Γ

𝑛
with strings form 1𝑏

2
⋅ ⋅ ⋅ 𝑏
𝑛
(or 0𝑏

2
⋅ ⋅ ⋅ 𝑏
𝑛
)

have at least two common vertices with strings {10
𝑛−1

, 0
𝑛

}

(or {010
𝑛−2

, 0
𝑛

}). Then the theorem follows directly from
Lemmas 2 and 3 andTheorem 4.

3. The Larger Bound on the Domination
Number of Lucas Cubes

In this section, we will determine the larger bound on the
domination number of Lucas cubes as follows.

Lemma6 (see [3]). For any 𝑛 ≥ 7, 𝛾(Λ
𝑛
) ≥ ⌈(𝐿

𝑛
−2𝑛)/(𝑛−3)⌉.

Theorem 7. Let 𝜎(Λ
𝑛
) be the number of end-vertices in Λ

𝑛
.

Then the followings hold.

(i) If 𝑛 (𝑛 = 2𝑝 + 1) is odd, then

𝜎 (Λ
2𝑝+1

)

=

{{{{{{{{{{

{{{{{{{{{{

{

(𝑝−1)/3

∑

𝑘=1

𝐶
2𝑘−1

𝑝−𝑘
+

(𝑝+2)/3

∑

𝑘=1

(𝐶
2𝑘−2

𝑝−𝑘
+ 𝐶
2𝑘−1

𝑝−𝑘
) if 𝑛 ≡ 0 mod 3;

𝑝/3

∑

𝑘=1

𝐶
2𝑘−1

𝑝−𝑘
+

𝑝/3

∑

𝑘=1

(𝐶
2𝑘−2

𝑝−𝑘
+ 𝐶
2𝑘−1

𝑝−𝑘
) if 𝑛 ≡ 1 mod 3;

(𝑝+1)/3

∑

𝑘=1

𝐶
2𝑘−1

𝑝−𝑘
+

(𝑝+1)/3

∑

𝑘=1

(𝐶
2𝑘−2

𝑝−𝑘
+ 𝐶
2𝑘−1

𝑝−𝑘
) if 𝑛 ≡ 2 mod 3.

(12)

(ii) If 𝑛 (𝑛 = 2𝑝) is even, then

𝜎 (Λ
2𝑝
)

=

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

1 +

𝑝/3

∑

𝑘=1

𝐶
2𝑘−2

𝑝−𝑘

+

(𝑝+3)/3

∑

𝑘=2

(𝐶
2𝑘−3

𝑝−𝑘
+ 𝐶
2𝑘−2

𝑝−𝑘
) if 𝑛 ≡ 0 mod 3;

1 +

(𝑝+1)/3

∑

𝑘=1

𝐶
2𝑘−2

𝑝−𝑘

+

(𝑝+1)/3

∑

𝑘=2

(𝐶
2𝑘−3

𝑝−𝑘
+ 𝐶
2𝑘−2

𝑝−𝑘
) if 𝑛 ≡ 1 mod 3;

1 +

(𝑝+2)/3

∑

𝑘=1

𝐶
2𝑘−2

𝑝−𝑘

+

(𝑝+2)/3

∑

𝑘=2

(𝐶
2𝑘−3

𝑝−𝑘
+ 𝐶
2𝑘−2

𝑝−𝑘
) if 𝑛 ≡ 2 mod 3.

(13)

Proof. The proof is similar to Theorem 4.

Theorem 8. Let 𝑛 > 7. Then for the Lucas cube Λ
𝑛
the

followings hold.

(i) If 𝑛 (𝑛 = 2𝑝 + 1) is odd, then

⌈
𝐿
𝑛
− 2𝑛

𝑛 − 3
⌉

≤ 𝛾 (Λ
𝑛
)

≤

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

2 +

(𝑝−1)/3

∑

𝑘=1

𝐶
2𝑘−1

𝑝−𝑘
(2
𝑝−𝑘

− 1)

+

(𝑝+2)/3

∑

𝑘=1

(𝐶
2𝑘−2

𝑝−𝑘
+ 𝐶
2𝑘−1

𝑝−𝑘
) (2
𝑝−𝑘

− 1) if 𝑛 ≡ 0 mod 3;

2 +

𝑝/3

∑

𝑘=1

𝐶
2𝑘−1

𝑝−𝑘
(2
𝑝−𝑘

− 1)

+

𝑝/3

∑

𝑘=1

(𝐶
2𝑘−2

𝑝−𝑘
+ 𝐶
2𝑘−1

𝑝−𝑘
) (2
𝑝−𝑘

− 1) if 𝑛 ≡ 1 mod 3;

2 +

(𝑝+1)/3

∑

𝑘=1

𝐶
2𝑘−1

𝑝−𝑘
(2
𝑝−𝑘

− 1)

+

(𝑝+1)/3

∑

𝑘=1

(𝐶
2𝑘−2

𝑝−𝑘
+ 𝐶
2𝑘−1

𝑝−𝑘
) (2
𝑝−𝑘

− 1) if 𝑛 ≡ 2 mod 3.

(14)
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(ii) If 𝑛 (𝑛 = 2𝑝) is even, then

⌈
𝐿
𝑛
− 2𝑛

𝑛 − 3
⌉

≤ 𝛾 (Λ
𝑛
)

≤

{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{

{

2
𝑝−1

+ 2 +

𝑝/3

∑

𝑘=1

𝐶
2𝑘−2

𝑝−𝑘
(2
𝑝−𝑘

− 1)

+

(𝑝+3)/3

∑

𝑘=2

(𝐶
2𝑘−3

𝑝−𝑘
+ 𝐶
2𝑘−2

𝑝−𝑘
) (2
𝑝−𝑘

− 1) if 𝑛 ≡ 0 mod 3;

2
𝑝−1

+ 2 +

(𝑝+1)/3

∑

𝑘=1

𝐶
2𝑘−2

𝑝−𝑘
(2
𝑝−𝑘

− 1)

+

(𝑝+1)/3

∑

𝑘=2

(𝐶
2𝑘−3

𝑝−𝑘
+ 𝐶
2𝑘−2

𝑝−𝑘
) (2
𝑝−𝑘

− 1) if 𝑛 ≡ 1 mod 3;

2
𝑝−1

+ 2 +

(𝑝+2)/3

∑

𝑘=1

𝐶
2𝑘−2

𝑝−𝑘
(2
𝑝−𝑘

− 1)

+

(𝑝+2)/3

∑

𝑘=2

(𝐶
2𝑘−3

𝑝−𝑘
+ 𝐶
2𝑘−2

𝑝−𝑘
) (2
𝑝−𝑘

− 1) if 𝑛 ≡ 2 mod 3.

(15)

Proof. That follows directly from Lemmas 6 and Theorem 7.
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