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This paper presents a deterministic SATQ-type mathematical model (including susceptible, alcoholism, treating, and quitting
compartments) for the spread of alcoholismwith two control strategies to gain insights into this increasingly concerned about health
and social phenomenon. Some properties of the solutions to themodel including positivity, existence and stability are analyzed.The
optimal control strategies are derived by proposing an objective functional and using Pontryagin’s Maximum Principle. Numerical
simulations are also conducted in the analytic results.

1. Introduction

Alcoholism, also known as alcohol dependence, is a disease
that includes the desire for alcohol and continuing to drink it
despite its negative effect on individual’s health, relationships,
and social status [1]. Similar to all other drug addictions,
alcoholism can be regarded as a treatable disease. The World
Health Organization estimates that about 140 million people
throughout the world suffer from alcohol dependence with
related problems, such as being sick, losing a job, among a
host of other things [2]. Particularly, young people’s alco-
holism problem is a major concern to public health. US
surveys indicate that approximately 90% of college students
have consumed alcohol at least once [3], and more than
40% of college students have engaged in binge drinking [4,
5]. Unfortunately, the biological mechanisms underpinning
alcoholism are not known; however, risk factors include
social environment, stress, mental health, genetic sensitivity,
age, ethnic group, and sex [6, 7]. Long-term alcohol abuse
will produce negative changes in the brain such as tolerance
and physical dependence.The subtle changesmake it difficult
for the alcoholics to stop drinking and result in alcohol
withdrawal symptoms upon discontinuation of alcohol con-
sumption. Alcohol damages almost all parts of the body and
contribute to a number of human diseases including but
not limited to liver cirrhosis, pancreatitis, heart disease, and

sexual dysfunction and can eventually be deadly [8]. Damage
to the central and peripheral nervous systems can take place
from sustained alcohol consumption [9–13].

Although alcoholism is becoming more and more dan-
gerous and serious as well as a widespread social phe-
nomenon, only much less work has been done in the mathe-
maticalmodelling of alcoholism as a growing health problem,
including a few studies which offered some mathematical
approaches to understand the growing burden of alcoholism
[10, 14–19]. In [10], a SIR-type model was proposed; the
authors used standard contact rate between susceptibles
and alcoholism, getting alcoholism reproductive number
and discussing the existence and stability of two equilibria.
In [14], a framework where drinking was modeled as a
socially contagious process in low- and high-risk connected
environments was introduced; they found that high levels
of social interaction between light and moderate drinkers in
low-risk environments can diminish the importance of the
distribution of relative drinking times on the prevalence of
heavy drinking. In [15], neurophysiological examinations of
100 long-term alcohol dependent patients, who were having
neuropsychiatric treatment, showed symptoms of polytopic
damage of the peripheral and central nervous system. The
results showed that for recognition of the damage an exten-
sive diagnostic programmemust be used. In [16], the authors
considered a kind of binge drinking model with two equal
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infectivity drunk states; mathematical analyses established
that the global dynamics of themodel were determined by the
basic reproduction number. In [17], the authors modified the
model from [16]; that is, they considered different infectivity
of two drunk states, and a SEIR-type model of alcoholism
was thus presented, in which two alcohol related states were
involved, namely, no alcohol dependent consumers 𝐷(𝑡)
and alcohol dependent consumers 𝐴(𝑡). In [18], the authors
formulated a deterministic model for evaluating the impact
of heavy alcohol drinking on the reemerging gonorrhea
epidemic, and both analytical and numerical results were
provided to ascertain whether heavy alcohol drinking had
an impact on the transmission dynamics of gonorrhea. The
approach of the literature [18] was very meaningful, since
it provided a new direction of thinking when the cross-
infection between alcoholism and other pathological diseases
occurs. In recent monograph [19], the authors also proposed
a SIR-type model to investigate alcohol abuse phenomenon
and generated some useful insights; for example, the basic
reproductive number was not always the key to controlling
drinking within the population. For other papers that study
the model of giving up smoking or quitting drinking, please
see [20, 21] and references cited therein.

As living standard and health awareness get improved,
more and more people who fall into binge drinking state
are actively seeking the quitting alcoholism measures and
treatment methods [1, 11, 22]. In [22], treatment strategy was
introduced into a simple SIR-type alcoholics quitting model,
in which the authors used the bilinear incidence to depict the
“infection” between the occasional drinkers 𝑆 and problem
drinkers 𝐷. Motivated by some aforementioned documents
[10, 19, 22], in this paper, we will formulate a more reasonable
alcoholics quitting model. The fact that our model is more
reasonable is embodied from the following three aspects.

(1) Taking into account that alcoholism is a widespread
social phenomenon, so the standard incidence is
superior to bilinear incidence when we portray the
relationship between the alcoholism and the suscep-
tibles during the course of infection. While in [22],
the authors adopted bilinear incidence, we will adopt
standard incidence in this paper.

(2) Since alcohol is harmful to health, moreover, as
we all know, alcoholism is treatable if we can take
approximate measure in time, for example, artificial
isolation from alcoholisms, medications, persuasion,
and education programing on alcoholism. So it is
necessary to take effective measures to avoid alcohol
or to treat after alcoholism. Documents [10, 19] have
not considered these aspects.

(3) Since there is effective prevention and treatment in
describing the phenomenon of alcoholism, there are
some people who will never drink due to successful
prevention or some people who no longer drink after
successful treatment. Therefore, when we formulate
the model in this paper, it’s reasonable to introduce
a new compartment𝑄, the people in which will never
drink for ever. Obviously, themodels of [10, 19, 22] are
not involving the quitting compartment 𝑄.

Based on the above considerations, we will premeditate
two treating methods, namely, prevention of susceptibles
from alcoholism and treatment on alcoholism as control
variables; hence, we will derive a SATQ-type model. We
note the fact that many authors are interested in solving
optimal control problems, such as cost minimization and
optimal control of various disease, especially with biological
background and various mathematical models [22–24]. In
this paper, we will propose an objective functional which
considers not only alcohol quitting effects but also the cost
of controlling alcohol. Then, we consider a range of issues
related to the optimal control with themethod of Pontryagin’s
Maximum Principle, including optimal control existence,
uniqueness, and characterization.

The organization of this paper is as follows. In the
next section, the alcoholism model with prevention for the
susceptibles and treatment for alcoholism is formulated. In
Section 3, the basic reproduction number and the existence of
equilibria are investigated.The stability of the disease free and
endemic equilibria is proved in Section 4. Optimal control
strategies by the classic method of PMP (Pontryagin’s Maxi-
mum Principle) are discussed in Section 5. In Section 6, we
give some numerical simulations. We give some discussions
and conclusions in the last section.

2. The Model Formulation and Some
Fundamental Properties

In this section, we introduce a mathematical model with
prevention and treatment for the alcoholism and then study
some important properties such as the boundness and posi-
tivity of its solutions.

2.1. Model Formulation and Parameter Explanation. The
total population is partitioned into four compartments: the
susceptible compartment 𝑆 which refers to the persons
who never drink or drink moderately without affecting the
physical health, the alcoholism compartment 𝐴 which refers
to the persons who binge drink and affect the physical health
seriously, the treatment compartment 𝑇 which refers to the
persons who have been receiving treatments by taking pills or
othermedical interventions after alcoholism, and the quitting
compartment 𝑄 which refers to the persons who recover
from alcoholism after treatment and stay off alcohol hereafter.
In this paper, we focus on a closed environment, such as a
community, a university, or a village. So the total number of
population to be considered is a constant; we denote it as𝑁.
The population flow among those compartments is shown in
the following diagram (Figure 1).

The schematic diagram leads to the following system of
ordinary differential equations:

𝑆

= 𝜇𝑁 − (1 − 𝑢

1
)
𝛽𝑆𝐴

𝑁
− 𝜇𝑆,

𝐴

= (1 − 𝑢

1
)
𝛽𝑆𝐴

𝑁
+ 𝜉𝑇 − (𝑢

2
+ 𝜇)𝐴,
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Figure 1: Transfer diagram for the dynamics of alcoholism model.

𝑇

= 𝑢
2
𝐴 − (𝜇 + 𝜉 + 𝛿) 𝑇,

𝑄

= 𝛿𝑇 − 𝜇𝑄.

(1)

Here, 𝜇𝑁 is the birth number of the population; 𝜇 is the
natural death rate of the population; 𝑢

1
is the fraction of

the susceptible individuals who successfully avoid to stay
off the alcoholism; 𝑢

2
is the fraction of the alcoholics who

take part in treatments; here, 0 ≤ 𝑢
𝑖
≤ 1, 𝑖 = 1, 2, and

they will be considered as two control variables in Section 5;
𝛽 is the transmission coefficient of the “infection” for the
susceptible individuals from the alcoholic individuals; 𝜉 is the
rate coefficient of the person who fail to be treated and return
to the alcoholism compartmentmostly due to their ownweak
will; 𝛿 is the rate coefficient of the person who have received
effective treatment and recovered from alcoholism forever.

2.2. Boundedness of Solutions to System and Positively Invari-
ant Region. It is important to show positivity and bounded-
ness for the system (1) as they represent populations. Firstly,
we present the positivity of the solutions. System (1) can be
put into the matrix form

𝑋

= 𝐺 (𝑋) , (2)

where𝑋 = (𝑆, 𝐴, 𝑇, 𝑄)
𝑇
∈ 𝑅
4 and 𝐺(𝑋) is given by

𝐺 (𝑋) = (

𝐺
1
(𝑋)

𝐺
2
(𝑋)

𝐺
3
(𝑋)

𝐺
4
(𝑋)

)

=(

𝜇𝑁 − (1 − 𝑢
1
)
𝛽𝑆𝐴

𝑁
− 𝜇𝑆

(1 − 𝑢
1
)
𝛽𝑆𝐴

𝑁
+ 𝜉𝑇 − (𝑢

2
+ 𝜇)𝐴

𝑢
2
𝐴 − (𝜇 + 𝜉 + 𝛿) 𝑇

𝛿𝑇 − 𝜇𝑄

).

(3)

It is easy to check that

𝐺
𝑖
(𝑋)

𝑋𝑖(𝑡)=0,𝑋𝑡∈𝐶+
≥ 0, 𝑖 = 1, 2, 3, 4. (4)

Due to Lemma 2 in [25], any solution of (1) is 𝑋(𝑡) ∈ 𝑅4
+
for

all 𝑡 ≥ 0.
We denote 𝑁(𝑡) = 𝑆(𝑡) + 𝐴(𝑡) + 𝑇(𝑡) + 𝑄(𝑡); summing

equations in (1) yields

𝑑𝑁 (𝑡)

𝑑𝑡
= 0, (5)

so 𝑁(𝑡) = 𝑆(𝑡) + 𝐴(𝑡) + 𝑇(𝑡) + 𝑄(𝑡) = constant (denoted as
𝑁), and the set

Ω = {(𝑆, 𝐴, 𝑇, 𝑄) ∈ 𝑅
4

+
: 𝑆 + 𝐴 + 𝑇 + 𝑄 ≤ 𝑁} (6)

is a positively invariant region for (1). Therefore, we will
consider the global stability of (1) on the setΩ.

3. The Basic Reproduction Number and
Existence of Alcoholism Equilibria

3.1. The Basic Reproduction Number 𝑅
0
. In epidemiology,

the basic reproduction number (sometimes called basic
reproductive rate or basic reproductive ratio) of an infection
is the number of infectious cases that one infectious case
generates on average over the course of its infectious period.
While in this context, it means the number of persons that
an alcoholic will “infect” during his “infectious” period in the
pure susceptible environment so that the infected personswill
enter the alcoholism compartment. It is easy to see that the
model has an alcohol free equilibrium 𝐸

0
= (𝑆
0
, 0, 0, 0) =

(𝑁, 0, 0, 0). In the following, the basic reproduction number
of system (1) will be obtained by the next generation matrix
method formulated in [26].

Let 𝑥 = (𝐴, 𝑇, 𝑄, 𝑆)𝑇, then system (1) can be written as

𝑑𝑥

𝑑𝑡
= F (𝑥) −V (𝑥) , (7)

where

F (𝑥) = (

(1 − 𝑢
1
)
𝛽𝑆𝐴

𝑁
0

0

0

) ,

V (𝑥) = (

(𝑢
2
+ 𝜇)𝐴 − 𝜉𝑇

(𝜇 + 𝜉 + 𝛿) 𝑇 − 𝑢
2
𝐴

𝜇𝑄 − 𝛿𝑇

(1 − 𝑢
1
)
𝛽𝑆𝐴

𝑁
+ 𝜇𝑆 − 𝜇𝑁

).

(8)

The Jacobian matrices of F(𝑥) and V(𝑥) at the alcohol free
equilibrium 𝐸

0
are, respectively,

𝐷F (𝐸
0
) = (

𝐹
3×3

0

0 0
) ,

𝐷V (𝐸
0
) = (

𝑉
3×3

0

(1 − 𝑢
1
) 𝛽 0 0 𝜇

) ,

(9)

where

𝐹 = (

(1 − 𝑢
1
) 𝛽 0 0

0 0 0

0 0 0

) , 𝑉 = (

𝑢
2
+ 𝜇 −𝜉 0

−𝑢
2

𝜇 + 𝜉 + 𝛿 0

0 −𝛿 𝜇

) .

(10)

The basic reproduction number, denoted by 𝑅
0
, is thus given

by

𝑅
0
= 𝜌 (𝐹𝑉

−1
) =

𝛽 (1 − 𝑢
1
) (𝜇 + 𝜉 + 𝛿)

𝑢
2
(𝜇 + 𝛿) + 𝜇 (𝜇 + 𝜉 + 𝛿)

. (11)



4 Abstract and Applied Analysis

It is easy to see that both of the control parameters con-
tributed to reducing the alcoholism. From this point, the
control measures are meaningful.

3.2. Existence of Alcoholism Equilibrium. The endemic equi-
librium 𝐸

∗
(𝑆
∗
, 𝐴
∗
, 𝑇
∗
, 𝑄
∗
) of system (1) is determined by

equations

𝜇𝑁 − (1 − 𝑢
1
)
𝛽𝑆𝐴

𝑁
− 𝜇𝑆 = 0,

(1 − 𝑢
1
)
𝛽𝑆𝐴

𝑁
+ 𝜉𝑇 − (𝑢

2
+ 𝜇)𝐴 = 0,

𝑢
2
𝐴 − (𝜇 + 𝜉 + 𝛿) 𝑇 = 0,

𝛿𝑇 − 𝜇𝑄 = 0.

(12)

The third equation in (12) leads to

𝐴 =
𝜇 + 𝜉 + 𝛿

𝑢
2

𝑇. (13)

From the last equation in (12), we have

𝑄 =
𝛿𝑇

𝜇
. (14)

From the first equation of (12), and together with (13), we can
get

𝑆 =
𝜇𝑁

𝜇 + (((1 − 𝑢
1
) 𝛽) /𝑁)𝐴

=
𝜇𝑁
2
𝑢
2

𝜇𝑁𝑢
2
+ (1 − 𝑢

1
) 𝛽𝑇 (𝜇 + 𝜉 + 𝛿)

.

(15)

Substituting (13)–(15) into the second equation of (12) gives

𝜇𝑁 −
𝜇
2
𝑁
2
𝑢
2

𝜇𝑁𝑢
2
+ (1 − 𝑢

1
) 𝛽𝑇 (𝜇 + 𝜉 + 𝛿)

+ 𝜉𝑇 − (𝜇 + 𝑢
2
)
𝜇 + 𝜉 + 𝛿

𝑢
2

𝑇 = 0.

(16)

By simplifying (16), we can get

𝑇 {[𝑢
2
𝜉 (1 − 𝑢

1
) 𝛽 (𝜇 + 𝜉 + 𝛿)

− (1 − 𝑢
1
) 𝛽(𝜇 + 𝜉 + 𝛿)

2

(𝜇 + 𝑢
2
)] 𝑇 + 𝜎} = 0,

(17)

where
𝜎 = 𝑢

2
𝜇𝑁 (1 − 𝑢

1
) 𝛽 (𝜇 + 𝜉 + 𝛿)

+ (𝑢
2
)
2

𝜇𝑁𝜉 − 𝜇𝑁𝑢
2
(𝜇 + 𝑢

2
) (𝜇 + 𝜉 + 𝛿) .

(18)

Hence, we get two explicit solutions to (17); one is 𝑇
0
= 0,

which is corresponding to the alcohol free equilibria, and the
other is
𝑇
∗
= (𝜎) ((1 − 𝑢

1
) 𝛽(𝜇 + 𝜉 + 𝛿)

2

(𝜇 + 𝑢
2
)

−𝑢
2
𝜉 (1 − 𝑢

1
) 𝛽 (𝜇 + 𝜉 + 𝛿) )

−1

=
𝜎

(1 − 𝑢
1
) 𝛽 (𝜇 + 𝜉 + 𝛿) [𝜇𝜉 + (𝛿 + 𝜇) (𝜇 + 𝑢

2
)]
,

(19)

which should be corresponding to the alcoholism equilibria
on condition that 𝑇∗ > 0; otherwise, the alcoholism
equilibria are nonexistent. It is enough to show the positivity
of 𝜎 tomake sure the existence of alcoholism equilibria on the
condition 𝑅

0
≥ 1. By some simple calculations, we simplify

the expression of 𝜎 to be

𝜎 = 𝜇𝑁𝑢
2
{(𝜇 + 𝜉 + 𝛿) (1 − 𝑢

1
) 𝛽

− [(𝜇 + 𝑢
2
) (𝛿 + 𝜇) + 𝜇𝜉]} .

(20)

Since 𝑅
0
> 1 is equivalent to

𝛽 (1 − 𝑢
1
) (𝜇 + 𝜉 + 𝛿) > 𝑢

2
(𝜇 + 𝛿) + 𝜇 (𝜇 + 𝜉 + 𝛿) , (21)

the right side of this inequality is exactly equal to (𝜇+𝑢
2
)(𝛿+

𝜇) + 𝜇𝜉. Hence, we have proved the existence of 𝑇∗ > 0,
so are the alcoholism equilibria. We summarize this result in
Theorem 1.

Theorem 1. For system (1), there is always an alcohol free
equilibrium 𝐸

0
= (𝑁, 0, 0, 0). When 𝑅

0
> 1, besides alcohol

free equilibrium 𝐸
0
, system (1) also has a unique alcoholism

equilibrium 𝐸
∗
(𝑆
∗
, 𝐴
∗
, 𝑇
∗
, 𝑄
∗
), where

𝑆
∗
=

𝜇𝑁
2
𝑢
2

𝜇𝑁𝑢
2
+ (1 − 𝑢

1
) 𝛽𝑇∗ (𝜇 + 𝜉 + 𝛿)

,

𝐴
∗
=
𝜇 + 𝜉 + 𝛿

𝑢
2

𝑇
∗
,

𝑄
∗
=
𝛿𝑇
∗

𝜇
,

𝑇
∗
=

𝜎

(1 − 𝑢
1
) 𝛽 (𝜇 + 𝜉 + 𝛿) [𝜇𝜉 + (𝛿 + 𝜇) (𝜇 + 𝑢

2
)]
.

(22)

4. Stability Analysis of Equilibria

For the convenience of subsequent proof, we denote a vector
𝑋 = (𝐴, 𝑇, 𝑄, 𝑆)

𝑇 and

𝑓 (𝑋) =(

(1 − 𝑢
1
)
𝛽𝑆𝐴

𝑁
+ 𝜉𝑇 − (𝑢

2
+ 𝜇)𝐴

𝑢
2
𝐴 − (𝜇 + 𝜉 + 𝛿) 𝑇

𝛿𝑇 − 𝜇𝑄

𝜇𝑁 − (1 − 𝑢
1
)
𝛽𝑆𝐴

𝑁
− 𝜇𝑆

). (23)

So the Jacobian matrix of 𝑓(𝑥) about vector 𝑋 is as the
following:

𝐽 =

𝜕𝑓 (𝑋)

𝜕𝑋

=(

(1 − 𝑢1) 𝛽𝑆

𝑁

− (𝜇 + 𝑢2) 𝜉 0

(1 − 𝑢1) 𝛽𝐴

𝑁

𝑢2 − (𝜇 + 𝜉 + 𝛿) 0 0

0 𝛿 −𝜇 0

−

(1 − 𝑢1) 𝛽𝑆

𝑁

0 0 −𝜇 −

(1 − 𝑢1) 𝛽𝐴

𝑁

).

(24)

Theorem 2. For system (1), the alcohol free equilibrium 𝐸
0
is

locally asymptotically stable if 𝑅
0
< 1.
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Proof. Since

𝐽 (𝐸
0
)

= (

(1 − 𝑢
1
) 𝛽 − (𝜇 + 𝑢

2
) 𝜉 0 0

𝑢
2

− (𝜇 + 𝜉 + 𝛿) 0 0

0 𝛿 −𝜇 0

− (1 − 𝑢
1
) 𝛽 0 0 −𝜇

) ,

(25)

we can easily get that two of the eigenvalues are 𝜆
1
= 𝜆
2
=

−𝜇 < 0, while 𝜆
3
, 𝜆
4
satisfy

𝜆
2
+ [2𝜇 + 𝜉 + 𝛿 + 𝑢

2
− (1 − 𝑢

1
) 𝛽] 𝜆

+ (𝜇 + 𝜉 + 𝛿) (𝜇 + 𝑢
2
− (1 − 𝑢

1
) 𝛽) − 𝑢

2
𝜉 = 0.

(26)

Thus,

𝜆
3
+ 𝜆
4
= (1 − 𝑢

1
) 𝛽 − (𝜇 + 𝜉 + 𝛿) − (𝜇 + 𝑢

2
) . (27)

Since 𝑅
0
< 1 is equivalent to

𝛽 (1 − 𝑢
1
) (𝜇 + 𝜉 + 𝛿) < 𝑢

2
(𝜇 + 𝛿) + 𝜇 (𝜇 + 𝜉 + 𝛿)

< (𝜇 + 𝑢
2
) (𝜇 + 𝜉 + 𝛿) ,

(28)

so

𝛽 (1 − 𝑢
1
) < 𝜇 + 𝑢

2
, (29)

and then

𝜆
3
+ 𝜆
4
< − (𝜇 + 𝜉 + 𝛿) < 0, (30)

while

𝜆
3
𝜆
4
= (𝜇 + 𝜉 + 𝛿) (𝜇 + 𝑢

2
− (1 − 𝑢

1
) 𝛽) − 𝑢

2
𝜉. (31)

Similarly from 𝑅
0
< 1, we can derive the inequality

−𝛽 (1 − 𝑢
1
) (𝜇 + 𝜉 + 𝛿) > −𝑢

2
(𝜇 + 𝛿) − 𝜇 (𝜇 + 𝜉 + 𝛿) , (32)

so
𝜆
3
𝜆
4
> (𝜇 + 𝑢

2
) (𝜇 + 𝜉 + 𝛿)

− 𝑢
2
𝜉 − 𝑢
2
(𝜇 + 𝛿) − 𝜇 (𝜇 + 𝜉 + 𝛿) .

(33)

It reduces to

𝜆
3
𝜆
4
> 0. (34)

Hence, Re 𝜆
3
< 0, Re 𝜆

4
< 0. The proof is complete.

Next, we will turn to investigate the global stability of 𝐸
0
.

Theorem 3. For system (1), the alcohol free equilibrium 𝐸
0
is

globally asymptotically stable if 𝑅
0
< 1.

Proof. Consider the subsystem of (1) as follows:

𝐴

= (1 − 𝑢

1
)
𝛽𝑆𝐴

𝑁
+ 𝜉𝑇 − (𝑢

2
+ 𝜇)𝐴,

𝑇

= 𝑢
2
𝐴 − (𝜇 + 𝜉 + 𝛿) 𝑇,

𝑄

= 𝛿𝑇 − 𝜇𝑄.

(35)

Equation (35) can be rewritten as

(

�̇�

�̇�

�̇�

) = (𝐹 − 𝑉)(

𝐴

𝑇

𝑄

) − (1 −
𝑆

𝑁
)

× (

𝛽 (1 − 𝑢
1
) 0 0

0 0 0

0 0 0

)(

𝐴

𝑇

𝑄

) .

(36)

Since 𝑆 ≤ 𝑁 and 0 ≤ 𝑢
1
≤ 1, then for all 𝑡 > 0, we can get

(

�̇�

�̇�

�̇�

) ≤ (𝐹 − 𝑉)(

𝐴

𝑇

𝑄

) . (37)

According to Lemma 1 in [26], all the eigenvalues of matrix
𝐹 − 𝑉 have negative real parts, so the solutions of this sub-
system are stable whenever 𝑅

0
< 1. So (𝐴(𝑡), 𝑇(𝑡), 𝑄(𝑡)) →

(0, 0, 0) as 𝑡 → ∞. By the comparison theorem [27], and
based on the fact that the total population is constant 𝑁, it
follows that (𝐴(𝑡), 𝑇(𝑡), 𝑄(𝑡)) → (0, 0, 0) and 𝑆(𝑡) → 𝑁

as 𝑡 → ∞. So the alcohol free equilibrium 𝐸
0
is globally

asymptotically stable; the proof is complete.

Theorem 4. For system (1), the alcoholism equilibrium
𝐸
∗
(𝑆
∗
, 𝐴
∗
, 𝑇
∗
, 𝑄
∗
) is globally asymptotically stable if 𝑅

0
> 1.

Proof. Since the total population in model (1) is a constant
number𝑁, in order to prove the global stability of system (1),
it is sufficed to prove the corresponding stability of subsystem
(38):

𝑆

= 𝜇𝑁 − (1 − 𝑢

1
)
𝛽𝑆𝐴

𝑁
− 𝜇𝑆,

𝐴

= (1 − 𝑢

1
)
𝛽𝑆𝐴

𝑁
+ 𝜉𝑇 − (𝑢

2
+ 𝜇)𝐴,

𝑇

= 𝑢
2
𝐴 − (𝜇 + 𝜉 + 𝛿) 𝑇.

(38)

We make normalization transform and still use the same
symbols 𝑆, 𝐴, 𝑇 to denote the variables; then (38) can be
transformed into

𝑆

= 𝜇 − (1 − 𝑢

1
) 𝛽𝑆𝐴 − 𝜇𝑆,

𝑠𝐴

= (1 − 𝑢

1
) 𝛽𝑆𝐴 + 𝜉𝑇 − (𝑢

2
+ 𝜇)𝐴,

𝑇

= 𝑢
2
𝐴 − (𝜇 + 𝜉 + 𝛿) 𝑇.

(39)

From (39), we can easily know that the equilibria (𝑆∗, 𝐴∗, 𝑇∗)
satisfy the following three equalities to be used later:

𝜇 = (1 − 𝑢
1
) 𝛽𝑆
∗
𝐴
∗
− 𝜇𝑆
∗
,

(1 − 𝑢
1
) 𝛽𝑆
∗
𝐴
∗
+ 𝜉𝑇
∗
= (𝑢
2
+ 𝜇)𝐴

∗
,

𝑢
2
𝐴
∗
= (𝜇 + 𝜉 + 𝛿) 𝑇

∗
.

(40)
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Let 𝑉 = 𝑥
1
(𝑆 − 𝑆

∗
− 𝑆
∗ ln(𝑆/𝑆∗)) + 𝑥

2
(𝐴 − 𝐴

∗
−

𝐴
∗ ln(𝐴/𝐴∗)) + 𝑥

3
(𝑇 − 𝑇

∗
− 𝑇
∗ ln(𝑇/𝑇∗)); then

𝑉
(39)

= 𝑥
1
[𝜇 − (1 − 𝑢

1
) 𝛽𝑆𝐴 − 𝜇𝑆

−
𝑆
∗

𝑆
𝜇 + (1 − 𝑢

1
) 𝛽𝑆
∗
𝐴 + 𝜇𝑆

∗
]

+ 𝑥
2
[ (1 − 𝑢

1
) 𝛽𝑆𝐴 + 𝜉𝑇 − (𝑢

2
+ 𝜇)𝐴

− (1 − 𝑢
1
) 𝛽𝑆𝐴

∗
−
𝐴
∗

𝐴
𝜉𝑇 + (𝑢

2
+ 𝜇)𝐴

∗
]

+ 𝑥
3
[𝑢
2
𝐴 − (𝜇 + 𝜉 + 𝛿) 𝑇

−
𝑇
∗

𝑇
𝑢
2
𝐴 + (𝜇 + 𝜉 + 𝛿) 𝑇

∗
]

= 𝑥
1
[ (1 − 𝑢

1
) 𝛽𝑆
∗
𝐴
∗
+ 𝜇𝑆
∗
− (1 − 𝑢

1
) 𝛽𝑆𝐴 − 𝜇𝑆

−
𝑆
∗

𝑆
((1 − 𝑢

1
) 𝛽𝑆
∗
𝐴
∗
+ 𝜇𝑆
∗
)

+ (1 − 𝑢
1
) 𝛽𝑆
∗
𝐴 + 𝜇𝑆

∗
]

+ 𝑥
2
[ (1 − 𝑢

1
) 𝛽𝑆𝐴 + 𝜉𝑇 − (𝑢

2
+ 𝜇)𝐴

− (1 − 𝑢
1
) 𝛽𝑆𝐴

∗
−
𝐴
∗

𝐴
𝜉𝑇 + (𝑢

2
+ 𝜇)𝐴

∗
]

+ 𝑥
3
[𝑢
2
𝐴 − (𝜇 + 𝜉 + 𝛿) 𝑇

−
𝑇
∗

𝑇
𝑢
2
𝐴 + (𝜇 + 𝜉 + 𝛿) 𝑇

∗
]

= 𝑥
1
𝜇𝑆
∗
(2 −

𝑆

𝑆∗
−
𝑆
∗

𝑆
)

+ [𝑥
1
(1 − 𝑢

1
) 𝛽𝑆
∗
𝐴
∗
+ 𝑥
2
(𝑢
2
+ 𝜇)𝐴

∗

+ 𝑥
3
(𝜇 + 𝜉 + 𝛿) 𝑇

∗
]

− [𝑥
1

(𝑆
∗
)
2

(1 − 𝑢
1
) 𝛽𝐴
∗

𝑆
+ 𝑥
2
(1 − 𝑢

1
) 𝛽𝑆𝐴

∗

+ 𝑥
2

𝐴
∗
𝜉𝑇

𝐴
+ 𝑥
3

𝑇
∗

𝑇
𝑢
2
𝐴]

+ 𝑆𝐴 [−𝑥
1
(1 − 𝑢

1
) 𝛽 + 𝑥

2
(1 − 𝑢

1
) 𝛽]

+ 𝐴 [− (𝑢
2
+ 𝜇) 𝑥

2
+ 𝑥
1
(1 − 𝑢

1
) 𝛽𝑆
∗
+ 𝑢
2
𝑥
3
]

+ 𝑇 [𝜉𝑥
2
− (𝜇 + 𝜉 + 𝛿) 𝑥

3
] .

(41)

To eliminate the cross-term 𝑆𝐴 and two single-variable terms
𝐴 and 𝑇, we let

−𝑥
1
(1 − 𝑢

1
) 𝛽 + 𝑥

2
(1 − 𝑢

1
) 𝛽 = 0,

− (𝑢
2
+ 𝜇) 𝑥

2
+ 𝑥
1
(1 − 𝑢

1
) 𝛽𝑆
∗
+ 𝑢
2
𝑥
3
= 0,

𝜉𝑥
2
− (𝜇 + 𝜉 + 𝛿) 𝑥

3
= 0.

(42)

By solving them, we can get

𝑥
1
= 1, 𝑥

2
= 1,

𝑥
3
=

𝜉

𝜇 + 𝜉 + 𝛿
=
𝑢
2
+ 𝜇 − (1 − 𝑢

1
) 𝛽𝑆
∗

𝑢
2

.

(43)

Next, we let

𝑉


1
= 𝑥
1
(1 − 𝑢

1
) 𝛽𝑆
∗
𝐴
∗
+ 𝑥
2
(𝑢
2
+ 𝜇)𝐴

∗

+ 𝑥
3
(𝜇 + 𝜉 + 𝛿) 𝑇

∗
,

𝑉


2
= −[𝑥

1

(𝑆
∗
)
2

(1 − 𝑢
1
) 𝛽𝐴
∗

𝑆

+ 𝑥
2
(1 − 𝑢

1
) 𝛽𝑆𝐴

∗
+ 𝑥
2

𝐴
∗
𝜉𝑇

𝐴
+ 𝑥
3

𝑇
∗

𝑇
𝑢
2
𝐴] ,

(44)

and then

𝑉

= 𝑥
1
𝜇𝑆
∗
(2 −

𝑆

𝑆∗
−
𝑆
∗

𝑆
) + 𝑉



1
+ 𝑉


2
. (45)

Due to

(𝑢
2
+ 𝜇)𝐴

∗
= (1 − 𝑢

1
) 𝛽𝑆
∗
𝐴
∗
+ 𝜉𝑇
∗
,

𝑥
3
(𝜇 + 𝜉 + 𝛿) 𝑇

∗
= 𝜉𝑇
∗
𝑥
2
= 𝜉𝑇
∗
,

(46)
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so

𝑉


1
= 2 (1 − 𝑢

1
) 𝛽𝑆
∗
𝐴
∗
+ 2𝜉𝑇

∗
,

𝑉


2
= −[

(𝑆
∗
)
2

(1 − 𝑢
1
) 𝛽𝐴
∗

𝑆

+ (1 − 𝑢
1
) 𝛽𝑆𝐴

∗
+
𝐴
∗
𝜉𝑇

𝐴
+ 𝑥
3

𝑇
∗

𝑇
𝑢
2
𝐴]

≤ −2[
(𝑆
∗
)
2

(1 − 𝑢
1
) 𝛽𝐴
∗

𝑆
⋅ (1 − 𝑢

1
) 𝛽𝑆𝐴

∗
]

1/2

− 2 [
𝐴
∗
𝜉𝑇

𝐴
⋅ 𝑥
3

𝑇
∗

𝑇
𝑢
2
𝐴]

= −2 (1 − 𝑢
1
) 𝛽𝑆
∗
𝐴
∗
− 2(𝑥
3
𝐴
∗
𝜉𝑢
2
𝑇
∗
)
1/2

= −2 (1 − 𝑢
1
) 𝛽𝑆
∗
𝐴
∗
− 2[𝜉𝑇

∗
(𝑥
3
𝑢
2
𝐴
∗
)]
1/2

= −2 (1 − 𝑢
1
) 𝛽𝑆
∗
𝐴
∗

− 2{𝜉𝑇
∗
[(𝑢
2
+ 𝜇)𝐴

∗
− (1 − 𝑢

1
) 𝛽𝑆
∗
𝐴
∗
]}
1/2

= −2 (1 − 𝑢
1
) 𝛽𝑆
∗
𝐴
∗
− 2(𝜉𝑇

∗
𝜉𝑇
∗
)
1/2

= −2 (1 − 𝑢
1
) 𝛽𝑆
∗
𝐴
∗
− 2𝜉𝑇

∗
.

(47)

Hence,

𝑉

= 𝜇𝑆
∗
(2 −

𝑆

𝑆∗
−
𝑆
∗

𝑆
) + 𝑉



1
+ 𝑉


2

≤ 𝜇𝑆
∗
(2 −

𝑆

𝑆∗
−
𝑆
∗

𝑆
) + 2 (1 − 𝑢

1
) 𝛽𝑆
∗
𝐴
∗

+ 2𝜉𝑇
∗
− 2 (1 − 𝑢

1
) 𝛽𝑆
∗
𝐴
∗
− 2𝜉𝑇

∗

= 𝜇𝑆
∗
(2 −

𝑆

𝑆∗
−
𝑆
∗

𝑆
) ≤ 0,

(48)

𝑉

= 0 if and only if 𝑆 = 𝑆

∗, 𝐴 = 𝐴
∗, 𝑇 = 𝑇

∗. According
to LaSalle’s invariance principle [28], we can derive the
conclusion that the alcoholism equilibria 𝐸∗(𝑆∗, 𝐴∗, 𝑇∗, 𝑄∗)
are globally asymptotically stable; the proof is complete.

5. Optimal Control Problem

5.1. The Existence of Optimal Control. In order to investigate
an effective campaign to control alcoholism in a community
which pursue the goals of the minimized alcoholisms and
more recovered individuals, we will reconsider the system (1)
and use two control variables to reduce the numbers of alco-
holics. The difference is that we will change the parameters
𝑢
1
, 𝑢
2
into control variable 𝑢

1
(𝑡), 𝑢
2
(𝑡). Their aforementioned

definitions allow us to do so. 𝑢
1
(𝑡) is used to limit the

proportion of the susceptible individual to contact with
alcoholism, usually by propaganda and education, so that the
susceptible individual can stay off alcoholism consciously and
be free of “infection,” we can understand the effect of 𝑢

1
(𝑡)

is to prevent the the susceptible from contacting with the
alcoholism. The control variable 𝑢

2
(𝑡) is used to control the

alcoholism to take appropriate treatment measures, such as
taking pills or seeking other medical help. However, just as a
coin has two sides, there will be a lot of costs generated during
the control process. So it is advisable to balance between the
costs and the alcohol effects. In view of this, our optimal
control problem tominimize the objective functional is given
by

𝐽 (𝑢
1
, 𝑢
2
) = ∫

𝑡𝑓

0

[𝐴 (𝑡) +
𝑐
1

2
𝑢
2

1
(𝑡) +

𝑐
2

2
𝑢
2

2
(𝑡)] 𝑑𝑡, (49)

which subjects to system

𝑆

= 𝜇𝑁 − (1 − 𝑢

1
(𝑡))

𝛽𝑆𝐴

𝑁
− 𝜇𝑆,

𝐴

= (1 − 𝑢

1
(𝑡))

𝛽𝑆𝐴

𝑁
+ 𝜉𝑇 − (𝑢

2
(𝑡) + 𝜇)𝐴,

𝑇

= 𝑢
2
(𝑡) 𝐴 − (𝜇 + 𝜉 + 𝛿) 𝑇,

𝑄

= 𝛿𝑇 − 𝜇𝑄,

(50)

with initial conditions

𝑆 (0) = 𝑆
0
, 𝐴 (0) = 𝐴

0
,

𝑇 (0) = 𝑇
0
, 𝑄 (0) = 𝑄

0
.

(51)

Here, 𝑢
𝑖
(𝑡) ∈ 𝑈 ≜ {(𝑢

1
, 𝑢
2
) | 𝑢
𝑖
(𝑡) is measurable and 0 ≤

𝑢
𝑖
(𝑡) ≤ 1, for all 𝑡 ∈ [0, 𝑡

𝑓
]}, 𝑡
𝑓
is the end time to be

controlled, 𝑈 is an admissible control set, 𝑐
𝑖
, and 𝑖 = 1, 2, are

weight factors (positive constants) that adjust the intensity of
two different control measures.

Next, we will investigate the existence of the optimal
control of the above-mentioned problem.

Theorem 5. There exists an optimal control pair 𝑢
∗

=

(𝑢
∗

1
, 𝑢
∗

2
) ∈ 𝑈 such that

𝐽 (𝑢
∗

1
, 𝑢
∗

2
) = min 𝐽 (𝑢

1
, 𝑢
2
) , 𝑢

1
(𝑡) , 𝑢
2
(𝑡) ∈ 𝑈 (52)

subjects to the control system (1) with initial conditions (50).

Proof. Toprove the existence of an optimal control, according
to the classic literature [29], we have to show the following.

(1) The control and state variables are nonnegative values.
(2) The control set 𝑈 is convex and closed.
(3) The right side of the state system is bounded by linear

function in the state and control variables.
(4) The integrand of the objective functional is concave

on 𝑈.
(5) There exist constants 𝑑

1
, 𝑑
2
> 0 and 𝛼 > 1 such

that the integrand 𝐿(𝑡; 𝑢
1
; 𝑢
2
) ≜ 𝐴(𝑡) + (𝑐

1
/2)𝑢
2

1
(𝑡) +

(𝑐
2
/2)𝑢
2

2
(𝑡) of the objective functional satisfies

𝐿 (𝑡; 𝑢
1
; 𝑢
2
) ≥ 𝑑
1
(
𝑢1


2

+
𝑢2


2

)
𝛼/2

− 𝑑
2

(53)
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statements (1), (2) and (3) are obvious satisfied, we only need
to test and verify the latter two ones. Since the four state
variables have been all proved to be up bounded by 𝑁, we
will get the following equalities:

𝑆

≤ 𝜇𝑁, 𝐴


≤ (1 − 𝑢

1
(𝑡)) 𝛽𝑆 + 𝜉𝑇,

𝑇

≤ 𝑢
2
(𝑡) 𝐴, 𝑄


≤ 𝛿𝑇,

(54)

so the fourth condition is set up. As for the last condition,

𝐿 (𝑡; 𝑢
1
; 𝑢
2
) ≥ 𝑑
1
(
𝑢1


2

+
𝑢2


2

)
𝛼/2

− 𝑑
2

(55)

is also true, when we choose 𝑑
1
= min{𝑐

1
/2, 𝑐
2
/2}, and for all

𝑑
2
∈ 𝑅
+
, 𝛼 = 2. The proof is complete.

We next come to the core of this section.

5.2. The Characterization of the Optimal Control. With the
existence of the optimal control pairs established, we now
present the optimality system and use a result from [30];
we can easily know the existence of the solutions to the
optimality system (71) which will be gotten later. Firstly, we
come to discuss the theorem that relates to the character-
ization of the optimal control. The optimality system can
be used to compute candidates for optimal control pairs.
To do this, we begin by defining an augmented Hamilto-
nian 𝐻 with penalty terms for the control constraints as
follows:

𝐻 = 𝐴 (𝑡) +
𝑐
1

2
𝑢
2

1
(𝑡) +

𝑐
2

2
𝑢
2

2
(𝑡)

+ 𝜆
1
[𝜇𝑁 − (1 − 𝑢

1
(𝑡))

𝛽𝑆𝐴

𝑁
− 𝜇𝑆]

+ 𝜆
2
[(1 − 𝑢

1
(𝑡))

𝛽𝑆𝐴

𝑁
+ 𝜉𝑇 − (𝑢

2
(𝑡) + 𝜇)𝐴]

+ 𝜆
3
[𝑢
2
(𝑡) 𝐴 − (𝜇 + 𝜉 + 𝛿) 𝑇] + 𝜆

4
(𝛿𝑇 − 𝜇𝑄)

− 𝑤
11
𝑢
1
(𝑡) − 𝑤

12
(1 − 𝑢

1
(𝑡))

− 𝑤
21
𝑢
2
(𝑡) − 𝑤

22
(1 − 𝑢

2
(𝑡)) ,

(56)

where 𝑤
𝑖𝑗
(𝑡) ≥ 0 are the penalty multipliers satisfying

𝑤
11
(𝑡) 𝑢
1
(𝑡) = 𝑤

12
(𝑡) (1 − 𝑢

1
(𝑡))

= 0 at optimal control 𝑢∗
1
,

𝑤
21
(𝑡) 𝑢
2
(𝑡) = 𝑤

22
(𝑡) (1 − 𝑢

2
(𝑡))

= 0 at optimal control 𝑢∗
2
.

(57)

Theorem6. Given optimal control pairs (𝑢∗
1
, 𝑢
∗

2
) and solutions

𝑆(𝑡), 𝐴(𝑡), 𝑇(𝑡), 𝑄(𝑡) of the corresponding state system (50),
there exist adjoint variables 𝜆

𝑖
, 𝑖 = 1, 2, 3, 4, satisfying

𝜆


1
= 𝜆
1
(1 − 𝑢

1
(𝑡))

𝛽𝐴

𝑁
+ 𝜇𝜆
1
− 𝜆
2
(1 − 𝑢

1
(𝑡))

𝛽𝐴

𝑁
,

𝜆


2
= −1 + 𝜆

1
(1 − 𝑢

1
(𝑡))

𝛽𝑆

𝑁
− 𝜆
2
(1 − 𝑢

1
(𝑡))

𝛽𝑆

𝑁

+ 𝜆
2
(𝜇 + 𝑢

2
(𝑡)) − 𝜆

3
𝑢
2
(𝑡) ,

𝜆


3
= −𝜆
2
𝜉 + 𝜆
3
(𝜇 + 𝜉 + 𝛿) − 𝜆

4
𝛿,

𝜆


4
= 𝜇𝜆
4
,

(58)

with the terminal conditions

𝜆
𝑖
(𝑡
𝑓
) = 0, 𝑖 = 1, 2, 3, 4. (59)

Furthermore, (𝑢∗
1
, 𝑢
∗

2
) are represented by

𝑢
∗

1
= min(1,max(0,

𝛽𝑆𝐴 (𝜆
2
− 𝜆
1
)

𝑐
1
𝑁

)) ,

𝑢
∗

2
= min(1,max(0,

𝐴 (𝜆
2
− 𝜆
3
)

𝑐
2

)) .

(60)

Proof. According to Pontryagin Maximum Principle [29–
31], we first differentiate the Hamiltonian operator 𝐻, with
respect to states. Then the adjoint system can be written as

𝜆


1
= −

𝜕𝐻

𝜕𝑆
, 𝜆



2
= −

𝜕𝐻

𝜕𝐴
,

𝜆


3
= −

𝜕𝐻

𝜕𝑇
, 𝜆



4
= −

𝜕𝐻

𝜕𝑄
.

(61)

The terminal condition (56) of adjoint equations is given by
𝜆
𝑖
(𝑡
𝑓
) = 0, 𝑖 = 1, 2, 3, 4.

To obtain the necessary conditions of optimality (59), we
also differentiate theHamiltonian operator𝐻, with respect to
𝑈 = (𝑢

1
, 𝑢
2
) and set them equal to zero; then

𝜕𝐻

𝜕𝑢
1

= 𝑐
1
𝑢
1
(𝑡) + 𝜆

1

𝛽𝑆𝐴

𝑁
− 𝜆
2

𝛽𝑆𝐴

𝑁
− 𝑤
11
+ 𝑤
12
= 0,

𝜕𝐻

𝜕𝑢
2

= 𝑐
2
𝑢
2
(𝑡) − 𝜆

2
𝐴 + 𝜆

3
𝐴 − 𝑤

21
+ 𝑤
22
= 0.

(62)

By solving the optimal control, we obtain

𝑢
∗

1
=
1

𝑐
1

[(𝜆
2
− 𝜆
1
)
𝛽𝑆𝐴

𝑁
+ 𝑤
11
− 𝑤
12
] . (63)

To determine an explicit expression for the optimal
control without𝑤

11
and𝑤

12
, a standard optimality technique

is utilized [29]. We consider the following three cases.

(i) On the set {𝑡 | 0 < 𝑢
∗

1
(𝑡) < 1}, we have 𝑤

11
(𝑡) =
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𝑤
12
(𝑡) = 0. Hence, the optimal control is

𝑢
∗

1
=
1

𝑐
1

[(𝜆
2
− 𝜆
1
)
𝛽𝑆𝐴

𝑁
] . (64)

(ii) On the set {𝑡 | 𝑢∗
1
(𝑡) = 1}, we have 𝑤

11
(𝑡) = 0. Hence,

1 = 𝑢
∗

1
(𝑡) =

1

𝑐
1

[(𝜆
2
− 𝜆
1
)
𝛽𝑆𝐴

𝑁
− 𝑤
12
] . (65)

This implies that

1

𝑐
1

(𝜆
2
− 𝜆
1
)
𝛽𝑆𝐴

𝑁
≥ 1 since 𝑤

12
(𝑡) ≥ 0. (66)

(iii) On the set {𝑡 | 𝑢∗
1
(𝑡) = 0}, we have 𝑤

12
(𝑡) = 0. Hence,

0 = 𝑢
∗

1
(𝑡) =

1

𝑐
1

[(𝜆
2
− 𝜆
1
)
𝛽𝑆𝐴

𝑁
+ 𝑤
11
] . (67)

This implies that

1

𝑐
1

(𝜆
2
− 𝜆
1
)
𝛽𝑆𝐴

𝑁
≤ 0 since 𝑤

11
(𝑡) ≥ 0. (68)

Combining these results, the optimal control 𝑢∗
1
(𝑡) is

characterized as

𝑢
∗

1
= min{1,max{0, 1

𝑐
1

[(𝜆
2
− 𝜆
1
)
𝛽𝑆𝐴

𝑁
]}} . (69)

Using the similar arguments, we can also obtain the other
optimal control function

𝑢
∗

2
= min{1,max{0,

(𝜆
2
− 𝜆
3
) 𝐴

𝑐
2

}} . (70)

The proof is complete.

We point out that the optimality system consists
of the state system (50) with the initial conditions
𝑆(0), 𝐴(0), 𝑇(0), 𝑄(0), the adjoint (or costate) system
(58) with the terminal conditions (59), and the optimality
condition (60). Any optimal control pairs must satisfy
this optimality system. For the convenience of subsequent

numerical simulation in Section 6, we give the optimality
system as follows:

𝑆

= 𝜇𝑁 − (1 −min{1,max{0, 1

𝑐
1

[(𝜆
2
− 𝜆
1
)
𝛽𝑆𝐴

𝑁
]}} (𝑡))

×
𝛽𝑆𝐴

𝑁
− 𝜇𝑆,

𝐴

= (1−min{1,max{0, 1

𝑐
1

[(𝜆
2
−𝜆
1
)
𝛽𝑆𝐴

𝑁
]}} (𝑡))

𝛽𝑆𝐴

𝑁

+ 𝜉𝑇 − (min{1,max{0,
(𝜆
2
− 𝜆
3
) 𝐴

𝑐
2

}} (𝑡) + 𝜇)𝐴,

𝑇

= min{1,max{0,

(𝜆
2
− 𝜆
3
) 𝐴

𝑐
2

}} (𝑡) 𝐴

− (𝜇 + 𝜉 + 𝛿) 𝑇,

𝑄

= 𝛿𝑇 − 𝜇𝑄,

𝜆


1
= 𝜆
1
(1 −min{1,max{0, 1

𝑐
1

[(𝜆
2
− 𝜆
1
)
𝛽𝑆𝐴

𝑁
]}} (𝑡))

×
𝛽𝐴

𝑁
+ 𝜇𝜆
1

− 𝜆
2
(1−min{1,max{0, 1

𝑐
1

[(𝜆
2
−𝜆
1
)
𝛽𝑆𝐴

𝑁
]}}(𝑡))

×
𝛽𝐴

𝑁
,

𝜆


2
= −1

+ 𝜆
1
(1−min{1,max{0, 1

𝑐
1

[(𝜆
2
−𝜆
1
)
𝛽𝑆𝐴

𝑁
]}} (𝑡))

×
𝛽𝑆

𝑁
− 𝜆
3
⋅min{1,max{0,

(𝜆
2
− 𝜆
3
) 𝐴

𝑐
2

}} (𝑡)

− 𝜆
2
(1 −min{1,max{0, 1

𝑐
1

[(𝜆
2
− 𝜆
1
)
𝛽𝑆𝐴

𝑁
]}})

×
𝛽𝑆

𝑁
+ 𝜆
2
(𝜇+min{1,max{0,

(𝜆
2
− 𝜆
3
) 𝐴

𝑐
2

}}(𝑡)) ,

𝜆


3
= −𝜆
2
𝜉 + 𝜆
3
(𝜇 + 𝜉 + 𝛿) − 𝜆

4
𝛿,

𝜆


4
= 𝜇𝜆
4
,

𝑆 (0) = 𝑆
0
, 𝐴 (0) = 𝐴

0
, 𝑇 (0) = 𝑇

0
,

𝑄 (0) = 𝑄
0
, 𝜆

𝑖
(𝑡
𝑓
) = 0, 𝑖 = 1, 2, 3, 4.

(71)

5.3. The Uniqueness of Optimal Control. Due to the a priori
boundedness of the state, adjoint functions, and the resulting
Lipschitz structure of the ODEs, we can obtain the unique-
ness of the optimal control.
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Lemma 7 (see [23]). The function 𝑢∗(𝑠) = min (𝑏,max (𝑠, 𝑎))
is Lipschitz continuous in 𝑠, where 𝑎 < 𝑏 are some fixed positive
constants.

Theorem 8. For all 𝑡 ∈ [0, 𝑡
𝑓
], the solution to the optimality

system (71) is unique.

Proof. Suppose (𝑆, 𝐴, 𝑇, 𝑄, 𝜆
1
, 𝜆
2
, 𝜆
3
, 𝜆
4
) and

(𝑆, 𝐴, 𝑇, 𝑄, 𝜆
1
, 𝜆
2
, 𝜆
3
, 𝜆
4
) are two different solutions of

our optimality system (71). Let

𝑆 = 𝑒
𝜆𝑡
𝑚, 𝐴 = 𝑒

𝜆𝑡
𝑛, 𝑇 = 𝑒

𝜆𝑡
𝑝,

𝑄 = 𝑒
𝜆𝑡
𝑞, 𝜆

1
= 𝑒
−𝜆𝑡
𝑟, 𝜆

2
= 𝑒
−𝜆𝑡
𝑠,

𝜆
3
= 𝑒
−𝜆𝑡
𝑤, 𝜆

4
= 𝑒
−𝜆𝑡V,

𝑆 = 𝑒
𝜆𝑡
𝑚, 𝐴 = 𝑒

𝜆𝑡
𝑛, 𝑇 = 𝑒

𝜆𝑡
𝑝,

𝑄 = 𝑒
𝜆𝑡
𝑞, 𝜆

1
= 𝑒
−𝜆𝑡
𝑟, 𝜆

2
= 𝑒
−𝜆𝑡
𝑠,

𝜆
3
= 𝑒
−𝜆𝑡
𝑤, 𝜆

4
= 𝑒
−𝜆𝑡V,

(72)

where 𝜆 > 0 is to be chosen.
Accordingly, we have

𝑢
∗

1
(𝑡) = min{1,max{0,

𝛽𝑚𝑛 (𝑠 − 𝑟) 𝑒
𝜆𝑡

𝑐
1
𝑁

}} ,

𝑢
∗

2
(𝑡) = min{1,max{0, (𝑠 − 𝑤) 𝑛

𝑐
2

}} ,

𝑢
∗

1
(𝑡) = min{1,max{0,

𝛽𝑚𝑛 (𝑠 − 𝑟) 𝑒
𝜆𝑡

𝑐
1
𝑁

}} ,

𝑢
∗

2
(𝑡) = min{1,max{0, (𝑠 − 𝑤) 𝑛

𝑐
2

}} .

(73)

Now we substitute 𝑆 = 𝑒
𝜆𝑡
𝑚, 𝐴 = 𝑒

𝜆𝑡
𝑛, 𝑇 = 𝑒

𝜆𝑡
𝑝, 𝑄 = 𝑒

𝜆𝑡
𝑞,

𝜆
1
= 𝑒
−𝜆𝑡
𝑟, 𝜆
2
= 𝑒
−𝜆𝑡
𝑠, 𝜆
3
= 𝑒
−𝜆𝑡
𝑤, 𝜆
4
= 𝑒
−𝜆𝑡V and 𝑆 =

𝑒
𝜆𝑡
𝑚, 𝐴 = 𝑒

𝜆𝑡
𝑛, 𝑇 = 𝑒

𝜆𝑡
𝑝, 𝑄 = 𝑒

𝜆𝑡
𝑞, 𝜆
1
= 𝑒
−𝜆𝑡
𝑟, 𝜆
2
=

𝑒
−𝜆𝑡
𝑠, 𝜆
3
= 𝑒
−𝜆𝑡
𝑤, 𝜆
4
= 𝑒
−𝜆𝑡V into the first ODE of (71),

respectively; then we can obtain

�̇� + 𝜆𝑚 = 𝜇𝑁𝑒
−𝜆𝑡

− (1 −min{1,max{0,
𝛽𝑚𝑛 (𝑠 − 𝑟) 𝑒

𝜆𝑡

𝑐
1
𝑁

}})

×
𝛽𝑚𝑛𝑒

𝜆𝑡

𝑁
− 𝜇𝑚,

(74)

for𝑚 and𝑚, respectively. Similarly, we can derive

̇𝑛 + 𝜆𝑛

= (1 −min{1,max{1,
𝛽𝑚𝑛 (𝑠 − 𝑟) 𝑒

𝜆𝑡

𝑐
1
𝑁

}})
𝛽𝑚𝑛𝑒

𝜆𝑡

𝑁

+ 𝜉𝑝 − (min{1,max{0, 𝑛 (𝑠 − 𝑤)
𝑐
2

}} + 𝜇) 𝑛,

(75)

for 𝑛 and 𝑛, respectively;

�̇� + 𝜆𝑝 = min{1,max{0, 𝑛 (𝑠 − 𝑤)
𝑐
2

}} 𝑛

− (𝜇 + 𝜉 + 𝛿) 𝑝,

(76)

for 𝑝 and 𝑝, respectively;

̇𝑞 + 𝜆𝑞 = 𝛿𝑝 − 𝜇𝑞, (77)

for 𝑞 and 𝑞, respectively;

̇𝑟 − 𝜆𝑟 = 𝑟(1 −min{1,max{0,
𝛽𝑚𝑛 (𝑠 − 𝑟) 𝑒

𝜆𝑡

𝑐
1
𝑁

}})
𝛽𝑛𝑒
𝜆𝑡

𝑁

+ 𝜇𝑟−𝑠(1−min{1,max{0,
𝛽𝑚𝑛 (𝑠 − 𝑟) 𝑒

𝜆𝑡

𝑐
1
𝑁

}})

×
𝛽𝑛𝑒
𝜆𝑡

𝑁
,

(78)

for 𝑟 and 𝑟, respectively;

̇𝑠 − 𝜆𝑠 = −𝑒
𝜆𝑡

+ 𝑟(1 −min{1,max{0,
𝛽𝑚𝑛 (𝑠 − 𝑟) 𝑒

𝜆𝑡

𝑐
1
𝑁

}})
𝛽𝑚𝑒
𝜆𝑡

𝑁

− 𝑠(1 −min{1,max{0,
𝛽𝑚𝑛 (𝑠 − 𝑟) 𝑒

𝜆𝑡

𝑐
1
𝑁

}})

×
𝛽𝑚𝑒
𝜆𝑡

𝑁
+ 𝑠(min{1,max{0, 𝑛 (𝑠 − 𝑤)

𝑐
2

}} + 𝜇)

− 𝑤(min{1,max{0, 𝑛 (𝑠 − 𝑤)
𝑐
2

}}) ,

(79)

for 𝑠 and 𝑠, respectively;

�̇� − 𝜆𝑤 = −𝑠𝜉 + (𝜇 + 𝜉 + 𝛿)𝑤 − 𝛿V, (80)

for 𝑤 and 𝑤, respectively;

V̇ − 𝜆V = 𝜇V, (81)

for V and V, respectively.
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By Lemma 7, we can obtain

𝑢
∗

1
(𝑡) − 𝑢

∗

1
(𝑡)
 ≤

𝛽𝑒
𝜆𝑡

𝑐
1
𝑁
|𝑚𝑛 (𝑠 − 𝑟) − 𝑚𝑛 (𝑠 − 𝑟)| ,

𝑢
∗

2
(𝑡) − 𝑢

∗

2
(𝑡)
 ≤

1

𝑐
2

|𝑛 (𝑠 − 𝑤) − 𝑛 (𝑠 − 𝑤)| .

(82)

The equations for 𝑚, 𝑛, 𝑝, 𝑞, 𝑟, 𝑠, 𝑤, V and the equations
for 𝑚, 𝑛, 𝑝, 𝑞, 𝑟, 𝑠, 𝑤, V are subtracted, respectively; then we
multiply each equation by appropriate difference of functions
and integrate from 0 to 𝑡

𝑓
. Next, we add all eight integral

equations and some inequality techniques to obtain unique-
ness. The following calculation is similar; for the sake of
simplicity, we only take𝑚 and𝑚 for an example:

�̇� − �̇� + (𝜇 + 𝜆) (𝑚 − 𝑚)

=
𝛽𝑒
𝜆𝑡

𝑁
[−(1 −min{1,max{0,

𝛽𝑚𝑛 (𝑠 − 𝑟) 𝑒
𝜆𝑡

𝑐
1
𝑁

}})𝑚𝑛

+(1 −min{1,max{0,
𝛽𝑚𝑛 (𝑠 − 𝑟) 𝑒

𝜆𝑡

𝑐
1
𝑁

}})𝑚𝑛] .

(83)

Multiplying both sides of (83) by (𝑚−𝑚) and integrating
from 0 to 𝑡

𝑓
gives

1

2
(𝑚 − 𝑚)

2
(𝑡
𝑓
) + (𝜇 + 𝜆)∫

𝑡𝑓

0

(𝑚 − 𝑚)
2
𝑑𝑡

= ∫

𝑡𝑓

0

(𝑚 − 𝑚)
𝛽𝑒
𝜆𝑡

𝑁

× [− (1 − 𝑢
∗

1
)𝑚𝑛 + (1 − 𝑢

∗

1
)𝑚𝑛] 𝑑𝑡

= ∫

𝑡𝑓

0

(𝑚 − 𝑚)
𝛽𝑒
𝜆𝑡

𝑁
[(𝑢
∗

1
− 1) (𝑚𝑛 − 𝑚𝑛 + 𝑚𝑛 − 𝑚𝑛)

+ 𝑚𝑛 (𝑢
∗

1
− 𝑢
∗

1
)] 𝑑𝑡

≤
𝛽𝑒
𝜆𝑡𝑓

𝑁
∫

𝑡𝑓

0

(𝑚 − 𝑚)

× [𝑢
∗

1
− 1



(𝑚 |𝑛 − 𝑛| + |𝑚 − 𝑚| 𝑛) + 𝑚𝑛
𝛽𝑒
𝜆𝑡

𝑐
1
𝑁



× 𝑚𝑛 (𝑠 − 𝑟) − 𝑚𝑛 (𝑠 − 𝑟) ] 𝑑𝑡

≤
𝛽𝑒
𝜆𝑡𝑓

𝑁
∫

𝑡𝑓

0

(𝑚 − 𝑚)

× [
𝑢
∗

1
− 1

 (𝑚 |𝑛 − 𝑛| + |𝑚 − 𝑚| 𝑛) + 𝑚𝑛
𝛽𝑒
𝜆𝑡

𝑐
1
𝑁

|𝑚𝑛 (𝑠 − 𝑠) + (𝑚𝑛 − 𝑚𝑛) 𝑠

− (𝑚𝑛 (𝑟 − 𝑟) + (𝑚𝑛 − 𝑚𝑛) 𝑟)| ] 𝑑𝑡

≤
𝛽𝑒
𝜆𝑡𝑓

𝑁
∫

𝑡𝑓

0

[
𝑢
∗

1
− 1

 |𝑚| |𝑚 − 𝑚| |𝑛 − 𝑛|

+ |𝑚 − 𝑚|
2

|𝑛| + |𝐵| |𝑠| |𝑛| |𝑚 − 𝑚|
2

+ |𝐵| |𝑚𝑛| |𝑚 − 𝑚| |𝑟 − 𝑟|

+ |𝐵| |𝑚𝑛| |𝑚 − 𝑚| |𝑠 − 𝑠|

+ |𝐵| |𝑠| |𝑚| |𝑚 − 𝑚| |𝑛 − 𝑛|

+ |𝐵| |𝑟| |𝑚| |𝑚 − 𝑚| |𝑛 − 𝑛|

+ |𝐵| |𝑟| |𝑛| |𝑚 − 𝑚|
2
] 𝑑𝑡

≤
𝛽𝑒
𝜆𝑡𝑓

𝑁
∫

𝑡𝑓

0

[

𝑢
∗
− 1



2
|𝑚| ((𝑚 − 𝑚)

2
+ (𝑛 − 𝑛)

2
)

+ |𝑛| (𝑚 − 𝑚)
2

+
|𝐵| |𝑚𝑛|

2
((𝑚 − 𝑚)

2
+ (𝑠 − 𝑠)

2
)

+
|𝐵| |𝑠| |𝑚|

2
((𝑚 − 𝑚)

2
+ (𝑛 − 𝑛)

2
)

+ |𝐵| |𝑠| |𝑛| (𝑚 − 𝑚)
2

+
|𝐵| |𝑚𝑛|

2
((𝑚 − 𝑚)

2
+ (𝑟 − 𝑟)

2
)

+
|𝐵| |𝑚| |𝑟|

2
((𝑚 − 𝑚)

2
+ (𝑛 − 𝑛)

2
)

+ |𝐵| |𝑟| |𝑛| (𝑚 − 𝑚)
2
]𝑑𝑡.

(84)

In the above derivation, we use many scaling techniques
for inequality or absolute inequality. Particularly, what should
be noted is that to get the first inequality of above derivation,
we use the estimation of |𝑢∗

1
(𝑡) − 𝑢

∗

1
(𝑡)| which has been given

before; besides, for the sake of convenience, we note 𝐵 =

𝑚𝑛(𝛽𝑒
𝜆𝑡𝑓/𝑁). Furthermore, we notice that the coefficients of

all the eight terms in the last formula: (𝑚 − 𝑚)
2
+ (𝑛 − 𝑛)

2,
(𝑚 −𝑚)

2, (𝑚 −𝑚)
2
+ (𝑠 − 𝑠)

2, (𝑚 −𝑚)
2
+ (𝑛 − 𝑛)

2, (𝑚 −𝑚)
2,

(𝑚−𝑚)
2
+(𝑟−𝑟)

2, (𝑚−𝑚)2+(𝑛−𝑛)2, (𝑚−𝑚)2, namely, (|𝑢∗
1
−

1|/2)|𝑚|, |𝑛|, (|𝐵||𝑚𝑛|)/2, (|𝐵||𝑠||𝑚|)/2, |𝐵||𝑠|𝑛, (|𝐵||𝑚𝑛|)/2,
(|𝐵||𝑚||𝑟|)/2, |𝐵||𝑟||𝑛| are nonnegative and bounded. So there
exists a positive constant 𝑐

2
such that

1

2
(𝑚 − 𝑚)

2
(𝑡
𝑓
) + (𝜇 + 𝜆)∫

𝑡𝑓

0

(𝑚 − 𝑚)
2
𝑑𝑡
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≤ 𝑐
2

𝛽𝑒
𝜆𝑡𝑓

𝑁
∫

𝑡𝑓

0

((𝑚 − 𝑚)
2
+ (𝑛 − 𝑛)

2

+ (𝑠 − 𝑠)
2
+ (𝑟 − 𝑟)

2
) 𝑑𝑡.

(85)

Combining eight of these inequalities gives

1

2
(𝑚 − 𝑚) (𝑡

𝑓
) +

1

2
(𝑛 − 𝑛) (𝑡

𝑓
) +

1

2
(𝑝 − 𝑝) (𝑡

𝑓
)

+
1

2
(𝑞 − 𝑞) (𝑡

𝑓
) +

1

2
(𝑟 − 𝑟) (0) +

1

2
(𝑠 − 𝑠) (0)

+
1

2
(𝑤 − 𝑤) (0) +

1

2
(V − V) (0) + (𝜇 + 𝜆)

× ∫

𝑡𝑓

0

{(𝑚 − 𝑚)
2
+ (𝑛 − 𝑛)

2
+ (𝑝 − 𝑝)

2

+ (𝑞 − 𝑞)
2

+ (𝑠 − 𝑠)
2

+ (𝑟 − 𝑟)
2
+ (𝑤 − 𝑤)

2
+ (V − V)2)} 𝑑𝑡

≤ 𝐵∫

𝑡𝑓

0

{(𝑚 − 𝑚)
2
+ (𝑛 − 𝑛)

2
+ (𝑝 − 𝑝)

2

+ (𝑞 − 𝑞)
2

+ (𝑟 − 𝑟)
2
+ (𝑠 − 𝑠)

2

+ (𝑤 − 𝑤)
2
+ (V − V)2} 𝑑𝑡.

(86)

Thus, from the above inequality we can conclude that

(𝜇 + 𝜆 − 𝐵)∫

𝑡𝑓

0

{(𝑚 − 𝑚)
2
+ (𝑛 − 𝑛)

2

+ (𝑝 − 𝑝)
2

+ (𝑞 − 𝑞)
2

+ (𝑟 − 𝑟)
2

+ (𝑠 − 𝑠)
2
+(𝑤 − 𝑤)

2
+ (V − V)2} 𝑑𝑡 ≤ 0,

(87)

where 𝐵 depends on the coefficients and the bounds depend
on𝑚, 𝑛, 𝑝, 𝑞, 𝑟, 𝑠, 𝑤, V. If we choose 𝜆 such that 𝜇+𝜆 > 𝐵, then
𝑚 = 𝑚, 𝑛 = 𝑛, 𝑝 = 𝑝, 𝑞 = 𝑞, 𝑟 = 𝑟, 𝑠 = 𝑠, 𝑤 = 𝑤, and V = V.
Hence, the solution to the optimality system is unique. The
proof is complete.

6. Numerical Simulation

6.1. The Simulation of State System (1) without Control
Parameters. For the sake of simplicity but without loss of
generality, we will perform the numerical simulation of state
system (1) with parameters 𝑢

1
= 0, 𝑢

2
= 0. Before

illustrating the analytic properties of the alcoholism model
(1), we will target the populations in the environment of
a community or a university, for example, the school of
material science and engineering in our university, that is,
Lan zhou University of Technology (LUT for short), owing to
the accurate and available information we can obtain. Refer-
ring to the information provided by the admissions office
of LUT, this school will enroll almost 1200 undergraduates
and almost 300 various postgraduates at the beginning of

fall semester; at the same time, there will be almost 1500
various students graduated and left this school, so the scale
of students in school remained almost 6000; we can take the
total population 𝑁 = 6000. In this simulation, we will take
September as the initial time and units in one week, period
in one year. According to the investigations of the student
union implemented in September every year, we can take
initial values as 𝑆(0) = 4500, 𝐴(0) = 1000, 𝑇(0) = 300,
and 𝑄(0) = 200. It seems that the alcoholism is a little bit
more, but it is rather natural because many freshmen feel
confused when they are faced with the new environment and
a new lifestyle; many of them have no better choice but gather
together to drink in small groups to mediate the anxiety and
get to know each other; over time, some of them develop
the habit of drinking. To a certain extent, for example, the
frequent drinking badly affects their study; we can classify
them into the alcoholism compartment. Other initial values
seem more reasonable, so we need no more explanation. As
we know, alcoholism death is seldom happen within one
year, so we omit mortality from alcoholism; then how to
understand the recruitment rate as well as natural death rate
𝜇? We can treat the freshmen admission as the recruitment
population and graduation students as the natural “death”
parts. So we can take 𝜇 = 1500/6000 = 0.25, which is exactly
consistent with the value in [16]. As for the infection rate 𝛽
and recovery rate 𝛿, we will let them be variables, since the
drinking behaviors are related to many factors such as the
season and the pressure.

According to the data we get from the student union,
we choose 𝜉 = 0.4. To summarize, we list the values of
the parameters in Table 1. Using the values of parameters in
Table 1, we can plot Figures 2 and 3 which are on condition
𝑅
0
< 1 and 𝑅

0
≥ 1, respectively. From Figure 2, we easily

know when 𝑅
0
< 1 holds; the solution of system (1) tends to

the alcohol free equilibrium𝐸
0
and verifies the global stability

of 𝐸
0
. While seen from Figure 3, we also know that if 𝑅

0
≥

1 holds, the solution of system (1) tends to the alcoholism
equilibrium 𝐸

∗ and verifies the global stability of 𝐸∗.

6.2. The Sensitivity of 𝑅
0
about Two Control Parameters.

Although from the expression of the model reproduction
number 𝑅

0
, we can easily find out the fact that the two

control variables, that is, 𝑢
1
and 𝑢

2
, attribute to reducing the

severity of alcoholism; we will still depict the graph between
𝑅
0
and the two control variables to see more intuitiveness see

Figure 4. It seems from the figure that 𝑅
0
is a monotonically

decreasing function about two control parameters, so it is
advisable to take two approaches simultaneously to control
the alcoholics.

6.3. The Simulation of Optimality System (71). In this subsec-
tion, we will investigate numerically the optimal solution to
optimality system (71) by numerical method from [32]; the
optimality system is solved with a fourth-order Runge-Kutta
scheme. Beginning with a guess for the control variables, the
state system is solved forward in time and then those values of
state are used to solve the adjoint equations backward in time.
The controls are updated at the end of each iteration using
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Figure 3: When 𝑅
0

≥ 1, the alcoholism equilibrium 𝐸
∗

=

(4466, 476, 32, 26) corresponding to the given parameters is globally
asymptotically stable (𝛽 = 0.3, 𝛿 = 0.2, and 𝑅

0
= 1.08511).

the values of optimal controls obtained lastly. The iterations
continue until convergence takes place.

In the simulations, we choose the available variable values
as Table 1 shows; besides, 𝛽 = 0.3, 𝛿 = 0.2. The initial value
of model (1) is assumed to be 𝑆(0) = 4500, 𝐴(0) = 1000,
𝑇(0) = 300, and 𝑄(0) = 200 as before.

The ideal weights in objective functional are very difficult
to obtain in reality; it needs much work on data mining and
fitting.Hence, the acquisition of appropriate practical weights

Table 1: The parameters description of model (1).

Parameter Description Values
𝜇 Natural birth rate or death rate 0.25

𝛽
Transmission coefficient between
alcoholism and susceptibles Variables

𝑁 The total populations to be considered 6000

𝛿
The rate of populations quitting from
alcoholism permanently after treatment Variables

𝜉
The rate of populations failed in
treatment and returned to be alcoholic 0.4
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u
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Figure 4: The relationship between 𝑅
0
and two control variables 𝑢

1

and 𝑢
2
.

is still a difficult problem and remains for further investiga-
tions.The cost associated with𝐴(𝑡) and 𝑢

1
(𝑡)mainly includes

the cost of dangerous behaviours during the alcoholism time
and educating the public, while the cost associated with
𝑢
2
(𝑡)mainly comes from health professional and the medical

resource includingmedicines andnursing care. In viewof this
and taking the expressions of 𝑢

1
, 𝑢
2
into account, after many

numerical simulations, we finally give weighting coefficients
as 𝑐
1
= 10
2
; 𝑐
2
= 10
4. It should be pointed out that the

weights here are of only theoretical interest to reveal the
control strategies proposed in this paper. Another point to
note is that themaximumcontrol is very difficult to achieve in
reality, so we will omit the situation of the maximum control
during the series of simulations.

Next, we will make some necessary instructions and
explanations to the above simulation graphs. Figures 5, 6,
7, and 8 depict the number of four compartments under
different control levels when we choose the weight coeffi-
cients in objective function to be 𝑐

1
= 10
2
; 𝑐
2
= 10
4. From

the four simulation graphs, we can observe the following
simple facts, in reducing the total number of alcoholisms
and increasing the number of susceptibles; the effectiveness
of various control measures is as follows: optimal control is
evidently better than middle control, and middle control is
better than single control 𝑢

2
, single control 𝑢

2
is better than

single control 𝑢
1
, while single control 𝑢

1
is much better than

no control.
Figures 9 and 10 depict the optimal control law of 𝑢

1
, 𝑢
2
,

respectively. In the beginning of the simulation, the control
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effort of 𝑢
1
should be decreased from 0.65 to 0.5 within the

first month, and over the next week, it should be increased to
the maximum control until 50 weeks, then rapidly decreased
to 0 at the end of the simulation. As for the control 𝑢

2
, it

should start from around 0.5 due to the initial alcoholics then
increase to 0.55 within one week since the rapid infection and
next decrease to almost 0 since the effectiveness of treatment
in three weeks, but with the infection going on, the control
effort of 𝑢

2
should gradually increase to the maximum and

maintain this level until the tenth week for the purpose of
consolidation therapy and preventing rebound; hereafter, it
should be gradually decreased to the level of almost 0.43 until
the fifty weeks then quickly decreased to 0 in the end.
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Figure 11: Number of the susceptibles when we choose the weights
in objective function are 𝑐
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In order to investigate the influence of different weight
coefficients in the objective functional on the effect of
controlling, at the same time, for a better comparison, we will
change the weight coefficients in objective function into 𝑐

2
=

10
4; 𝑐
1
= 10
2, and we will list the corresponding numerical

simulation results as Figures 11–16 show.
When we change the weight coefficients in objective

function into 𝑐
1
= 10
4, 𝑐
2
= 10
2, we find that the results

of simulations derived from the graphs are very similar to
the ones before. We speculate that the most likely reasons of
this result are due to three respects; one is that the weight
coefficients are not too sensitive in the numerical simulation,
and another possible reason is that both of the two controls
are important, in some sense, equivalently important.The last
but not themost unlikely reason is that we have not found the
most appropriate weight coefficients in the simulation, which
is very difficult to find as previously mentioned.

7. Conclusions

In this paper, we formulate an alcoholics quitting model
and firstly investigate the variation discipline of various
populations from the perspective of global stability; then
we propose an objective functional to examine two different
controlmeasures (i.e., prevention and treatment) on the effect
of alcohol. The basic reproduction number of the model was
derived and the global stability of the two equilibria is given.
From the expression of the basic reproductionnumber𝑅

0
and
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Figure 12: Number of the alcoholics when we choose the weights in
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when we choose the

weight in objective function are 𝑐
1
= 10
4, 𝑐
2
= 10
2.

related numerical simulation, we can easily see that the two
control strategies are effective in the alcoholics process.

Using Pontryagin’s Maximum Principle, we firstly deter-
mine the necessary conditions for existence of optimal
control pairs.The uniqueness of the solution to the optimality
system (71) is derived by the classical method of contradic-
tion. Numerical simulations of the model suggest that the
two different groups of weights in the objective function have
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Figure 16: Figures of the optimal control 𝑢
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much similar effects on the transmission of the alcoholism;
from this point, the two control measures are almost equally
important in controlling the alcoholism, although they will
probably have great influences on the cost of the objective
function. From the simulation figures, it seems that the effect
of optimal control, which is measured by the reduction in
the number of alcoholics and the increase in the number of
susceptibles, is much better than other control strategies as
noted earlier in the simulation section. According to the real-
time curve of two optimal controls, we point out the specific
implementation methods of optimal control which can be
achieved in practice.
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