
Research Article
Multiplicity of Nontrivial Solutions for a Class of Nonlocal
Elliptic Operators Systems of Kirchhoff Type

Yuping Cao1 and Chuanzhi Bai2

1 Department of Basic Courses, Lianyungang Technical College, Lianyungang, Jiangsu 222000, China
2Department of Mathematics, Huaiyin Normal University, Huaian, Jiangsu 223300, China

Correspondence should be addressed to Chuanzhi Bai; czbai@hytc.edu.cn

Received 22 May 2014; Revised 2 July 2014; Accepted 2 July 2014; Published 13 July 2014

Academic Editor: Julio D. Rossi

Copyright © 2014 Y. Cao and C. Bai. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We investigate the existence and multiplicity of nontrivial solutions for a Kirchhoff type problem involving the nonlocal
integrodifferential operators with homogeneous Dirichlet boundary conditions. The main tool used for obtaining our result is
Morse theory.

1. Introduction

This paper is concerned with the multiplicity of solutions to
the following elliptic systems of Kirchhoff type involving the
nonlocal integrodifferential operators:

−𝑀

1
(∫

R2𝑛









𝑢 (𝑥) − 𝑢 (𝑦)









2

𝐾

1
(𝑥 − 𝑦) 𝑑𝑥 𝑑𝑦)L

𝐾
1

𝑢

= 𝑓 (𝑥, V) in Ω,

−𝑀

2
(∫

R2𝑛









V (𝑥) − V (𝑦)




2

𝐾

2
(𝑥 − 𝑦) 𝑑𝑥 𝑑𝑦)L

𝐾
2

V

= 𝑔 (𝑥, 𝑢) in Ω,

𝑢 = V = 0 in R
𝑛
\ Ω,

(1)

where Ω ⊂ R𝑛 (𝑛 ≥ 2) is a bounded domain with smooth
boundary 𝜕Ω and 𝑓, 𝑔 : Ω × R → R are two continuous
functions. 𝑀

𝑖
: R+ → R+ (𝑖 = 1, 2) are two continuous

functions whose properties will be introduced later.L
𝐾
𝑖

(𝑖 =
1, 2) are the nonlocal operators defined by

L
𝐾
𝑖

𝑢 (𝑥) =

1

2

∫

R𝑛
(𝑢 (𝑥 + 𝑦) + 𝑢 (𝑥 − 𝑦) − 2𝑢 (𝑥))𝐾

𝑖
(𝑦) 𝑑𝑦,

𝑥 ∈ R
𝑛
,

(2)

𝑖 = 1, 2; here𝐾
𝑖
: R𝑛 \ {0} → (0, +∞) is a function such that

𝑚𝐾

𝑖
∈ 𝐿

1
(R
𝑛
) , 𝑖 = 1, 2, where 𝑚(𝑥) = min {|𝑥|2, 1} ;

(3)

there exist 𝜃
𝑖
and 𝑠
𝑖
∈ (0, 1) (𝑖 = 1, 2) such that

𝐾

𝑖
(𝑥) ≥ 𝜃

𝑖|
𝑥|

−(𝑛+2𝑠
𝑖
)
, for any 𝑥 ∈ R

𝑛
\ {0} ;

(4)

𝐾

𝑖
(𝑥) = 𝐾

𝑖
(−𝑥) , ∀𝑥 ∈ R

𝑛
\ {0} . (5)
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A typical example for 𝐾
𝑖
is given by 𝐾

𝑖
(𝑥) = |𝑥|

−(𝑛+2𝑠
𝑖
)

(𝑖 = 1, 2). In this case L
𝐾
𝑖

is the fractional Laplace operator
−(−Δ)

𝑠
𝑖 , where −(−Δ)𝑠𝑖 is defined by

− (−Δ)

𝑠
𝑖
𝑢 (𝑥) =

1

2

∫

R𝑛

𝑢 (𝑥 + 𝑦) + 𝑢 (𝑥 − 𝑦) − 2𝑢 (𝑥)









𝑦









𝑛+2𝑠
𝑖

𝑑𝑦,

𝑥 ∈ R
𝑛
;

(6)

here 𝑠
𝑖
∈ (0, 1) and 𝑛 > 2𝑠

𝑖
(𝑖 = 1, 2). The fractional Laplacian

−(−Δ)

𝑠
𝑖 is a classical linear integrodifferential operator of

order 2𝑠
𝑖
which gives the standard Laplacian when 𝑠

𝑖
= 1 (see

[1]).
Denote by 𝑋

𝑖
the linear space of Lebesgue measurable

functions 𝑢 : R𝑛 → R such that

the map (𝑥, 𝑦)  (𝑢 (𝑥) − 𝑢 (𝑦))2𝐾
𝑖
(𝑥 − 𝑦)

is in 𝐿1 (𝑄, 𝑑𝑥𝑑𝑦) ,
(7)

where 𝑄 = (R𝑛 ×R𝑛) \ O and O = (CΩ) × (CΩ) ⊂ R𝑛 ×R𝑛.
The space𝑋

𝑖
is endowed with the norm

‖𝑢‖𝑋
𝑖

= ‖𝑢‖𝐿
2
(R𝑛)

+ (∫

R𝑛×R𝑛









𝑢 (𝑥) − 𝑢 (𝑦)









2

𝐾

𝑖
(𝑥 − 𝑦) 𝑑𝑥 𝑑𝑦)

1/2

,

𝑖 = 1, 2.

(8)

The space 𝑍
𝑖
denotes the closure of 𝐶∞

0
(Ω) in 𝑋

𝑖
. By

Lemmas 6 and 7 in [2], the space 𝑍
𝑖
is a Hilbert space which

can be endowed with the norm defined as

‖𝑢‖𝑍
𝑖

= (∫

𝑄









𝑢 (𝑥) − 𝑢 (𝑦)









2

𝐾

𝑖
(𝑥 − 𝑦) 𝑑𝑥 𝑑𝑦)

1/2

, 𝑖 = 1, 2.

(9)

Since 𝑢 = 0 a.e. inR𝑛 \Ω, we have that the integral in (8) and
(9) can be extended to all R2𝑛.

Let 𝐸 = 𝑍
1
× 𝑍

2
be the Cartesian product of two Hilbert

spaces, which is a reflexive Banach space endowed with the
norm

‖(𝑢, V)‖ = ‖𝑢‖𝑍
1

+ ‖V‖𝑍
2

. (10)

Denote by 0 < 𝜆
1
< 𝜆

2
≤ ⋅ ⋅ ⋅ ≤ 𝜆

𝑘
≤ ⋅ ⋅ ⋅ the eigenvalues

of the following nonlocal operator eigenvalue problem:

−L
𝐾
1

𝑢 = 𝜆𝑢 in Ω

𝑢 = 0 in R
𝑛
\ Ω.

(11)

Similarly, denote by 0 < 𝜇

1
< 𝜇

2
≤ ⋅ ⋅ ⋅ ≤ 𝜇

𝑘
≤ ⋅ ⋅ ⋅

the eigenvalues of the following nonlocal operator eigenvalue
problem:

−L
𝐾
2

V = 𝜇V in Ω,

V = 0 in R
𝑛
\ Ω.

(12)

We say that (𝑢, V) ∈ 𝐸 is a weak solution of system (1) if,
for every (𝜙, 𝜓) ∈ 𝐸, one has

𝑀

1
(‖𝑢‖

2

𝑍
1

)∫

R2𝑛
(𝑢 (𝑥) − 𝑢 (𝑦)) (𝜙 (𝑥) − 𝜙 (𝑦))

× 𝐾

1
(𝑥 − 𝑦) 𝑑𝑥 𝑑𝑦 +𝑀

2
(‖V‖2
𝑍
2

)

× ∫

R2𝑛
(V (𝑥) − V (𝑦)) (𝜓 (𝑥) − 𝜓 (𝑦))𝐾

2
(𝑥 − 𝑦) 𝑑𝑥 𝑑𝑦

− ∫

Ω

𝑓 (𝑥, V) 𝜙 (𝑥) 𝑑𝑥 − ∫
Ω

𝑔 (𝑥, 𝑢) 𝜓 (𝑥) 𝑑𝑥 = 0.

(13)

The fractional Laplacian and nonlocal operators of elliptic
type arise in both pure mathematical research and concrete
applications, since these operators occur in a quite natural
way in many different contexts. For an elementary introduc-
tion to this topic, see [2] and the references therein. Recently,
some elliptic boundary problems driven by the nonlocal
integrodifferential operator L

𝐾
have been studied in the

works [3–8].
Recently, problems involving Kirchhoff type operators

have been studied inmany papers; we refer to [9–13] in which
the authors have used the variational method and topological
method to get the existence of solutions.

In this paper, motivated by the above mentioned works,
we will use Morse theory to investigate the multiplicity of
solutions of problem (1). To the best of our knowledge, there
is no effort being made in the literature to study the existence
of solutions for problem (1). This paper will make some
contribution to this research field.

In order to establish solutions for problem (1), we make
the following assumptions.

(H1) 𝑀
𝑖
: R+ → R+ (𝑖 = 1, 2) are two continuous

functions, and there exist constants𝑚
1
,𝑚
2
,𝑀
1
,𝑀
2
>

0 such that

𝑚

𝑖
≤ 𝑀

𝑖
(𝑡) ≤ 𝑀

𝑖
, 𝑖 = 1, 2, ∀𝑡 ≥ 0. (14)

(H2) 𝑓(𝑥, V) and 𝑔(𝑥, 𝑢) are two continuous functions
with the subcritical growth; that is, there exist some
positive constants 𝐶

1
, 𝐶
2
such that









𝑓 (𝑥, V)




≤ 𝐶

1
(1 + |V|𝑝−1) ,









𝑔 (𝑥, 𝑢)









≤ 𝐶

2
(1 + |𝑢|

𝑞−1
) ,

∀𝑥 ∈ Ω, 𝑢, V ∈ R

(15)

hold, where 1 < 𝑝 < 2∗
𝑠
1

= 2𝑛/(𝑛 − 2𝑠

1
), 1 < 𝑞 < 2∗

𝑠
2

=

2𝑛/(𝑛 − 𝑠

2
).
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(H3) There exists 𝑟 > 0, 𝜆 ∈ (𝜆
1
, 𝜆

2
) and 𝜇 ∈ (𝜇

1
, 𝜇

2
) such

that 𝑀
1
𝜆

1
< 𝑚

1
𝜆, 𝑀
2
𝜇

1
< 𝑚

2
𝜇, and |𝑢|, |V| ≤ 𝑟

implies

1

2

𝑀

2
𝜇

1
V2 ≤ 𝐹 (𝑥, V) ≤

1

2

𝑚

2
𝜇V2,

1

2

𝑀

1
𝜆

1
𝑢

2
≤ 𝐺 (𝑥, 𝑢) ≤

1

2

𝑚

1
𝜆𝑢

2
,

a.e. 𝑥 ∈ Ω.

(16)

(H4) lim
|V|→∞(𝐹(𝑥, V)/V

2
) < (1/2)𝑚

2
𝜇

1
, lim

|𝑢|→∞

(𝐺(𝑥, 𝑢)/𝑢

2
) < (1/2)𝑚

1
𝜆

1
, uniformly for all a.e.

𝑥 ∈ Ω.

The main result of this paper is as follows.

Theorem1. If (H1)–(H4) hold, then the problem (1) has at least
two nontrivial weak solutions in 𝐸.

2. Preliminaries

For each (𝑢, V) ∈ 𝐸, we define the functional J : 𝐸 → R as
follows:

J (𝑢, V) =
1

2

̂

𝑀

1
(‖𝑢‖

2

𝑍
1

) +

1

2

̂

𝑀

2
(‖V‖2
𝑍
2

)

− ∫

Ω

𝐹 (𝑥, V) 𝑑𝑥 − ∫
Ω

𝐺 (𝑥, 𝑢) 𝑑𝑥,

(17)

where

̂

𝑀

𝑖
(𝑡) = ∫

𝑡

0

𝑀

𝑖
(𝜏) 𝑑𝜏, 𝑖 = 1, 2, 𝑡 ≥ 0,

𝐹 (𝑥, V) = ∫
V

0

𝑓 (𝑥, 𝑠) 𝑑𝑠, 𝐺 (𝑥, 𝑢) = ∫

𝑢

0

𝑔 (𝑥, 𝑠) 𝑑𝑠.

(18)

It is easy to check that (𝑢, V) is a weak solution of
problem (1) which is equivalent to being a critical point of
the functionalJ.

First let us recall the definition of the local linking which
plays an important role in our paper.

Definition 2. Let 𝑋 be a Banach space with a direct sum
decomposition 𝑋 = 𝑋

1
⊕ 𝑋

2. The functional 𝑓 ∈ 𝐶

1
(𝑋,R)

has a local linking at 0 with respect to (𝑋1, 𝑋2) if there is 𝑟 > 0
such that

𝑓 (𝑢) ≥ 0, ∀𝑢 ∈ 𝑋

1 with ‖𝑢‖ ≤ 𝑟

𝑓 (𝑢) ≤ 0, ∀𝑢 ∈ 𝑋

2 with ‖𝑢‖ ≤ 𝑟.
(19)

Lemma 3. Assume that (H1) and (H4) hold; then the func-
tionalJ is coercive in𝐸; that is,J(𝑢, V) → +∞ as ‖(𝑢, V)‖ →
∞.

Proof. From (H4) and the continuity of the potentials 𝐹 and
𝐺we have that, for some 𝜖 > 0, there exists a positive constant
𝐶

3
such that

𝐹 (𝑥, 𝑡) ≤

𝑚

2

2

(𝜇

1
− 𝜖) |𝑡|

2
+ 𝐶

3
,

𝐺 (𝑥, 𝑡) ≤

𝑚

1

2

(𝜆

1
− 𝜖) |𝑡|

2
+ 𝐶

3
,

∀𝑡 ∈ R, a.e. 𝑥 ∈ Ω.

(20)

Thus, by the Sobolev inequality [1] and (H1), for (𝑢, V) ∈ 𝐸,
we obtain

J (𝑢, V) ≥
𝑚

1

2

‖𝑢‖

2

𝑍
1

+

𝑚

2

2

‖V‖2
𝑍
2

−

𝑚

1
(𝜆

1
− 𝜖)

2

∫

Ω

𝑢

2
𝑑𝑥

−

𝑚

2
(𝜇

1
− 𝜖)

2

∫

Ω

V2𝑑𝑥 − 2𝐶
3 |
Ω|

≥

𝑚

1

2

(1 −

𝜆

1
− 𝜖

𝜆

1

) ‖𝑢‖

2

𝑍
1

+

𝑚

2

2

(1 −

𝜇

1
− 𝜖

𝜇

1

) ‖V‖2
𝑍
2

− 2𝐶

3 |
Ω| → +∞,

(21)

as ‖(𝑢, V)‖ → ∞. Hence, we have thatJ is coercive in 𝐸.

Lemma 4. If (H1), (H2), and (H4) hold, then J satisfies the
(𝑃.𝑆.) condition.

Proof. Let {𝑧
𝑛
= (𝑢

𝑛
, V
𝑛
)} be a (PS) sequence of J; then

{(𝑢

𝑛
, V
𝑛
)} must be bounded by Lemma 3. Passing to a

subsequence if necessary, there exists 𝑧 = (𝑢, V) ∈ 𝐸 such
that (𝑢

𝑛
, V
𝑛
) ⇀ (𝑢, V) weakly in 𝐸. Thus, there exists a strictly

decreasing subsequence 𝜖
𝑛
, lim
𝑛→∞

𝜖

𝑛
= 0, such that











J

(𝑢

𝑛
, V
𝑛
) (𝑢

𝑛
− 𝑢, 0)











≤ 𝜖

𝑛









𝑢

𝑛
− 𝑢, 0









. (22)

In particular,















𝑀

1
(









𝑢

𝑛









2

𝑍
1

)

× ∫

R2𝑛
(𝑢

𝑛
(𝑥) − 𝑢

𝑛
(𝑦))

× ((𝑢

𝑛
− 𝑢) (𝑥) − (𝑢

𝑛
− 𝑢) (𝑦))𝐾

1
(𝑥 − 𝑦) 𝑑𝑥 𝑑𝑦

−∫

Ω

𝑓 (𝑥, V
𝑛
) (𝑢

𝑛
− 𝑢) 𝑑𝑥















≤ 𝜖

𝑛









(𝑢

𝑛
− 𝑢, 0)









.

(23)

Since the potential 𝐹 satisfies (H2) and by remark (3.2.24) in
[14] we have

∫

Ω

𝑓 (𝑥, V
𝑛
) (𝑢

𝑛
− 𝑢) 𝑑𝑥 → 0. (24)
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Combining (23) with (24), we obtain

𝑚

1















∫

R2𝑛
(𝑢

𝑛
(𝑥) − 𝑢

𝑛
(𝑦)) ((𝑢

𝑛
− 𝑢) (𝑥) − (𝑢

𝑛
− 𝑢) (𝑦))

× 𝐾

1
(𝑥 − 𝑦) 𝑑𝑥 𝑑𝑦















≤















𝑀

1
(









𝑢

𝑛









2

𝑍
1

)∫

R2𝑛
(𝑢

𝑛
(𝑥) − 𝑢

𝑛
(𝑦))

× ((𝑢

𝑛
− 𝑢) (𝑥) − (𝑢

𝑛
− 𝑢) (𝑦))

×𝐾

1
(𝑥 − 𝑦) 𝑑𝑥 𝑑𝑦















→ 0.

(25)

On the other hand, we have

lim
𝑛→∞

∫

R2𝑛
(𝑢 (𝑥) − 𝑢 (𝑦)) ((𝑢

𝑛
− 𝑢) (𝑥) − (𝑢

𝑛
− 𝑢) (𝑦))

× 𝐾

1
(𝑥 − 𝑦) 𝑑𝑥 𝑑𝑦 = 0.

(26)

Adding (25) to (26), we conclude that

0 = lim
𝑛→∞

[∫

R2𝑛
(𝑢

𝑛
(𝑥) − 𝑢

𝑛
(𝑦))

2

𝐾

1
(𝑥 − 𝑦) 𝑑𝑥 𝑑𝑦

−∫

R2𝑛
(𝑢 (𝑥) − 𝑢 (𝑦))

2

𝐾

1
(𝑥 − 𝑦) 𝑑𝑥 𝑑𝑦] ,

(27)

which implies ‖𝑢
𝑛
‖

2

𝑍
1

→ ‖𝑢‖

2

𝑍
1

. So, ‖𝑢
𝑛
‖

𝑍
1

→ ‖𝑢‖

𝑍
1

.
Similarly, we can obtain that ‖V

𝑛
‖

𝑍
2

→ ‖V‖
𝑍
2

. The
uniform convexity of 𝐸 yields that {𝑧

𝑛
} converges strongly to

𝑧 in 𝐸.
Thanks to the fact that 𝐿2

∗

𝑠1
(Ω) → 𝐿

𝑝
1
(Ω) (2 < 𝑝

1
< 2

∗

𝑠
1

)
continuously, we get by Lemma 6 in [2] and (4) that

‖𝑢‖𝐿
𝑝1 (Ω)

≤ |Ω|

(2
∗

𝑠1
−𝑝
1
)/(𝑝
1
2
∗

𝑠1
)
‖𝑢‖

𝐿
2
∗
𝑠1 (Ω)

≤ |Ω|

(2
∗

𝑠1
−𝑝
1
)/(𝑝
1
2
∗

𝑠1
)

×
√
𝑐

1
(∫

R2𝑛









𝑢 (𝑥) − 𝑢 (𝑦)









2









𝑥 − 𝑦









𝑛+2𝑠
1

𝑑𝑥 𝑑𝑦)

1/2

≤ 𝐶

4‖
𝑢‖𝑍
1

,

(28)

where 𝐶
4
= |Ω|

(2
∗

𝑠1
−𝑝
1
)/(𝑝
1
2
∗

𝑠1
)
√
𝑐

1
/𝜃

1
. Similarly, for 2 < 𝑞

1
<

2

∗

𝑠
2

, there exists a constant 𝐶
5
> 0 such that

‖V‖𝐿𝑞1 (Ω) ≤ 𝐶5‖V‖𝑍
2

. (29)

In the following, set 𝑈 = span{𝜑
1
} × span{𝜓

1
} := ⟨𝜑

1
⟩ ×

⟨𝜓

1
⟩, where 𝜑

1
> 0 with ‖𝜑

1
‖

𝑍
1

= 1 is the corresponding
eigenfunction of 𝜆

1
and 𝜓

1
> 0 with ‖𝜓

1
‖

𝑍
2

= 1 is the
corresponding eigenfunction of 𝜇

1
. Eigenvalues 𝜆

1
and 𝜇
1
are

as in (11) and (12), respectively. Taking

𝑉 = {(𝑢, V) ∈ 𝐸 : 𝑢 ∈ ⟨𝜑
1
⟩

⊥

, V ∈ ⟨𝜓
1
⟩

⊥

} , (30)

we can easily know that 𝑉 is complementary subspace of 𝑈.
Hence we have the following direct sum:

𝐸 = 𝑈 ⊕ 𝑉. (31)

If (𝑢, V) ∈ 𝑈, from Proposition 9 in [4], we get

‖𝑢‖

2

𝑍
1

= 𝜆

1
∫

Ω

|𝑢 (𝑥)|

2
𝑑𝑥, ‖V‖2

𝑍
2

= 𝜇

1
∫

Ω

|V (𝑥)|2𝑑𝑥.

(32)

Moreover, if (𝑢, V) ∈ 𝑉, by Proposition 9 in [4], we have

‖𝑢‖

2

𝑍
1

≥ 𝜆

2
∫

Ω

|𝑢 (𝑥)|

2
𝑑𝑥, ‖V‖2

𝑍
2

≥ 𝜇

2
∫

Ω

|V (𝑥)|2𝑑𝑥.

(33)

Lemma 5. Assume that (H1)–(H3) hold. Then the functional
J has a local linking at the origin with respect to 𝐸 = 𝑈 ⊕ 𝑉.

Proof. (i) Let (𝑢, V) ∈ 𝑈. Since

‖(𝑢, V)‖ → 0 ⇒ ∫

Ω

|𝑢 (𝑥)|

2
𝑑𝑥 → 0, ∫

Ω

|V (𝑥)|2 → 0

(34)

by (32), we have that, for given 𝑟 > 0, there is some 𝜌 > 0

small enough such that

(𝑢, V) ∈ 𝑈, ‖(𝑢, V)‖ ≤ 𝜌 ⇒ |𝑢 (𝑥)| ≤ 𝑟, |V (𝑥)| ≤ 𝑟,

a.e. 𝑥 ∈ Ω.
(35)

Now on𝑈, we have by (H1) and (H3) that, for (𝑢, V) ∈ 𝑈 with
‖(𝑢, V)‖ ≤ 𝜌,

J (𝑢, V) =
1

2

̂

𝑀

1
(‖𝑢‖

2

𝑍
1

) +

1

2

̂

𝑀

2
(‖V‖2
𝑍
2

) − ∫

Ω

𝐹 (𝑥, V) 𝑑𝑥

− ∫

Ω

𝐺 (𝑥, 𝑢) 𝑑𝑥

≤

𝑀

1

2

𝜆

1
∫

Ω

|𝑢|

2
𝑑𝑥 +

𝑀

2

2

𝜇

1
∫

Ω

|V|2𝑑𝑥

− ∫

Ω

𝐹 (𝑥, V) 𝑑𝑥 − ∫
Ω

𝐺 (𝑥, 𝑢) 𝑑𝑥

= ∫

|𝑢|≤𝑟

(

1

2

𝑀

1
𝜆

1|
𝑢|

2
− 𝐺 (𝑥, 𝑢)) 𝑑𝑥

+ ∫

|V|≤𝑟
(

1

2

𝑀

2
𝜇

1|
V|2 − 𝐹 (𝑥, V)) 𝑑𝑥 ≤ 0.

(36)
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(ii) Let (𝑢, V) ∈ 𝑉. By (33), similar to (34) and (35), we
obtain by (H1)–(H3) that, for (𝑢, V) ∈ 𝑉 with ‖(𝑢, V)‖ ≤ 𝜌,

J (𝑢, V) =
1

2

̂

𝑀

1
(‖𝑢‖

2

𝑍
1

) +

1

2

̂

𝑀

2
(‖V‖2
𝑍
2

) −

1

2

𝑚

1
𝜆∫

Ω

𝑢

2
𝑑𝑥

−

1

2

𝑚

2
𝜇∫

Ω

V2𝑑𝑥

− ∫

{|V|≤𝑟}
(𝐹 (𝑥, V) −

1

2

𝑚

2
𝜇|V|2)𝑑𝑥

− ∫

{|V|>𝑟}
(𝐹 (𝑥, V) −

1

2

𝑚

2
𝜇|V|2)𝑑𝑥

− ∫

{|𝑢|≤𝑟}

(𝐺 (𝑥, 𝑢) −

1

2

𝑚

1
𝜆|𝑢|

2
)𝑑𝑥

− ∫

{|𝑢|>𝑟}

(𝐺 (𝑥, 𝑢) −

1

2

𝑚

1
𝜆|𝑢|

2
)𝑑𝑥

≥

𝑚

1

2

(1 −

𝜆

𝜆

2

) ‖𝑢‖

2

𝑍
1

+

𝑚

2

2

(1 −

𝜇

𝜇

2

) ‖V‖2
𝑍
2

− ∫

{|V|>𝑟}
(𝐹 (𝑥, V) −

1

2

𝑚

2
𝜇|V|2)𝑑𝑥

− ∫

{|𝑢|>𝑟}

(𝐺 (𝑥, 𝑢) −

1

2

𝑚

1
𝜆|𝑢|

2
)𝑑𝑥

≥

𝑚

1

2

(1 −

𝜆

𝜆

2

) ‖𝑢‖

2

𝑍
1

+

𝑚

2

2

(1 −

𝜇

𝜇

2

) ‖V‖2
𝑍
2

− 𝐶

6
∫

{|V|>𝑟}
|V|𝑝2𝑑𝑥 − 𝐶7 ∫

{|𝑢|>𝑟}

|𝑢|

𝑞
2
𝑑𝑥

≥

𝑚

1

2

(1 −

𝜆

𝜆

2

) ‖𝑢‖

2

𝑍
1

+

𝑚

2

2

(1 −

𝜇

𝜇

2

) ‖V‖2
𝑍
2

− 𝐶

8‖
𝑢‖

𝑝
2

𝑍
1

− 𝐶

9‖
V‖𝑞2
𝑍
2

, (by (28)-(29)) ,
(37)

where 𝐶
𝑖
(𝑖 = 6, . . . , 9) are positive constants, 2 < 𝑝

2
< 2

∗

𝑠
1

,
and 2 < 𝑞

2
< 2

∗

𝑠
2

. Thus, (37) implies that J(𝑢, V) > 0 for
0 < ‖(𝑢, V)‖ ≤ 𝜌 with 𝜌 > 0 is small enough. The proof is
complete.

Let 𝑋 be a real Banach space and 𝑓 ∈ 𝐶1(𝑋,R). Suppose
𝑝 is an isolated critical point of 𝑓 with 𝑓(𝑝) = 𝑐 and 𝑈 is a
neighborhood of 𝑝, containing the unique critical point; the
group

𝐶

𝑞
(𝑓, 𝑝) = 𝐻

𝑞
(𝑓

𝑐
∩ 𝑈, 𝑓

𝑐
∩ 𝑈 \ {𝑝}) , 𝑞 = 0, 1, 2, . . . ,

(38)

is called the 𝑞th critical group of 𝑓 at 𝑝, where 𝑓
𝑐
= {𝑢 ∈ 𝑋 :

𝑓(𝑢) ≤ 𝑐} and 𝐻
𝑞
(⋅, ⋅) is the 𝑞th singular relative homology

group with integer coefficients.

Lemma 6 (see [15]). Let 𝐸 be a Banach space and 𝑓 : 𝐸 → R

a 𝐶1-functional satisfying the (P.S) condition. Assume that 𝑓

has a local linking to the decomposition 𝐸 = 𝑈 ⊕ 𝑉 near the
origin, where dim𝑈 = 𝑚 < ∞. If 0 ∈ 𝐸 is the unique critical
point of 𝑓 in 𝐵

𝜌
, then

𝐶

𝑚
(𝑓, 0) = 𝐻

𝑚
(𝑓

𝑐
∩ 𝐵

𝜌
, 𝑓

𝑐
∩ 𝐵

𝜌
\ {0}) ̸= 0. (39)

3. The Proof of Theorem 1

We say that 𝑢 is a homological nontrivial critical point of 𝑓 if
at least one of its critical groups is nontrivial. By [16], we have
the following abstract critical point theorem.

Lemma 7 (see [16]). Let 𝑋 be a real Banach space and let
Φ ∈ 𝐶

1
(𝑋,R) satisfy the (𝑃.𝑆) condition and be bounded from

below. If Φ has a critical point that is homologically nontrivial
and is not the minimizer ofΦ, thenΦ has at least three critical
points.

From the proof of Lemma 3, we can conclude that (0, 0) ∈
𝐸 is the unique critical point of our J in a ball that is small
enough. Since dim𝑈 = dim⟨𝜑

1
⟩×⟨𝜓

1
⟩ = 2 < ∞, by Lemmas

5 and 6, we have the following lemma.

Lemma 8. Let (H1)–(H3) hold. Then (0, 0) is a critical point
ofJ and 𝐶

2
(J, (0, 0)) ̸= 0.

Proof of Theorem 1. By Lemmas 3 and 4, J is coercive and
satisfies the (P.S) condition. Hence J is bounded below. By
Lemma 8, (0, 0) ∈ 𝐸 is homologically nontrivial critical point
of J but not a minimizer. Then the conclusion follows from
Lemma 7.
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