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The well-known Blasius flow is governed by a third-order nonlinear ordinary differential equation with two-point boundary
value. Specially, one of the boundary conditions is asymptotically assigned on the first derivative at infinity, which is the main
challenge on handling this problem. Through introducing two transformations not only for independent variable bur also for
function, the difficulty originated from the semi-infinite interval and asymptotic boundary condition is overcome. The deduced
nonlinear differential equation is subsequently investigatedwith the fixed pointmethod, so the original complex nonlinear equation
is replaced by a series of integrable linear equations. Meanwhile, in order to improve the convergence and stability of iteration
procedure, a sequence of relaxation factors is introduced in the framework of fixed point method and determined by the steepest
descent seeking algorithm in a convenient manner.

1. Introduction

The Navier-Stokes equations are the fundamental governing
equations of fluid flow. Usually, this set of nonlinear partial
differential equations has no general solution, and analytical
solutions are very rare only for some simple fluid flows.
However, in some certain flows, the Navier-Stokes equations
may be reduced to a set of nonlinear ordinary differential
equations under a similarity transform [1, 2].These similarity
solutions could not only provide somephysical significance to
the complex Navier-Stokes equations but also act as a bench-
marking for numerical method.The well-known Blasius flow
[3–5] is possibly the simplest example among these similarity
solutions. It describes the idealized incompressible laminar
flowpast an semi-infinite flat plate at highReynolds numbers,
which is mathematically a third-order nonlinear two-point
boundary value problem:

A𝑓 [𝑓] = 2𝑓
 + 𝑓𝑓 = 0, (1)

subject to the boundary conditions:

𝑓 (0) = 0, 𝑓 (0) = 0, lim
𝜂→∞

𝑓 (𝜂) = 1, (2)

where the prime denotes differentiation to the variable 𝜂 and
𝑓(𝜂) is the nondimensional stream function related to the
stream function 𝜓(𝑥, 𝑦) as follows:

𝜓 (𝑥, 𝑦) = 𝑓 (𝜂)√]𝑥𝑈∞. (3)

𝜂 = 𝑦√𝑈∞/(]𝑥) is the similarity variable, where 𝑈∞ is the
free stream velocity, ] is the kinematic viscosity coefficient,
and 𝑥 and 𝑦 are the two independent coordinates. The two
velocity components are then determined:

𝑢 =
𝜕𝜓

𝜕𝑦
= 𝑈∞𝑓

 (𝜂) ,

V = −
𝜕𝜓

𝜕𝑥
=
1

2
[𝜂𝑓 (𝜂) − 𝑓 (𝜂)] ⋅ √

]𝑈∞
𝑥

.

(4)

According to (1) and (2) the solution is defined on a semi-
infinite interval 𝜂 ≥ 0, and one of the boundary conditions
is asymptotically assigned on the first derivative of function
at infinity, which are the main challenges on solving the

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 953151, 9 pages
http://dx.doi.org/10.1155/2014/953151

http://dx.doi.org/10.1155/2014/953151


2 Abstract and Applied Analysis

Blasius flow. The solution to this problem has the following
asymptotic property [6, 7]:

𝑓 ∼
𝑓 (0) 𝜂2

2
, as 𝜂 → 0,

𝑓 ∼ 𝜂 + 𝐵, as 𝜂 → ∞,

(5)

where 𝐵 is a constant and the benchmarking value provided
by Boyd [6, 7] is 𝐵 = −1.720787657520503.

As known, no simple closed-form solution to the Blasius
problem is available, despite the simple form and such a
long history of it since 1908 [3]. Much attention has been
paid to this problem. Blasius [3] himself firstly investigated
this problem by the perturbation method and obtained an
approximate solution bymatching a power series solution for
small 𝜂 to an asymptotic expansion for large 𝜂. However, this
procedure may be improper because of somewhat restricted
radius of convergence in the first power series [8]. Later, this
problem was handled by Bender et al. [9] with 𝛿-expansion
in a smart manner. The approximate solutions were obtained
by He [10], Liao [11, 12], and Turkyilmazoglu [13–16] with the
variational iterationmethod, homotopy analysismethod, and
homotopy perturbation method, respectively. Wang [17] also
investigated this problem by the Adomian decomposition
method. Meantime, there are a lot of numerical methods
emerging to handle the Blasius problem including, but not
limited to, shooting method, finite differences method, and
spectral method [18–31]. A vast bibliography of numerical
methods has developed for this problem, so a full account
of them is out of the scope of this paper, and readers are
suggested to refer to the review articles [6, 7]. It is noted
that the existing numerical methods usually integrate this
problem over a finite interval 𝜂 ∈ [0, 𝜂∞], although the
Blasius problem is originally defined on the semi-infinite
interval 𝜂 ∈ [0, +∞). Thus the value of 𝜂∞ should be chosen
sufficiently large to assure the accuracy of the asymptotical
boundary condition at infinity. However, the appropriate
value 𝜂∞ could not be determined beforehand, so usually
the trial-and-error approach is involved, and some different
values should be tried to find the appropriate 𝜂∞ to satisfy the
demanded accuracy.

In order to exactly assure the boundary conditions (2)
and obtain a uniformly valid solution on the semi-infinite
interval 𝜂 ∈ [0, +∞), two transformations not only for
the independent variable 𝜂 but also for function 𝑓(𝜂) are
introduced in this paper. The transformed nonlinear differ-
ential equation is subsequently investigated with the fixed
point method (FPM) [33], which transforms the nonlinear
differential equation into a series of integrable linear dif-
ferential equations. Hence, an approximate semianalytical
solution to the Blasius problem is finally obtained, which is
valid on the whole domain and can satisfy the asymptotic
property automatically. Meantime, in order to improve the
convergence and stability of iteration procedure, a sequence
of relaxation factors is introduced in the framework of
FPM, which are determined by the steepest descent seeking
algorithm. Thus, the accuracy of this approximate solution
could be improved step by step in a convenient manner.
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Figure 1: The convergence history of Res𝑛 (𝜆 = 1/5).
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Figure 2: The convergence history of 𝑓𝑛 (0) (𝜆 = 1/5).

2. Revisiting the Blasius Equation by
Fixed Point Method

2.1. Transformations. As mentioned in Section 1, the main
challenge on handling the Blasius problem originates from
the semi-infinite interval 𝜂 ∈ [0, +∞) and the asymptotic
boundary condition lim𝜂→∞𝑓

(𝜂) = 1. In order to overcome
these difficulties, two transformations are introduced for
independent variable 𝜂 and function 𝑓(𝜂), respectively,

𝑧 =
(𝜆𝜂 − 1)

(𝜆𝜂 + 1)
,

𝑔 (𝑧) =
𝜆 (𝑓 − 𝜂)

(1 + 𝜆𝜂)
,

(6)
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Figure 3: Comparison of FPM result (𝜆 = 1/5, 𝑛 = 100) with
Howarth’s numerical result.
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Figure 4: The residual error function A𝑓[𝑓𝑛] = 2𝑓𝑛 + 𝑓𝑛𝑓

𝑛 (𝜆 =

1/5).

where 𝜆 (>0) is a free parameter. 1/𝜆 stands for the length
dimension and its physical meaning is related to the scale of
boundary layer thickness. The influence of 𝜆 on the solution
will be discussed in detail in Section 3.2.

Hence, the original Blasius equation becomes

A𝑔 [𝑔] = 𝜆
2(1 − 𝑧)3𝑔 + [1 − 3𝜆2(1 − 𝑧)2 + 𝑧 + 2𝑔] 𝑔 = 0,

(7)

with the following boundary conditions:

𝑔 (−1) = 0, 𝑔 (−1) = −
1

2
, 𝑔 (1) = 0, (8)

where the prime denotes differentiation to the new variable
𝑧. It is clear that the semi-infinite interval 𝜂 ∈ [0, +∞) is
mapped to the bounded interval −1 ≤ 𝑧 ≤ 1, and the original
asymptotic boundary condition lim𝜂→∞𝑓

(𝜂) = 1 becomes

𝑔 (1) = lim
𝜂→∞

𝜆 (𝑓 − 𝜂)

1 + 𝜆𝜂
= lim
𝜂→∞

𝜆 [𝑓 (𝜂) − 1]

𝜆
= 0, (9)

which is beneficial to the acquirement of the valid solution in
the whole domain.

2.2. The Idea of Fixed Point Method (FPM). The fixed point,
a fundamental concept in functional analysis [34], has been
widely adopted in studying the existence and uniqueness of
solutions by pure mathematicians. Recently, the fixed point
concept has been used to handle nonlinear differential equa-
tions, and the fixed point method (FPM) has been proposed
to obtain the explicit approximate analytical solution to the
nonlinear differential equation [33].

To outline the idea of FPM, let us consider the following
nonlinear differential equation:

A [𝑢] = 0,

B+ [𝑢] = 0,
(10)

where A[⋅] is a nonlinear operator and 𝑢 is an unknown
function. Here,B+[𝑢] = 0 is the boundary condition and/or
initial condition for 𝑢.

T[⋅] is a contractive map:

T [𝑢] = 𝑢 − 𝜛 ⋅L−1𝐶 [A [𝑢]] , (11)

whereL𝐶[⋅] is a linear continuous bijective operator, named
as the linear characteristic operator of the nonlinear operator
A[⋅] and L−1𝐶 [⋅] is the inverse operator of L𝐶[⋅]. 𝜛 is a real
nonzero free parameter, named as the relaxation factor, which
could improve the convergence and stability of iteration
procedure. The optimal value 𝜛 is usually dependent on the
problem to be solved [33]. Then, a solution sequence {𝑢𝑛|𝑛 =
0, 1, 2, 3, . . .} can be obtained from the following iteration
procedure:

𝑢𝑛+1 = T [𝑢𝑛] = 𝑢𝑛 − 𝜛𝑛+1 ⋅L
−1
𝐶 [A [𝑢𝑛]] ,

B+ [𝑢𝑛+1] = 0
𝑛 = 0, 1, 2, . . .

(12)

⇐⇒
L𝐶 [𝑢𝑛+1] = L𝐶 [𝑢𝑛] − 𝜛𝑛+1 ⋅A [𝑢𝑛] ,

B+ [𝑢𝑛+1] = 0
𝑛=0, 1, 2, . . . .

(13)

If the convergence of the solution sequence {𝑢𝑛|𝑛 =
0, 1, 2, 3, . . .} is ensured, it is clear that the limit value 𝑢∗ is
exactly the zero point of the original nonlinear operatorA[⋅]:

A [𝑢∗] = 0,

B+ [𝑢
∗] = 0,

(14)

and 𝑢∗ is also named as a fixed point of the contractive map
T[𝑢].

In [33], only one relaxation factor 𝜛 is introduced and
determined by the so-called 𝜛-curves in a heuristic manner.
Here, a sequence of relaxation factors {𝜛𝑛|𝑛 = 1, 2, 3, . . .}
is introduced in (12), which will be decided according to
the steepest descent seeking algorithm in the following
Section 2.3.
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Figure 5: The influence of 𝜆 value on the square residual error Res𝑛.

Table 1: Comparison of 𝑓(0) between FPM (𝜆 = 1/5) and others.

Present (FPM) Fazio [31] Zhang and Chen [32] Boyd [6, 7] (Benchmark)
𝑛 𝑓𝑛 (0)

1 0.3399132521631

0.3320575595 0.33205733621 0.33205733621519630

25 0.3314634706964
50 0.3322299008614
100 0.3320852976636
150 0.3320560696476
200 0.3320572413724
250 0.3320573781489
300 0.3320573415043
400 0.3320573362780
600 0.3320573362198
800 0.3320573362153

2.3. The Steepest Descent Seeking Algorithm (SDS). As men-
tioned in Section 2.2, the relaxation factor {𝜛𝑛|𝑛 = 1, 2, 3, . . .}
could improve the convergence and stability of iteration
procedure, and usually the optimal value of relaxation factor
is dependent on the problem to be solved. Here, an algorithm,
named as the steepest descent seeking algorithm (SDS), is
adopted to determine the optimal value of the relaxation
factor.

Let Res𝑛 denote the square residual error of the aforemen-
tioned iteration procedure in (13):

Res𝑛 = Res𝑛 (𝜛1, 𝜛2, . . . 𝜛𝑛)

= ∫
Ω
(A [𝑢𝑛])

2
𝑑Ω, 𝑛 = 1, 2, 3, . . . ,

(15)

where Ω is the definition domain of the variable and Res𝑛 is
a kind of global residual error and can evaluate the accuracy
of the approximation 𝑢𝑛.Then it is suggested that the optimal
value of relaxation factor 𝜛𝑛,opt corresponds to the value 𝜛𝑛

such that Res𝑛 obtains the minimum value min(Res𝑛). For
example, when 𝑛 = 1, the square residual error Res1(𝜛1) is
a function of 𝜛1 only and thus the optimal value 𝜛1,opt can be
obtained by solving the nonlinear algebraic equation:

𝑑Res1
𝑑𝜛1

= 0. (16)

When 𝑛 = 2, the square residual error Res2(𝜛1, 𝜛2) is
dependent on 𝜛1 and 𝜛2. Because the optimal value 𝜛1,opt
is known from the previous step, the optimal value 𝜛2,opt is
governed by the following nonlinear algebraic equation:

𝑑Res2
𝑑𝜛2

= 0. (17)

Similarly, for the 𝑛th-higher order, the square residual
error Res𝑛 actually contains an unknown relaxation factor



Abstract and Applied Analysis 5

Table 2: Comparison of 𝑓 between FPM (𝜆 = 1/5) and Howarth.

𝜂
𝑓

FPM Howarth [21]
𝑛 = 50 𝑛 = 200 𝑛 = 800

0 0. 0. 0. 0
0.2 0.006644529362447 0.006640995986591 0.006640999714597 0.00664
0.4 0.02657431250127 0.02655986911996 0.02655988401799 0.02656
0.6 0.05976777037563 0.05973460409079 0.05973463749804 0.05974
0.8 0.1061682229933 0.1061081617252 0.1061082208390 0.10611
1.0 0.1656669946990 0.1655716339700 0.1655717257893 0.16557
1.2 0.2380877115384 0.2379485860317 0.2379487172889 0.23795
1.4 0.3231726092163 0.3229813967422 0.3229815738295 0.32298
1.6 0.4205717973682 0.4203205366053 0.4203207655016 0.42032
1.8 0.5298364510983 0.5295177515398 0.5295180377438 0.52952
2 0.6504167979655 0.6500240214585 0.6500243699353 0.65003
3 1.397637112752 1.396807516637 1.396808230870 1.39682
4 2.307039632340 2.305745294404 2.305746418462 2.30576
5 3.284986166454 3.283272129531 3.283273665156 3.28329
6 4.281691879364 4.279618989982 4.279620922514 4.27964
7 5.281627551984 5.279236492841 5.279238811029 5.27926
8 6.281851614090 6.279210729689 6.279213431346 6.27923
10 8.282182252512 8.279208870686 8.279212342934 /
15 13.284515240195 13.27920694573 13.279212342479 /
20 18.283646215099 18.27920502276 18.279212342479 /

Table 3: Comparison of 𝑓 between FPM (𝜆 = 1/5) and Howarth.

𝜂
𝑓

FPM Howarth [21]
𝑛 = 50 𝑛 = 200 𝑛 = 800

0 0. 0. 0. 0
0.2 0.06644347995228 0.06640775477474 0.06640779209625 0.06641
0.4 0.1328378289536 0.1327640864649 0.1327641607610 0.13277
0.6 0.1990509318305 0.1989371417431 0.1989372524222 0.19894
0.8 0.2648643497350 0.2647089925007 0.2647091387231 0.26471
1.0 0.3299775414929 0.3297798506391 0.3297800312497 0.32979
1.2 0.3940157297864 0.3937758909492 0.3937761044339 0.39378
1.4 0.4565422496657 0.4562615202332 0.4562617647051 0.45627
1.6 0.5170757864638 0.5167565112060 0.5167567844226 0.51676
1.8 0.5751123265865 0.5747578444754 0.5747581438894 0.57477
2 0.6301509546266 0.6297654136655 0.6297657365024 0.62977
3 0.8465117311855 0.8460440464746 0.8460444436580 0.84605
4 0.9559675373580 0.9555178143322 0.9555182298107 0.95552
5 0.9919283302451 0.9915414951870 0.9915419001644 0.99155
6 0.9993091537696 0.9989724827440 0.9989728724358 0.99898
7 1.000215077512 0.9999212208137 0.9999216041479 0.99992
8 1.000195058002 0.9999958903313 0.9999962745353 1.00000
10 1.000231913519 0.9999996129000 0.9999999980154 /
15 1.000224523350 0.9999996133026 1.000000000000 /
20 0.9997789079310 0.9999996166005 1.000000000000 /



6 Abstract and Applied Analysis

Table 4: Comparison of 𝑓 between FPM (𝜆 = 1/5) and Howarth.

𝜂
𝑓

FPM Howarth [21]
𝑛 = 50 𝑛 = 200 𝑛 = 800

0 0.3322299008614 0.3320572413724 0.33205733621526 0.33206
0.2 0.3321681255428 0.3319836510534 0.33198383711462 0.33199
0.4 0.3316651431123 0.3314696606323 0.33146984420144 0.33147
0.6 0.3302835149673 0.3300789475208 0.33007912757428 0.33008
0.8 0.3275995678839 0.3273890950354 0.32738927014924 0.32739
1.0 0.3232190113859 0.3230069482211 0.32300711668693 0.32301
1.2 0.3167975457228 0.3165890310990 0.31658919106110 0.31659
1.4 0.3080647180157 0.3078652421801 0.30786539179016 0.30787
1.6 0.2968484699253 0.2966633238744 0.29666346145571 0.29667
1.8 0.2830971363448 0.2829308930580 0.28293101725975 0.28293
2 0.2668953087923 0.2667514357803 0.26675154569727 0.26675
3 0.1613836232798 0.1613602778747 0.16136031954088 0.16136
4 0.06418469140538 0.06423412147661 0.064234121091696 0.06424
5 0.01584093436570 0.01590681516643 0.015906798685320 0.01591
6 2.367987742194𝑒 − 3 2.402051505611𝑒 − 3 2.4020398437568𝑒 − 3 0.00240
7 1.526040209602𝑒 − 4 2.201705391867𝑒 − 4 2.201689552708𝑒 − 4 0.00022
8 −9.161215077567𝑒 − 4 1.223887615942𝑒 − 5 1.224092624324𝑒 − 5 0.00001
10 1.667970449293𝑒 − 4 9.650715210973𝑒 − 9 8.442915877193𝑒 − 9 /
15 2.499528919705𝑒 − 4 −1.207941083287𝑒 − 10 1.426848065722𝑒 − 17 /
20 1.244076430614𝑒 − 4 1.815564827202𝑒 − 9 4.736242910970𝑒 − 18 /
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Figure 6: The influence of 𝜆 value on the convergence of 𝑓𝑛 (0).

𝜛𝑛 only, so the optimal value 𝜛𝑛,opt is determined by the
following nonlinear algebraic equation:

𝑑Res𝑛
𝑑𝜛𝑛

= 0. (18)

The name of the steepest descent seeking algorithm
just comes from the aforementioned approach; that is,
every optimal value 𝜛𝑛,opt is sought to minimize the cor-
responding square residual error Res𝑛. According to this

approach, only one nonlinear algebraic equation should
be solved in every iteration step, and the elements of the
sequence {𝜛𝑛|𝑛 = 1, 2, 3, . . .} are obtained sequentially and
separately.

2.4. Iteration Procedure. Now, for (7), let us choose the linear
characteristic operator:

L𝐶 [𝑔] =
𝑑3𝑔

𝑑𝑧3
= 𝑔, (19)

and construct an iteration procedure as follows:
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L𝐶 [𝑔𝑛+1] = L𝐶 [𝑔𝑛] − 𝜛𝑛+1 ⋅A𝑔 [𝑔𝑛] ,

𝑔𝑛+1 (−1) = 0, 𝑔𝑛+1 (−1) = −
1

2
, 𝑔𝑛+1 (1) = 0, 𝑛 = 0, 1, 2 . . .

(20)

⇐⇒

𝑔𝑛+1 = 𝑔

𝑛 − 𝜛𝑛+1 {𝜆

2(1 − 𝑧)3𝑔𝑛 + [1 − 3𝜆2(1 − 𝑧)2 + 𝑧 + 2𝑔𝑛] 𝑔

𝑛 } ,

𝑔𝑛+1 (−1) = 0, 𝑔𝑛+1 (−1) = −
1

2
, 𝑔𝑛+1 (1) = 0, 𝑛 = 0, 1, 2 . . . .

(21)

The initial guess 𝑔0 is conveniently chosen as

𝑔0 =
(𝑧2 − 1)

4
, (22)

which satisfies the following equation:

L𝐶 [𝑔0] = 0,

𝑔0 (−1) = 0, 𝑔0 (−1) = −
1

2
, 𝑔0 (1) = 0.

(23)

3. Result and Discussion

3.1. Results as 𝜆=1/5. Before the acquirement of approximate
solution according to the iteration procedure (21), the free
parameter 𝜆 should be determined. It is found that the
iteration procedure converges rapidly when the value of 1/𝜆
takes the scale of boundary layer thickness. Here, the value of
𝜆 is firstly set to 𝜆 = 1/5 and the influence of 𝜆 value on the
solution will be studied in Section 3.2.

In order to demonstrate FPM, the procedure to obtain the
first-order approximation 𝑔1(𝑧) is given here in detail. Firstly,
the governing equation for𝑔1(𝑧) is deduced according to (21):

𝑔1 = −
𝜛1
100

(19 + 62𝑧 + 19𝑧2) ,

𝑔1 (−1) = 0, 𝑔1 (−1) = −
1

2
, 𝑔1 (1) = 0.

(24)

Then the first order approximation𝑔1(𝑧) takes the follow-
ing form:

𝑔1 (𝑧) =
73𝜛1
6000

−
1

4
+
209𝜛1
6000

𝑧 + (
1

4
+
41𝜛1
3000

) 𝑧2

−
19𝜛1
600

𝑧3 −
31𝜛1
1200

𝑧4 −
19𝜛1
6000

𝑧5.

(25)

It is clear that the first-order approximation 𝑔1(𝑧) in (25)
is dependent on the relaxation factor 𝜛1, whose optimal
value could be determined by the steepest descent seeking
algorithm (SDS) as mentioned in Section 2.3. Here, the
square residual error Res𝑛 of the original equation (1) is
introduced:

Res𝑛 = ∫
+∞

0
(A𝑓 [𝑓𝑛])

2
𝑑𝜂 = ∫

+1

−1

(1 − 𝑧)2

8𝜆
(A𝑔 [𝑔𝑛])

2
𝑑𝑧.

(26)

Then, the square residual error of 𝑓1(𝜂) is as follows:

Res1 (𝜛1) = 0.06590476 − 0.02813884𝜛1 + 0.004530836𝜛
2
1

+ 2.330415 × 10−4𝜛31 + 5.251947 × 10
−6𝜛41 ,

(27)

and the optimal value 𝜛1,opt and the minimum of Res1 are

𝜛1,opt = 2.560515, min (Res1) = 0.02769798. (28)

Hence, the first-order approximation 𝑔1(𝑧) is finally
determined:

𝑔1 (𝑧) = −0.2188471 + 0.08919127𝑧 + 0.2849937𝑧
2

− 0.08108297𝑧3 − 0.06614663𝑧4 − 0.008108297𝑧5.
(29)

For the higher-order approximation 𝑔𝑛(𝑧), the procedure
is similar, and an explicit semianalytical solution could be
deduced by the symbolic computation software, such as
MAXIMA, MAPLE and MATHEMATICA.

In consideration of the transformation (6), the corre-
sponding approximate solution 𝑓𝑛(𝜂) to the original Blasius
equations (1) and (2) is

𝑓𝑛 (𝜂) = 𝑔𝑛 (𝑧) ⋅ (𝜂 +
1

𝜆
) + 𝜂, 𝑧 =

(𝜆𝜂 − 1)

(𝜆𝜂 + 1)
. (30)

The convergence history of the square residual error Res𝑛
is illustrated in Figure 1, which clearly shows that Res𝑛 is
gradually reduced during the iteration procedure, so the
accuracy of the approximate solution could be improved step
by step to any possibility.

The second derivative 𝑓(0) is a measure of the shear
stress on the plate and plays a critical role in the Blasius
problem [4, 5]. The relationship between 𝑓𝑛 (0) and 𝑔


𝑛 (−1)

can be deduced as follows:

𝑓𝑛 (0) = 4𝜆𝑔

𝑛 (−1) . (31)

The convergence history of 𝑓𝑛 (0) is displayed in Figure 2,
which shows that the difference between the approximation
𝑓𝑛 (0) and Boyd’s [6, 7] benchmarking result 𝑓(0) =
0.33205733621519630 decreases during the iteration proce-
dure. Meanwhile, the comparison between the present result
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Table 5: The asymptotic property of 𝑓 for large positive 𝜂 (𝜆 = 1/5,
𝑛 = 800).

𝜂 𝑓 − 𝜂 𝐵 = lim
𝜂→∞

(𝑓 − 𝜂) (Benchmark) [6, 7]

5 −1.716726334844

−1.720787657520503

6 −1.720379077486
7 −1.720761188971
8 −1.720786568654
9 −1.720787629355
10 −1.720787657066
11 −1.720787657516
12 −1.720787657520
13 −1.720787657521
14 −1.720787657521
15 −1.720787657521
20 −1.720787657521
25 −1.720787657521
30 −1.720787657521

and others given in [6, 7, 31, 32] is tabulated in Table 1, which
shows that 𝑓𝑛 (0) is the same as Boyd’s benchmarking result
within 7 significant digits when 𝑛 ≥ 300 and within 12
significant digits when 𝑛 ≥ 800.

The approximate semianalytical solutions and the well-
known Howarth’s [32] accurate numerical result of 𝑓(𝜂),
𝑓(𝜂), and 𝑓(𝜂) are compared in Figure 3 and simultane-
ously tabulated in Tables 2–4, which shows that the present
result obtained by FPM is of high accuracy.

The residual error function A𝑓[𝑓𝑛] = 2𝑓𝑛 + 𝑓𝑛𝑓

𝑛

is plotted in Figure 4, which also reveals that the error of
approximate solutions gradually decreases during the itera-
tion procedure. Moreover, the present approximate solutions
are uniformly valid in the whole region.

Based on the asymptotic property of 𝑓(𝜂) given in (5), we
obtain

𝐵 = lim
𝜂→∞

(𝑓 − 𝜂) . (32)

The approximate value of 𝐵 could be obtained as follows:

𝐵 ≈ 𝑓𝑛 (𝜂) − 𝜂, for large 𝜂. (33)

The comparison between the approximate value of𝐵 obtained
by FPM (𝑛 = 800, 𝜆 = 1/5) and the benchmarking result
𝐵 = −1.720787657520503 provided by Boyd [6, 7] is given
in Table 5, which shows that the present result is the same as
Boyd’s benchmarking result within 7 significant digits when
𝜂 ≥ 9 and within 13 significant digits when 𝜂 ≥ 13.

3.2. The Influence of 𝜆 Value on the Solution. It is clear that
1/𝜆 takes the length dimension in consideration of transfor-
mation (6). In order to investigate the influence of 𝜆 value
on the solution, some different 𝜆 values are considered in
the following calculations, and the comparison of Res𝑛 at
different 𝜆 values is displayed in Figures 5(a) and 5(b). It is
found that all Res𝑛 corresponding to different 𝜆 values are

gradually reduced during the iteration procedure, and Res𝑛
based on 𝜆 = 1/5 converges more rapidly than others. What
is the physical meaning of 𝜆? Let us try to find the answer
from the Prandtl’s boundary layer theory [5].

According to Prandtl’s boundary layer theory, the effect
of viscosity is mainly confined to the boundary layer such
that 𝜂 < 𝛿, and the outer flow (𝜂 > 𝛿) could be considered
as inviscid flow. From Table 3, the thickness of the boundary
layer is just about 𝛿 ≈ 5, where 𝑢/𝑈∞ = 𝑓 ≈ 0.99.
Now, the physical meaning of 𝜆 becomes clear. 1/𝜆 has the
same scale of boundary layer thickness 𝛿. In consideration of
transformation (6), the region −1 ≤ 𝑧 ≤ 1 is divided into two
equal parts, and the viscous flow (𝜂 < 𝛿 ≈ 5) and inviscid
flow (𝜂 > 𝛿 ≈ 5) correspond to −1 ≤ 𝑧 < 0 and 0 < 𝑧 < 1,
respectively. Although this determination of 𝜆 is in a heuristic
manner, it is fortunate that the solution is quite insensitive to
𝜆 so long as 1/𝜆 is of the same order-of-magnitude as 𝛿 ≈ 5.
The influence of 𝜆 on the convergence of 𝑓𝑛 (0) is given in
Figures 6(a) and 6(b), which also reveals that the limit values
of 𝑓𝑛 (0) with different 𝜆 values agree well with each other.
Hence, the selection of 𝜆 is nonessential to the final solution.

4. Conclusion

In this paper, the well-known Blasius flow is revisited
by the fixed point method (FPM). In order to overcome
the difficulties originated from the semi-infinite interval
and asymptotic boundary condition, two transformations
are introduced for not only the independent variable but
also the dependent variable. Under these transformations,
all the boundary conditions are exactly assured for every
order approximate solution. In the meanwhile, a free scale
parameter 𝜆 is introduced in the transformation, and its
physical meaning is related to the thickness of the boundary
layer. Moreover, a sequence of relaxation factors {𝜛𝑛|𝑛 =
1, 2, 3, . . .} is introduced to improve the convergence and
stability during iteration procedure, and its elements are
obtained in a convenient manner by the steepest descent
seeking algorithm. Finally, the comparison of the present
results with other scholars’ numerical results, especially with
the benchmarking results provided by Boyd, shows that
FPM is an effective and accurate approach to obtain the
semianalytical solution to nonlinear problems.

Nomenclature

𝑈∞: Free stream velocity, m/s
𝑢: 𝑥-components of the velocity, m/s
V: 𝑦-components of the velocity, m/s
𝜓(𝑥, 𝑦): Stream function, m2/s
𝑓(𝜂): Nondimensional stream function
]: Kinematic viscosity coefficient, m2/s.
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