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We consider themultiplicity of solutions for operator equation involving homogeneous potential operators.With the help of Nehari
manifold and fibering maps, we prove that such equation has at least two nontrivial solutions. Furthermore, we apply this result to
prove the existence of two nonnegative solutions for three types of quasilinear elliptic systems involving (p, q)-Laplacian operator
and concave-convex nonlinearities.

1. Introduction

Let Ω ⊂ R𝑁 be a bounded domain and 1 < 𝑡 < +∞. We
define the Sobolev space𝑊1,𝑡(Ω) equipped with the norm

‖𝑢‖𝑡 = (∫
Ω

(|∇𝑢|
𝑡
+ |𝑢|
𝑡
) 𝑑𝑥)

1/𝑡

. (1)

Then we denote𝑋 = 𝑊
1,𝑝
(Ω) ×𝑊

1,𝑞
(Ω) and, for (𝑢, V) ∈ 𝑋,

‖(𝑢, V)‖𝑋 = ‖𝑢‖𝑝 + ‖V‖𝑞. (2)

It is well known that 𝑋 is a reflexive Banach space. The dual
space of𝑋 is denoted by𝑋∗.

In this paper, we consider the multiplicity results for
nonzero solutions of the operator equation

𝐴 (𝑢, V) − 𝐵 (𝑢, V) − 𝐶 (𝑢, V) = 0, (𝑢, V) ∈ 𝑋, (3)

where 𝐴 : 𝑋 → 𝑋
∗ is a (𝑝, 𝑞)-Laplacian operator defined

by ⟨𝐴(𝑢, V), (𝑢, V)⟩ = ‖𝑢‖
𝑝

𝑝
+ ‖V‖𝑞
𝑞
and 𝐵, 𝐶 : 𝑋 → 𝑋

∗ are
homogeneous operators of degrees 𝑟 − 1 and 𝑠 − 1. It is well

known that the functionals corresponding to 𝐴, 𝐵, and 𝐶 are
given by

𝑎 (𝑢, V) =
1

𝑝
‖𝑢‖
𝑝

𝑝
+
1

𝑞
‖V‖𝑞
𝑞
,

𝑏 (𝑢, V) =
1

𝑟
⟨𝐵 (𝑢, V) , (𝑢, V)⟩ ,

𝑐 (𝑢, V) =
1

𝑠
⟨𝐶 (𝑢, V) , (𝑢, V)⟩ .

(4)

Throughout the paper, we will assume the following.

(H
1
) 1 < 𝑠 < 𝑝 ≤ 𝑞 < 𝑟.

(H
2
) There exist (𝑢

𝑖
, V
𝑖
) ∈ 𝑋 (𝑖 = 1, 2) such that

⟨𝐵 (𝑢
1
, V
1
) , (𝑢
1
, V
1
)⟩ > 0, ⟨𝐶 (𝑢

2
, V
2
) , (𝑢
2
, V
2
)⟩ > 0.

(5)

(H
3
) 𝐵, 𝐶 : 𝑋 → 𝑋

∗ are strongly continuous.
(H
4
) There exist positive numbers 𝑑

1
and 𝑑

2
such that

⟨𝐵 (𝑢, V) , (𝑢, V)⟩ ≤ 𝑑1 (‖𝑢‖
𝑟

𝑝
+ ‖V‖𝑟
𝑞
) ,

⟨𝐶 (𝑢, V) , (𝑢, V)⟩ ≤ 𝑑2 (‖𝑢‖
𝑠

𝑝
+ ‖V‖𝑠
𝑞
) .

(6)

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 947139, 11 pages
http://dx.doi.org/10.1155/2014/947139

http://dx.doi.org/10.1155/2014/947139


2 Abstract and Applied Analysis

There are several studies for existence and multiplicity of
solutions of the quasilinear elliptic system

−Δ
𝑝
𝑢 = 𝑓 (𝑢, V) , in Ω,

−Δ
𝑞
V = 𝑔 (𝑢, V) , in Ω,

(7)

where Ω is a smooth bounded domain of R𝑁. See, for
example, [1–7].

In [5], Brown and Wu considered the semilinear elliptic
system

−Δ𝑢 + 𝑢 =
𝛼

𝛼 + 𝛽
𝑓 (𝑥) |𝑢|

𝛼−2
𝑢|V|𝛽, in Ω,

−ΔV + V =
𝛽

𝛼 + 𝛽
𝑓 (𝑥) |𝑢|

𝛼
|V|𝛽−2V, in Ω,

𝜕𝑢

𝜕𝑛
= 𝜆𝑔 (𝑥) |𝑢|

𝑞−2
𝑢,

𝜕V
𝜕𝑛

= 𝜇ℎ (𝑥) |V|𝑞−2V, on 𝜕Ω,

(8)

where Ω is a smooth bounded domain of R𝑁, 𝛼, 𝛽 >

1, and 1 < 𝑞 < 2 < 𝛼 + 𝛽 < 2
∗. They found that the above

problem has at least two positive solutions if the pair (𝜆, 𝜇) is
below a certain subset of R2.

Recently, Afrouzi and Rasouli [3] considered the semilin-
ear p-Laplacian system

− Δ
𝑝
𝑢 + 𝑚 (𝑥) |𝑢|

𝑝−2
𝑢

= 𝜆|𝑢|
𝛾−2

𝑢 +
𝛼

𝛼 + 𝛽
𝑐 (𝑥) |𝑢|

𝛼−2
𝑢|V|𝛽, in Ω,

− Δ
𝑝
V + 𝑚 (𝑥) |V|𝑝−2V

= 𝜇|V|𝛾−2V +
𝛽

𝛼 + 𝛽
𝑐 (𝑥) |𝑢|

𝛼
|V|𝛽−2V, in Ω,

𝑢 = 0 = V, on 𝜕Ω,

(9)

where 𝛼, 𝛽 > 1, 1 < 𝛼 + 𝛽 < 𝑝 < 𝛾 < 𝑝
∗. They proved that

the above problem has at least two solutions if 0 < |𝜆|𝑝/(𝑝−𝛾)+
|𝜇|
𝑝/(𝑝−𝛾)

< 𝛿
∗. Similar considerations can be found in [1, 4,

6].
We note that few researchers had used variationalmethod

with the help of Nehari manifold to consider semilinear ellip-
tic system involving (𝑝, 𝑞)-Laplacian operator to the best of
our knowledge. In this paper, we will use variational method
with the help of Nehari manifold and fibering maps (see [8])
to prove the existence of at least two nonzero solutions of
problem (3) and then apply this result to three types of (𝑝, 𝑞)-
Laplacian systems. These applications extended some of the
results in [3–6].

This paper is organized as follows. In Section 2, we
discuss some of the properties of the Nehari manifold for
(3). In Section 3, we prove that (3) has at least two nontrivial
solutions. Applications to (𝑝, 𝑞)-Laplacian systems with non-
linearities involving both concave and convex terms are given
in the last section.

2. The Properties of the Nehari Manifold

We say (𝑢, V) ∈ 𝑋 is a weak solution of problem (3) if

⟨𝐴 (𝑢, V) − 𝐵 (𝑢, V) − 𝐶 (𝑢, V) , (𝑤, 𝑧)⟩ = 0 (10)

holds for all (𝑤, 𝑧) ∈ 𝑋.
Problem (3) has a variational structure. Let 𝐽 : 𝑋 → R

be defined by

𝐽 (𝑢, V) = 𝑎 (𝑢, V) − 𝑏 (𝑢, V) − 𝑐 (𝑢, V) , (11)

where 𝑎(𝑢, V), 𝑏(𝑢, V), and 𝑐(𝑢, V) are defined by (4). Clearly,
the critical points of 𝐽 are the weak solutions of problem (3).

As the energy functional 𝐽 is not bounded below on𝑋, it
is useful to consider the functional on the Nehari manifold:

N = {(𝑢, V) ∈ 𝑋 \ {(0, 0)} : ⟨𝐽

(𝑢, V) , (𝑢, V)⟩ = 0} . (12)

Thus (𝑢, V) ∈ N if and only if

⟨𝐴 (𝑢, V) − 𝐵 (𝑢, V) − 𝐶 (𝑢, V) , (𝑢, V)⟩ = 0. (13)

Moreover, we have the following result.

Lemma 1. The energy functional 𝐽 is coercive and bounded
below onN.

Proof. If (𝑢, V) ∈ N, then

𝐽 (𝑢, V) = 𝑎 (𝑢, V) −
1

𝑟
(⟨𝐴 (𝑢, V) , (𝑢, V)⟩

− ⟨𝐶 (𝑢, V) , (𝑢, V)⟩) − 𝑐 (𝑢, V)

= (
1

𝑝
−
1

𝑟
) ‖𝑢‖
𝑝

𝑝
+ (

1

𝑞
−
1

𝑟
) ‖V‖𝑞
𝑞

− (
1

𝑠
−
1

𝑟
) ⟨𝐶 (𝑢, V) , (𝑢, V)⟩ .

(14)

Thus, by (6),

𝐽 (𝑢, V) ≥ (
1

𝑝
−
1

𝑟
) ‖𝑢‖
𝑝

𝑝
+ (

1

𝑞
−
1

𝑟
) ‖V‖𝑞
𝑞

− (
1

𝑠
−
1

𝑟
) 𝑑
2‖(𝑢, V)‖

𝑠

𝑋
.

(15)

Without loss of generality, we suppose ‖𝑢‖
𝑝
> 1, ‖V‖

𝑞
> 1;

then

𝐽 (𝑢, V) ≥ 𝐶1‖(𝑢, V)‖
𝑝

𝑋
− 𝐶
2‖(𝑢, V)‖

𝑠

𝑋
, (16)

where 𝐶
1
and 𝐶

2
are constants independent of (𝑢, V). Thus 𝐽

is coercive and bounded below onN.

Define

Φ (𝑢, V) = ⟨𝐽 (𝑢, V) , (𝑢, V)⟩

= ⟨𝐴 (𝑢, V) − 𝐵 (𝑢, V) − 𝐶 (𝑢, V) , (𝑢, V)⟩ .
(17)
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Then, for (𝑢, V) ∈ N, we have

⟨Φ

(𝑢, V) , (𝑢, V)⟩

= (𝑝 − 𝑠) ‖𝑢‖
𝑝

𝑝
+ (𝑞 − 𝑠) ‖V‖𝑞

𝑞
− (𝑟 − 𝑠) ⟨𝐵 (𝑢, V) , (𝑢, V)⟩

= (𝑝 − 𝑟) ‖𝑢‖
𝑝

𝑝
+ (𝑞 − 𝑟) ‖V‖𝑞

𝑞
− (𝑠 − 𝑟) ⟨𝐶 (𝑢, V) , (𝑢, V)⟩.

(18)

Now, we splitN into three partsN+,N−, andN0 defined by

N
+
= {(𝑢, V) ∈ N | ⟨Φ


(𝑢, V) , (𝑢, V)⟩ > 0} ,

N
−
= {(𝑢, V) ∈ N | ⟨Φ


(𝑢, V) , (𝑢, V)⟩ < 0} ,

N
0
= {(𝑢, V) ∈ N | ⟨Φ


(𝑢, V) , (𝑢, V)⟩ = 0} .

(19)

We now derive some basic properties of N+, N−, and
N0.

Lemma 2. Suppose that (𝑢
0
, V
0
) is a local minimizer for J on

N and (𝑢
0
, V
0
) ∉ N0. Then 𝐽(𝑢

0
, V
0
) = 0 in𝑋∗.

Proof. Consider the optimization problem

min
(𝑢,V)∈N

𝐽 (𝑢, V) , subject to Φ (𝑢, V) = 0. (20)

By the theory of Lagrange multiplier principle, there exists
𝜇 ∈ R such that

𝐽

(𝑢
0
, V
0
) = 𝜇Φ


(𝑢
0
, V
0
) . (21)

Thus

⟨𝐽

(𝑢
0
, V
0
) , (𝑢
0
, V
0
)⟩ = 𝜇 ⟨Φ


(𝑢
0
, V
0
) , (𝑢
0
, V
0
)⟩ . (22)

Since (𝑢
0
, V
0
) ∈ N, we obtain ⟨𝐽


(𝑢
0
, V
0
), (𝑢
0
, V
0
)⟩ = 0.

However, the fact (𝑢
0
, V
0
) ∉ N0 implies that ⟨Φ(𝑢

0
, V
0
),

(𝑢
0
, V
0
)⟩ ̸= 0.Thus 𝜇 = 0 and so 𝐽(𝑢

0
, V
0
) = 0.This completes

the proof.

Lemma 3. One hasN0 = 0 provided

𝑑
𝑝−𝑠

1
𝑑
𝑟−𝑝

2
< (𝑝 − 𝑠)

𝑝−𝑠
(𝑟 − 𝑝)

𝑟−𝑝
(𝑟 − 𝑠)

𝑠−𝑟
, (23)

𝑑
𝑞−𝑠

1
𝑑
𝑟−𝑞

2
< (𝑞 − 𝑠)

𝑞−𝑠
(𝑟 − 𝑞)

𝑟−𝑞
(𝑟 − 𝑠)

𝑠−𝑟
, (24)

(𝑟 − 𝑠) 𝑑2V
𝑠

0
− (𝑟 − 𝑞) V𝑞

0
< −

(𝑝 − 𝑠) (𝑟 − 𝑝)

𝑠
𝑡
𝑝

0
, (25)

(𝑟 − 𝑝) 𝑢
𝑝

0
− (𝑟 − 𝑠) 𝑑2𝑢

𝑠

0
>
(𝑞 − 𝑠) (𝑟 − 𝑠) 𝑑2

𝑞
𝜏
𝑠

0
, (26)

where

V
0
= (

𝑞 − 𝑠

(𝑟 − 𝑠)𝑑
1

)

1/(𝑟−𝑞)

, 𝑡
0
= (

(𝑟 − 𝑠)𝑠𝑑
2

(𝑟 − 𝑝)𝑝
)

1/(𝑝−𝑠)

,

𝑢
0
= (

𝑝 − 𝑠

(𝑟 − 𝑠)𝑑
1

)

1/(𝑟−𝑝)

, 𝜏
0
= (

(𝑟 − 𝑠)𝑠𝑑
2

(𝑟 − 𝑞)𝑞
)

1/(𝑞−𝑠)

.

(27)

Proof. Let (𝑢, V) ∈ N0. By (18) and (6),

(𝑝 − 𝑠) ‖𝑢‖
𝑝

𝑝
+ (𝑞 − 𝑠) ‖V‖𝑞

𝑞
≤ (𝑟 − 𝑠) 𝑑1 (‖𝑢‖

𝑟

𝑝
+ ‖V‖𝑟
𝑞
) , (28)

(𝑟 − 𝑝) ‖𝑢‖
𝑝

𝑝
+ (𝑟 − 𝑞) ‖V‖𝑞

𝑞
≤ (𝑟 − 𝑠) 𝑑2 (‖𝑢‖

𝑠

𝑝
+ ‖V‖𝑠
𝑞
) . (29)

If ‖V‖
𝑞
= 0, then it follows from (28)-(29) that

(
𝑝 − 𝑠

(𝑟 − 𝑠) 𝑑1

)

1/(𝑟−𝑝)

≤ ‖𝑢‖𝑝 ≤ (
(𝑟 − 𝑠) 𝑑2

𝑟 − 𝑝
)

1/(𝑝−𝑠)

, (30)

which contradicts (23).
Similarly, ‖𝑢‖

𝑝
= 0 is impossible.

In view of (29), we have either

(𝑟 − 𝑝) ‖𝑢‖
𝑝

𝑝
≤ (𝑟 − 𝑠) 𝑑2‖𝑢‖

𝑠

𝑝 (31)

or

(𝑟 − 𝑞) ‖V‖𝑞
𝑞
≤ (𝑟 − 𝑠) 𝑑2‖V‖

𝑠

𝑞 (32)

is satisfied. In the following, two cases are considered.

Case 1. Suppose that (31) holds. Then

‖𝑢‖𝑝 ≤ (
(𝑟 − 𝑠)𝑑

2

𝑟 − 𝑝
)

1/(𝑝−𝑠)

. (33)

By (23), we obtain

(
(𝑟 − 𝑠) 𝑑2

𝑟 − 𝑝
)

1/(𝑝−𝑠)

≤ (
𝑝 − 𝑠

(𝑟 − 𝑠) 𝑑1

)

1/(𝑟−𝑝)

(34)

and so

‖𝑢‖𝑝 ≤ (
𝑝 − 𝑠

(𝑟 − 𝑠) 𝑑1

)

1/(𝑟−𝑝)

. (35)

The last inequality is equivalent to

(𝑝 − 𝑠) ‖𝑢‖
𝑝

𝑝
≥ (𝑟 − 𝑠) 𝑑1‖𝑢‖

𝑟

𝑝
. (36)

Hence, by (28), we infer that

(𝑞 − 𝑠) ‖V‖𝑞
𝑞
≤ (𝑟 − 𝑠) 𝑑1‖V‖

𝑟

𝑞
, (37)

which is equivalent to

‖V‖𝑞 ≥ (
𝑞 − 𝑠

(𝑟 − 𝑠) 𝑑1

)

1/(𝑟−𝑞)

= V
0
. (38)

On the other hand, we obtain from (29) that

𝜙 (‖𝑢‖𝑝) ≤ 𝜓 (‖V‖𝑞) , (39)

where

𝜙 (𝑡) = (𝑟 − 𝑝) 𝑡
𝑝
− (𝑟 − 𝑠) 𝑑2𝑡

𝑠
,

𝜓 (𝜏) = (𝑟 − 𝑠) 𝑑2𝜏
𝑠
− (𝑟 − 𝑞) 𝜏

𝑞
.

(40)
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Obviously, 𝜙(𝑡) attains its minimum at 𝑡
0
and 𝜙(𝜏) attains

its maximum at 𝜏
0
. Furthermore, 𝜙(𝑡) is increasing on

(𝑡
0
, +∞), 𝜓(𝑡) is decreasing on (𝜏

0
, +∞), and

𝜙 (𝑡
0
) = −

(𝑝 − 𝑠) (𝑟 − 𝑝)

𝑠
𝑡
𝑝

0
,

𝜓 (𝜏
0
) =

(𝑞 − 𝑠) (𝑟 − 𝑠) 𝑑2

𝑞
𝜏
𝑠

0
.

(41)

In view of (24)-(25), we have V
0
> 𝜏
0
and 𝜓(V

0
) < 𝜙(𝑡

0
) and

so

𝜓 (‖V‖𝑞) ≤ 𝜓 (V0) < 𝜙 (𝑡0) , (42)

which contradicts (39). ThusN0 = 0.

Case 2. Suppose that (32) holds. Then, by (24),

‖V‖𝑞 ≤ (
(𝑟 − 𝑠) 𝑑2

𝑟 − 𝑞
)

1/(𝑞−𝑠)

≤ (
𝑞 − 𝑠

(𝑟 − 𝑠) 𝑑1

)

1/(𝑟−𝑞)

, (43)

which is equivalent to

(𝑞 − 𝑠) ‖V‖𝑞
𝑞
≥ (𝑟 − 𝑠) 𝑑1‖V‖

𝑟

𝑞
. (44)

Thus (28) and (44) imply

(𝑝 − 𝑠) ‖𝑢‖
𝑝

𝑝
≤ (𝑟 − 𝑠) 𝑑1‖𝑢‖

𝑟

𝑝
. (45)

Hence

‖𝑢‖𝑝 ≥ (
𝑝 − 𝑠

(𝑟 − 𝑠) 𝑑1

)

1/(𝑟−𝑝)

= 𝑢
0
. (46)

In view of (23) and (26), we obtain 𝑢
0
> 𝑡
0
, 𝜙(𝑢
0
) > 𝜓(𝜏

0
)

and so 𝜙(‖𝑢‖
𝑝
) ≥ 𝜙(𝑢

0
) > 𝜓(𝜏

0
), which contradicts (39).Thus

N0 = 0.

In order to get a better understanding of the Nehari
manifold, we consider the function𝑚

𝑢,V(𝑡) defined by

𝑚
(𝑢,V) (𝑡) = 𝑡

𝑝−𝑟
‖𝑢‖
𝑝

𝑝
+ 𝑡
𝑞−𝑟
‖V‖𝑞
𝑞
− 𝑠𝑡
𝑠−𝑟
𝑐 (𝑢, V) (47)

for 𝑡 > 0, where 𝑐(𝑢, V) is defined in (4). Obviously,
lim
𝑡→0
+𝑚
(𝑢,V)(𝑡) = −∞, lim

𝑡→+∞
𝑚
(𝑢,V)(𝑡) = 0, and

𝑚


(𝑢,V) (𝑡)

= 𝑡
𝑠−𝑟−1

((𝑝 − 𝑟) 𝑡
𝑝−𝑠
‖𝑢‖
𝑝

𝑝
+ (𝑞 − 𝑟) 𝑡

𝑞−𝑠
‖V‖𝑞
𝑞

−𝑠 (𝑠 − 𝑟) 𝑐 (𝑢, V) ) .

(48)

If 𝑐(𝑢, V) > 0, then there is unique 𝑡
1
= 𝑡
1
(𝑢, V) such that

𝑚


(𝑢,V)(𝑡1) = 0. Furthermore, 𝑚
(𝑢,V)(𝑡) > 0 for 𝑡 ∈ (0, 𝑡

1
) and

𝑚


(𝑢,V)(𝑡) < 0 for 𝑡 ∈ (𝑡
1
,∞). By direct computation, we can

deduce that

𝑚
(𝑢,V) (𝑡1) = 𝑡

𝑠−𝑟

1
(𝑡
𝑝−𝑠

1
‖𝑢‖
𝑝

𝑝
+ 𝑡
𝑞−𝑠

1
‖V‖𝑞
𝑞
− 𝑠𝑐 (𝑢, V))

=
𝑝 − 𝑠

𝑟 − 𝑠
𝑡
𝑝−𝑟

1
‖𝑢‖
𝑝

𝑝
+
𝑞 − 𝑠

𝑟 − 𝑠
𝑡
𝑞−𝑟

1
‖V‖𝑞
𝑞
.

(49)

Moreover

0 < 𝑡
1 (𝑢, V) < min

{

{

{

(
𝑠 (𝑟 − 𝑠) 𝑐 (𝑢, V)
(𝑟 − 𝑝) ‖𝑢‖

𝑝

𝑝

)

1/(𝑝−𝑠)

,

(
𝑠 (𝑟 − 𝑠) 𝑐 (𝑢, V)
(𝑟 − 𝑞) ‖V‖𝑞

𝑞

)

1/(𝑞−𝑠)

}

}

}

(50)

if ‖𝑢‖
𝑝
> 0 and ‖V‖

𝑞
> 0. Then the following lemma holds.

Lemma 4. For each (𝑢, V) ∈ 𝑋 \ {(0, 0)} with 𝑐(𝑢, V) > 0, one
has𝑚

(𝑢,V)(𝑡1(𝑢, V)) > 𝑟𝑏(𝑢, V) provided

𝑑
𝑝−𝑠

1
𝑑
𝑟−𝑝

2
≤ 2
𝑠−𝑟
(𝑝 − 𝑠)

𝑝−𝑠
(𝑟 − 𝑝)

𝑟−𝑝
(𝑟 − 𝑠)

𝑠−𝑟
, (51)

𝑑
𝑞−𝑠

1
𝑑
𝑟−𝑞

2
≤ 2
𝑠−𝑟
(𝑞 − 𝑠)

𝑞−𝑠
(𝑟 − 𝑞)

𝑟−𝑞
(𝑟 − 𝑠)

𝑠−𝑟
. (52)

Proof . The proof is divided into the following four cases.

Case 1 (‖𝑢‖
𝑝
= 0 < ‖V‖

𝑞
). In this case,

𝑡
1
= (

𝑠 (𝑟 − 𝑠) 𝑐 (𝑢, V)
(𝑟 − 𝑞) ‖V‖𝑞

𝑞

)

1/(𝑞−𝑠)

. (53)

Thus, by (6), we infer that

𝑚
(𝑢,V) (𝑡1)

=
𝑞 − 𝑠

𝑟 − 𝑠
(
𝑠 (𝑟 − 𝑠) 𝑐 (𝑢, V)
(𝑟 − 𝑞) ‖V‖𝑞

𝑞

)

(𝑞−𝑟)/(𝑞−𝑠)

‖V‖𝑞
𝑞

≥
𝑞 − 𝑠

𝑟 − 𝑠
(
(𝑟 − 𝑠) 𝑑2

𝑟 − 𝑞
)

(𝑞−𝑟)/(𝑞−𝑠)

‖V‖𝑟
𝑞

≥
𝑞 − 𝑠

𝑟 − 𝑠
(
(𝑟 − 𝑠) 𝑑2

𝑟 − 𝑞
)

(𝑞−𝑟)/(𝑞−𝑠)
𝑟𝑏 (𝑢, V)
𝑑
1

.

(54)

In view of (52), we have

𝑞 − 𝑠

𝑟 − 𝑠
(
(𝑟 − 𝑠) 𝑑2

𝑟 − 𝑞
)

(𝑞−𝑟)/(𝑞−𝑠)
1

𝑑
1

> 1 (55)

and so𝑚
(𝑢,V)(𝑡1) > 𝑟𝑏(𝑢, V).

Case 2 (‖V‖
𝑞
= 0 < ‖𝑢‖

𝑝
). Then

𝑡
1
= (

𝑠 (𝑟 − 𝑠) 𝑐 (𝑢, V)
(𝑟 − 𝑝) ‖𝑢‖

𝑝

𝑝

)

1/(𝑝−𝑠)

(56)

and so

𝑚
(𝑢,V) (𝑡1) =

𝑝 − 𝑠

𝑟 − 𝑠
(
𝑠 (𝑟 − 𝑠) 𝑐 (𝑢, V)
(𝑟 − 𝑝) ‖𝑢‖

𝑝

𝑝

)

(𝑝−𝑟)/(𝑝−𝑠)

‖𝑢‖
𝑝

𝑝

≥
𝑝 − 𝑠

𝑟 − 𝑠
(
(𝑟 − 𝑠) 𝑑2

𝑟 − 𝑝
)

(𝑝−𝑟)/(𝑝−𝑠)

‖𝑢‖
𝑟

𝑝

≥
𝑝 − 𝑠

𝑟 − 𝑠
(
(𝑟 − 𝑠) 𝑑2

𝑟 − 𝑝
)

(𝑝−𝑟)/(𝑝−𝑠)
𝑟𝑏 (𝑢, V)
𝑑
1

.

(57)

Thus𝑚
(𝑢,V)(𝑡1) > 𝑟𝑏(𝑢, V) follows from (51).



Abstract and Applied Analysis 5

Case 3 (0 < ‖𝑢‖
𝑝
≤ ‖V‖
𝑞
). It follows from (49), (50), and (6)

that

𝑚
(𝑢,V) (𝑡1)

>
𝑝 − 𝑠

𝑟 − 𝑠
(
𝑠 (𝑟 − 𝑠) 𝑐 (𝑢, V)
(𝑟 − 𝑝) ‖𝑢‖

𝑝

𝑝

)

(𝑝−𝑟)/(𝑝−𝑠)

‖𝑢‖
𝑝

𝑝

+
𝑞 − 𝑠

𝑟 − 𝑠
(
𝑠 (𝑟 − 𝑠) 𝑐 (𝑢, V)
(𝑟 − 𝑞) ‖V‖𝑞

𝑞

)

(𝑞−𝑟)/(𝑞−𝑠)

‖V‖𝑞
𝑞

≥
𝑝 − 𝑠

𝑟 − 𝑠
(

(𝑟 − 𝑠) 𝑑2 (‖𝑢‖
𝑠

𝑝
+ ‖V‖𝑠
𝑞
)

(𝑟 − 𝑝) ‖𝑢‖
𝑝

𝑝

)

(𝑝−𝑟)/(𝑝−𝑠)

‖𝑢‖
𝑝

𝑝

+
𝑞 − 𝑠

𝑟 − 𝑠
(

(𝑟 − 𝑠) 𝑑2 (‖𝑢‖
𝑠

𝑝
+ ‖V‖𝑠
𝑞
)

(𝑟 − 𝑞) ‖V‖𝑞
𝑞

)

(𝑞−𝑟)/(𝑞−𝑠)

‖V‖𝑞
𝑞
.

(58)

Since ‖𝑢‖
𝑝
≤ ‖V‖
𝑞
, we have

‖𝑢‖
𝑠

𝑝
+ ‖V‖𝑠
𝑞
≤ 2‖V‖𝑠

𝑞
, ‖𝑢‖

𝑟

𝑝
+ ‖V‖𝑟
𝑞
≤ 2‖V‖𝑟

𝑞
. (59)

Thus

𝑚
(𝑢,V) (𝑡1) >

𝑞 − 𝑠

𝑟 − 𝑠
(

2 (𝑟 − 𝑠) 𝑑2‖V‖
𝑠

𝑞

(𝑟 − 𝑞) ‖V‖𝑞
𝑞

)

(𝑞−𝑟)/(𝑞−𝑠)

‖V‖𝑞
𝑞

=
𝑞 − 𝑠

𝑟 − 𝑠
(
2 (𝑟 − 𝑠) 𝑑2

𝑟 − 𝑞
)

(𝑞−𝑟)/(𝑞−𝑠)

‖V‖𝑟
𝑞

≥
𝑞 − 𝑠

𝑟 − 𝑠
(
2 (𝑟 − 𝑠) 𝑑2

𝑟 − 𝑞
)

(𝑞−𝑟)/(𝑞−𝑠)
𝑟𝑏 (𝑢, V)
2𝑑
1

.

(60)

Hence𝑚
(𝑢,V)(𝑡1) > 𝑟𝑏(𝑢, V) provided

𝑞 − 𝑠

𝑟 − 𝑠
(
2 (𝑟 − 𝑠) 𝑑2

𝑟 − 𝑞
)

(𝑞−𝑟)/(𝑞−𝑠)
1

2𝑑
1

≥ 1, (61)

which is equivalent to (52).

Case 4 (‖𝑢‖
𝑝
> ‖V‖
𝑞
> 0). In this case, (58) still holds. Thus,

in view of (6), we infer

𝑚
(𝑢,V) (𝑡1) >

𝑝 − 𝑠

𝑟 − 𝑠
(

2 (𝑟 − 𝑠) 𝑑2‖𝑢‖
𝑠

𝑝

(𝑟 − 𝑝) ‖𝑢‖
𝑝

𝑝

)

(𝑝−𝑟)/(𝑝−𝑠)

‖𝑢‖
𝑝

𝑝

≥
𝑝 − 𝑠

𝑟 − 𝑠
(
2 (𝑟 − 𝑠) 𝑑2

𝑟 − 𝑝
)

(𝑝−𝑟)/(𝑝−𝑠)

‖𝑢‖
𝑟

𝑝

≥
𝑝 − 𝑠

𝑟 − 𝑠
(
2 (𝑟 − 𝑠) 𝑑2

𝑟 − 𝑝
)

(𝑝−𝑟)/(𝑝−𝑠)
𝑟𝑏 (𝑢, V)
2𝑑
1

.

(62)

Hence𝑚
(𝑢,V)(𝑡1) > 𝑟𝑏(𝑢, V) follows from(51).

By Lemma 4, we have the following.

Lemma 5. Suppose that (51)-(52) hold. Then, for each (𝑢, V) ∈
𝑋 \ {(0, 0)} with 𝑐(𝑢, V) > 0, one has the following.

(i) If 𝑏(𝑢, V) ≤ 0, then there is unique 𝑡+ ∈ (0, 𝑡
1
) such

that 𝐽(𝑡𝑢, 𝑡V) is decreasing on (0, 𝑡+) and increasing on
(𝑡
+
,∞). Moreover (𝑡+𝑢, 𝑡+V) ∈ N+ and

𝐽 (𝑡
+
𝑢, 𝑡
+V) = inf

𝑡≥0

𝐽 (𝑡𝑢, 𝑡V) . (63)

(ii) If 𝑏(𝑢, V) > 0, then there are 𝑡+ and 𝑡
− with 0 <

𝑡
+

< 𝑡
1

< 𝑡
− such that 𝐽(𝑡𝑢, 𝑡V) is decreasing

on (0, 𝑡
+
), increasing on (𝑡

+
, 𝑡
−
), and decreasing on

(𝑡
−
,∞). Moreover (𝑡+𝑢, 𝑡+V) ∈ N+, (𝑡−𝑢, 𝑡−V) ∈ N−,

and

𝐽 (𝑡
+
𝑢, 𝑡
+V) = inf

0≤𝑡≤𝑡
−

𝐽 (𝑡𝑢, 𝑡V) ,

𝐽 (𝑡
−
𝑢, 𝑡
−V) = sup

𝑡≥𝑡
+

𝐽 (𝑡𝑢, 𝑡V) .
(64)

Proof. Fix (𝑢, V) ∈ 𝑋 \ {(0, 0)} with 𝑐(𝑢, V) > 0. By (17) and
(19), we infer that

Φ (𝑡𝑢, 𝑡V)

= 𝑡
𝑝
‖𝑢‖
𝑝

𝑝
+ 𝑡
𝑞
‖V‖𝑞
𝑞
− 𝑡
𝑟
𝑟𝑏 (𝑢, V) − 𝑡𝑠𝑠𝑐 (𝑢, V)

= 𝑡
𝑟
(𝑚
(𝑢,V) (𝑡) − 𝑟𝑏 (𝑢, V)) ,

(65)

⟨Φ

(𝑡𝑢, 𝑡V) , (𝑡𝑢, 𝑡V)⟩

= (𝑝 − 𝑟) 𝑡
𝑝
‖𝑢‖
𝑝

𝑝
+ (𝑞 − 𝑟) 𝑡

𝑞
‖V‖𝑞
𝑞

− (𝑠 − 𝑟) 𝑡
𝑠
𝑠𝑐 (𝑢, V) = 𝑡𝑟+1𝑚

(𝑢,V) (𝑡) .

(66)

(i) Suppose that 𝑏(𝑢, V) ≤ 0. Then 𝑚
(𝑢,V)(𝑡) = 𝑟𝑏(𝑢, V)

has unique solution 𝑡
+
∈ (0, 𝑡

1
) and 𝑚

(𝑢,V)(𝑡
+
) > 0.

Hence Φ(𝑡+𝑢, 𝑡+V) = (𝑡
+
)
𝑟
(𝑚
(𝑢,V)(𝑡
+
) − 𝑟𝑏(𝑢, V)) = 0,

⟨Φ

(𝑡
+
𝑢, 𝑡
+V), (𝑡+𝑢, 𝑡+V)⟩ = (𝑡

+
)
𝑟+1
𝑚


(𝑢,V)(𝑡
+
) > 0, and

so (𝑡+𝑢, 𝑡+V) ∈ N+. Moreover, since

𝑑

𝑑𝑡
𝐽 (𝑡𝑢, 𝑡V) = 𝑡𝑝−1‖𝑢‖𝑝

𝑝
+ 𝑡
𝑞−1
‖V‖𝑞
𝑞
− 𝑡
𝑟−1
𝑟𝑏 (𝑢, V)

− 𝑡
𝑠−1
𝑠𝑐 (𝑢, V) =

1

𝑡
Φ (𝑡𝑢, 𝑡V) ,

(67)

we obtain (𝑑/𝑑𝑡)𝐽(𝑡𝑢, 𝑡V) < 0 for 𝑡 ∈ (0, 𝑡
+
) and

(𝑑/𝑑𝑡)𝐽(𝑡𝑢, 𝑡V) > 0 for 𝑡 > 𝑡
+. Thus 𝐽(𝑡𝑢, 𝑡V) is

decreasing on (0, 𝑡
+
) and increasing on (𝑡

+
,∞) and

𝐽(𝑡
+
𝑢, 𝑡
+V) = inf

𝑡≥0
𝐽(𝑡𝑢, 𝑡V).

(ii) Suppose that 𝑏(𝑢, V) > 0. Since 𝑚
(𝑢,V)(𝑡1) > 𝑟𝑏(𝑢, V),

the equation 𝑚
(𝑢,V)(𝑡) = 𝑟𝑏(𝑢, V) has exactly two

solutions 𝑡+, 𝑡− with 0 < 𝑡
+
< 𝑡
1
< 𝑡
− such that

𝑚


(𝑢,V)(𝑡
−
) < 0 < 𝑚



(𝑢,V)(𝑡
+
). Thus there are exactly two
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multiples of 𝑢 lying in N; namely, (𝑡+𝑢, 𝑡+V) ∈ N+

and (𝑡−𝑢, 𝑡−V) ∈ N−. Since

𝑑

𝑑𝑡
𝐽 (𝑡𝑢, 𝑡V)

{{

{{

{

< 0, 0 < 𝑡 < 𝑡
+
;

> 0, 𝑡
+
< 𝑡 < 𝑡

−
;

< 0, 𝑡 > 𝑡
−
,

(68)

we have 𝐽(𝑡𝑢, 𝑡V) is decreasing on (0, 𝑡+), increasing on
(𝑡
+
, 𝑡
−
), and decreasing on (𝑡−,∞) and (64) holds.

Similarly, we define

𝑛
(𝑢,V) (𝑡) = 𝑡

𝑝−𝑠
‖𝑢‖
𝑝

𝑝
+ 𝑡
𝑞−𝑠
‖V‖𝑞
𝑞
− 𝑡
𝑟−𝑠
𝑟𝑏 (𝑢, V) , for 𝑡 > 0,

(69)

where 𝑏(𝑢, V) is defined in (4). Clearly lim
𝑡→0
+𝑛
(𝑢,V)(𝑡) =

0, lim
𝑡→∞

𝑛
(𝑢,V)(𝑡) = −∞, and

𝑛


(𝑢,V) (𝑡) = (𝑝 − 𝑠) 𝑡
𝑝−𝑠−1

‖𝑢‖
𝑝

𝑝
+ (𝑞 − 𝑠) 𝑡

𝑞−𝑠−1
‖V‖𝑞
𝑞

− (𝑟 − 𝑠) 𝑡
𝑟−𝑠−1

𝑟𝑏 (𝑢, V) .
(70)

If 𝑏(𝑢, V) > 0, then there is unique 𝑡
2
= 𝑡
2
(𝑢, V) such that

𝑛


(𝑢,V)(𝑡2) = 0. Furthermore, 𝑛
(𝑢,V)(𝑡) > 0 for 0 < 𝑡 < 𝑡

2
and

𝑛


(𝑢,V)(𝑡) < 0 for 𝑡 > 𝑡2.
Using arguments similar to those in the proof of Lemmas

4 and 5, we have the following.

Lemma 6. For each (𝑢, V) ∈ 𝑋 \ {(0, 0)} with 𝑏(𝑢, V) > 0, one
has 𝑛
(𝑢,V)(𝑡2(𝑢, V)) > 𝑠𝑐(𝑢, V) provided (51)-(52) hold.

Lemma 7. Suppose that (51)-(52) hold. Then, for each (𝑢, V) ∈
𝑋 \ {(0, 0)} with 𝑏(𝑢, V) > 0, one has the following.

(i) If 𝑐(𝑢, V) ≤ 0, then there is unique 𝑡− ∈ (𝑡
2
,∞) such

that 𝐽(𝑡𝑢, 𝑡V) is increasing on (0, 𝑡−) and decreasing on
(𝑡
−
,∞). Moreover (𝑡−𝑢, 𝑡−V) ∈ N− and

𝐽 (𝑡
−
𝑢, 𝑡
−V) = sup

𝑡≥0

𝐽 (𝑡𝑢, 𝑡V) . (71)

(ii) If 𝑐(𝑢, V) > 0, then there are 𝑡+ and 𝑡− with 0 < 𝑡+ < 𝑡
2

< 𝑡
− such that 𝐽(𝑡𝑢, 𝑡V) is decreasing on (0, 𝑡+), increas-

ing on (𝑡
+
, 𝑡
−
), and decreasing on (𝑡

−
,∞). Moreover

(𝑡
+
𝑢, 𝑡
+V) ∈ N+, (𝑡−𝑢, 𝑡−V) ∈ N−, and

𝐽 (𝑡
+
𝑢, 𝑡
+V) = inf

0≤𝑡≤𝑡
−

𝐽 (𝑡𝑢, 𝑡V) ,

𝐽 (𝑡
−
𝑢, 𝑡
−V) = sup

𝑡≥𝑡
+

𝐽 (𝑡𝑢, 𝑡V) .
(72)

3. Existence of Nonzero Solutions

In this section, we will give simple proofs of the existence of
two nonzero weak solutions, one inN+ and one inN−.

Proposition 8. Suppose that (25)-(26) and (51)-(52) hold.
Then there exists a minimizer (𝑢

+

0
, V+
0
) of 𝐽 on N+ and

(𝑢
+

0
, V+
0
) ̸≡ (0, 0).

Proof. Since 𝐽 is bounded below on N and so on N+, there
exists a minimizing sequence {(𝑢

𝑛
, V
𝑛
)} ⊂ N+ such that

lim
𝑛→∞

𝐽 (𝑢
𝑛
, V
𝑛
) = inf
(𝑢,V)∈N+

𝐽 (𝑢, V) . (73)

Since 𝐽 is coercive, {(𝑢
𝑛
, V
𝑛
)} is bounded in 𝑋. Thus

we may assume, without loss of generality, that (𝑢
𝑛
, V
𝑛
) ⇀

(𝑢
+

0
, V+
0
) weakly in𝑋. By (H

3
),

lim
𝑛→∞

𝑏 (𝑢
𝑛
, V
𝑛
) = 𝑏 (𝑢

+

0
, V+
0
) ,

lim
𝑛→∞

𝑐 (𝑢
𝑛
, V
𝑛
) = 𝑐 (𝑢

+

0
, V+
0
) .

(74)

Since (𝑢
𝑛
, V
𝑛
) ∈ N+, we can infer from (18) that

(𝑝 − 𝑠)
𝑢𝑛



𝑝

𝑝
+ (𝑞 − 𝑠)

V𝑛


𝑞

𝑞
> (𝑟 − 𝑠) 𝑟𝑏 (𝑢𝑛, V𝑛) . (75)

Then

𝐽 (𝑢
𝑛
, V
𝑛
)

= (
1

𝑝
−
1

𝑠
)
𝑢𝑛



𝑝

𝑝
+ (

1

𝑞
−
1

𝑠
)
V𝑛



𝑞

𝑞

− (
1

𝑟
−
1

𝑠
) 𝑟𝑏 (𝑢

𝑛
, V
𝑛
) < (

1

𝑝
−
1

𝑠
)
𝑢𝑛



𝑝

𝑝

+ (
1

𝑞
−
1

𝑠
)
V𝑛



𝑞

𝑞
+
1

𝑟𝑠
((𝑝 − 𝑠)

𝑢𝑛


𝑝

𝑝
+ (𝑞 − 𝑠) ‖V‖𝑞

𝑞
)

= −
(𝑟 − 𝑝) (𝑝 − 𝑠)

𝑟𝑝𝑠

𝑢𝑛


𝑝

𝑝
−
(𝑟 − 𝑞) (𝑞 − 𝑠)

𝑟𝑞𝑠

V𝑛


𝑞

𝑞
< 0.

(76)

This implies

lim
𝑛→∞

𝐽 (𝑢
𝑛
, V
𝑛
) = inf
(𝑢,V)∈N+

𝐽 (𝑢, V) < 0. (77)

Notice that

𝐽 (𝑢
𝑛
, V
𝑛
)

= (
1

𝑝
−
1

𝑟
)
𝑢𝑛



𝑝

𝑝
+ (

1

𝑞
−
1

𝑟
)
V𝑛



𝑞

𝑞
− (

1

𝑠
−
1

𝑟
) 𝑠𝑐 (𝑢

𝑛
, V
𝑛
)

(78)

and, letting 𝑛 → +∞, we obtain 𝑐(𝑢
+

0
, V+
0
) > 0. Hence

(𝑢
+

0
, V+
0
) ̸≡ (0, 0).

Now we prove that (𝑢
𝑛
, V
𝑛
) → (𝑢

+

0
, V+
0
) strongly in 𝑋.

Suppose otherwise; then
𝑢
+

0



𝑝

𝑝
+
V
+

0



𝑞

𝑞
< lim inf
𝑛→∞

(
𝑢𝑛



𝑝

𝑝
+
V𝑛



𝑞

𝑞
) . (79)

Let 𝑡
1
(𝑢
𝑛
, V
𝑛
) be the unique solution of𝑚

(𝑢
𝑛
,V
𝑛
)
(𝑡) = 0 and

let 𝑡
1
(𝑢
+

0
, V+
0
) be the unique solution of 𝑚

(𝑢
+

0
,V+
0
)
(𝑡) = 0, where

𝑚
(𝑢,V)(𝑡) is defined by (47). Since (𝑢𝑛, V𝑛) ∈ N+, we have from

(19) that

(𝑟 − 𝑠) 𝑠𝑐 (𝑢𝑛, V𝑛) > (𝑟 − 𝑝)
𝑢𝑛



𝑝

𝑝
+ (𝑟 − 𝑞)

V𝑛


𝑞

𝑞
(80)

and so𝑚
(𝑢
𝑛
,V
𝑛
)
(1) > 0. Thus 𝑡

1
(𝑢
𝑛
, V
𝑛
) > 1.
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Since 𝑐(𝑢+
0
, V+
0
) > 0, it follows from Lemma 5 that there is

unique 𝑡+
0
∈ (0, 𝑡

1
(𝑢
+

0
, V+
0
)) such that

(𝑡
+

0
𝑢
+

0
, 𝑡
+

0
V+
0
) ∈ N

+
,

𝐽 (𝑡
+

0
𝑢
+

0
, 𝑡
+

0
V+
0
) = inf
0≤𝑡≤𝑡

1(𝑢
+

0
,V+
0 )

𝐽 (𝑡𝑢, 𝑡V) .
(81)

From (79), we have

0 = Φ (𝑡
+

0
𝑢
+

0
, 𝑡
+

0
V+
0
) < lim inf
𝑛→∞

Φ(𝑡
+

0
𝑢
𝑛
, 𝑡
+

0
V
𝑛
) . (82)

This implies Φ(𝑡+
0
𝑢
𝑛
, 𝑡
+

0
V
𝑛
) > 0 for 𝑛 sufficiently large.

Since 𝑚
(𝑢
𝑛
,V
𝑛
)
(𝑡) is increasing on (0, 𝑡

1
(𝑢
𝑛
, V
𝑛
)) and so on

(0, 1), Φ(𝑡𝑢
𝑛
, 𝑡V
𝑛
) is also increasing on (0, 1).

In view of Φ(𝑢
𝑛
, V
𝑛
) = 0 and Φ(𝑡

+

0
𝑢
𝑛
, 𝑡
+

0
V
𝑛
) > 0 for 𝑛

sufficiently large, we deduce that 𝑡+
0
> 1 and so

𝐽 (𝑡
+

0
𝑢
+

0
, 𝑡
+

0
V+
0
) < 𝐽 (𝑢

+

0
, V+
0
) < lim
𝑛→∞

𝐽 (𝑢
𝑛
, V
𝑛
) , (83)

a contradiction. Hence (𝑢
𝑛
, V
𝑛
) → (𝑢

+

0
, V+
0
) strongly in 𝑋.

This implies 𝐽(𝑢
𝑛
, V
𝑛
) → 𝐽(𝑢

+

0
, V+
0
) as 𝑛 → ∞. Thus (𝑢+

0
, V+
0
)

is a minimizer for 𝐽 onN+.

Proposition 9. Suppose that (25)-(26) and (51)-(52) hold.
Then there exists a minimizer (𝑢

−

0
, V−
0
) of 𝐽 in N− and

(𝑢
−

0
, V−
0
) ̸≡ (0, 0).

Proof. Similarly as the proof of Proposition 8, there exists a
minimizing sequence {(𝑢

𝑛
, V
𝑛
)} ⊂ N− and (𝑢−

0
, V−
0
) ∈ 𝑋 such

that

lim
𝑛→∞

𝐽 (𝑢
𝑛
, V
𝑛
) = inf
(𝑢,V)∈N−

𝐽 (𝑢, V) ,

(𝑢
𝑛
, V
𝑛
) ⇀ (𝑢

−

0
, V−
0
) weakly in𝑋,

𝑏 (𝑢
𝑛
, V
𝑛
) → 𝑏 (𝑢

−

0
, V−
0
) , 𝑐 (𝑢

𝑛
, V
𝑛
) → 𝑐 (𝑢

−

0
, V−
0
)

strongly in𝑋.

(84)

Since (𝑢
𝑛
, V
𝑛
) ∈ N−, we can infer from (18) and (6) that

(𝑝 − 𝑠)
𝑢𝑛



𝑝

𝑝
+ (𝑞 − 𝑠)

V𝑛


𝑞

𝑞
< (𝑟 − 𝑠) 𝑟𝑏 (𝑢𝑛, V𝑛)

≤ (𝑟 − 𝑠) 𝑑1 (
𝑢𝑛



𝑟

𝑝
+
V𝑛



𝑟

𝑞
) .

(85)

Then either

(𝑝 − 𝑠)
𝑢𝑛



𝑝

𝑝
< (𝑟 − 𝑠) 𝑑1

𝑢𝑛


𝑟

𝑝
(86)

or

(𝑞 − 𝑠)
V𝑛



𝑞

𝑞
< (𝑟 − 𝑠) 𝑑1

V𝑛


𝑟

𝑞
(87)

is satisfied. That is to say, either ‖𝑢
𝑛
‖
𝑝
> 𝑢
0
or ‖V
𝑛
‖
𝑞
> V
0
is

satisfied, where 𝑢
0
and V
0
are defined in Lemma 3. Hence, for

all 𝑛, we obtain from (85) that

(𝑟 − 𝑠) 𝑟𝑏 (𝑢𝑛, V𝑛) > min {(𝑝 − 𝑠) 𝑢𝑝
0
, (𝑞 − 𝑠) V𝑞

0
} . (88)

Letting 𝑛 → +∞, we get that

(𝑟 − 𝑠) 𝑟𝑏 (𝑢
−

0
, V−
0
) ≥ min {(𝑝 − 𝑠) 𝑢𝑝

0
, (𝑞 − 𝑠) V𝑞

0
} > 0. (89)

Hence 𝑏(𝑢−
0
, V−
0
) > 0 and so (𝑢−

0
, V−
0
) ̸≡ (0, 0).

Now we prove that (𝑢
𝑛
, V
𝑛
) → (𝑢

−

0
, V−
0
) strongly in 𝑋.

Suppose on the contrary; then
𝑢
−

0



𝑝

𝑝
+
V
−

0



𝑞

𝑞
< lim inf
𝑛→∞

(
𝑢𝑛



𝑝

𝑝
+
V𝑛



𝑞

𝑞
) . (90)

Let 𝑡
2
(𝑢
𝑛
, V
𝑛
) be the unique solution of 𝑛

(𝑢
𝑛
,V
𝑛
)
(𝑡) = 0 and

let 𝑡
2
(𝑢
−

0
, V−
0
) be the unique solution of 𝑛

(𝑢
−

0
,V−
0
)
(𝑡) = 0, where

𝑛
(𝑢,V)(𝑡) is defined by (69).

By Lemma 7, there is unique 𝑡−
0
> 𝑡
2
(𝑢
−

0
, V−
0
) such that

(𝑡
−

0
𝑢
−

0
, 𝑡
−

0
V−
0
) ∈ N−. In view of (90), we infer that

lim inf
𝑛→∞

Φ(𝑡
−

0
𝑢
𝑛
, 𝑡
−

0
V
𝑛
) > Φ (𝑡

−

0
𝑢
−

0
, 𝑡
−

0
V−
0
) = 0. (91)

This implies Φ(𝑡−
0
𝑢
𝑛
, 𝑡
−

0
V
𝑛
) > 0 for 𝑛 sufficiently large.

Since (𝑢
𝑛
, V
𝑛
) ∈ N−, Φ(𝑢

𝑛
, V
𝑛
) = 0, and it is clear from

Lemmas 5 and 7 that 𝐽(𝑡𝑢, 𝑡V) is increasing on (𝑡−
0
, 1); that is,

𝐽(𝑡
−

0
𝑢
𝑛
, 𝑡
−

0
V
𝑛
) < 𝐽(𝑢

𝑛
, V
𝑛
).

Thus
𝐽 (𝑡
−

0
𝑢
−

0
, 𝑡
−

0
V−
0
) < lim
𝑛→∞

𝐽 (𝑡
−

0
𝑢
𝑛
, 𝑡
−

0
V
𝑛
) ≤ lim
𝑛→∞

𝐽 (𝑢
𝑛
, V
𝑛
) , (92)

which is a contradiction. Hence (𝑢
𝑛
, V
𝑛
) → (𝑢

−

0
, V−
0
) strongly

in 𝑋. This implies 𝐽(𝑢
𝑛
, V
𝑛
) → 𝐽(𝑢

−

0
, V−
0
) as 𝑛 → ∞. Thus

(𝑢
−

0
, V−
0
) is a minimizer for 𝐽 onN−.

By Propositions 8 and 9, we can prove our main result
read as follows.

Theorem 10. Problem (3) has at least two solutions (𝑢+
0
, V+
0
)

and (𝑢−
0
, V−
0
) such that (𝑢±

0
, V±
0
) ̸≡ (0, 0) if (25), (26), (51), and

(52) are satisfied.

Proof. By Propositions 8 and 9, there exist (𝑢+
0
, V+
0
) ∈ N+

and (𝑢−
0
, V−
0
) ∈ N− such that 𝐽(𝑢+

0
, V+
0
) = inf

(𝑢,V)∈N+𝐽(𝑢, V),
𝐽(𝑢
−

0
, V−
0
) = inf

(𝑢,V)∈N−𝐽(𝑢, V), and (𝑢
±

0
, V±
0
) ̸= 0. By Lemma 2,

(𝑢
±

0
, V±
0
) are critical points of 𝐽 on 𝑋 and hence are weak

solutions of (3).

Remark 11. Inequalities (25), (26), (51), and (52) can be
fulfilled provided that 𝑑

1
or 𝑑
2
is sufficiently small.

4. Applications

In this section, we give some applications of Theorem 10.
(I) We consider the multiplicity of nonnegative solutions

for the following (𝑝, 𝑞)-Laplacian system with nonlinear
boundary conditions:

−Δ
𝑝
𝑢 + |𝑢|

𝑝−2
𝑢 =

𝛼

𝛼 + 𝛽
𝑓 (𝑥) |𝑢|

𝛼−2
𝑢|V|𝛽, in Ω,

−Δ
𝑞
V + |V|𝑞−2V =

𝛽

𝛼 + 𝛽
𝑓 (𝑥) |𝑢|

𝛼
|V|𝛽−2V, in Ω,

𝜕𝑢

𝜕𝑛
= 𝜆𝑔 (𝑥) |𝑢|

𝛾−2
𝑢,

𝜕V
𝜕𝑛

= 𝜇ℎ (𝑥) |V|𝛾−2V, on 𝜕Ω,

(93)
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where 𝛼, 𝛽, 𝛾 > 1,Ω ⊂ R𝑁 is a bounded domain with smooth
boundary, 𝜆, 𝜇 are parameters in R \ {0}, and the weight
functions 𝑓 ∈ 𝐶(Ω) and 𝑔, ℎ ∈ 𝐶(𝜕Ω) satisfy the following
condition:

(A
1
) 𝑓
+
= max{𝑓, 0} ̸≡ 0, 𝑔± = max{±𝑔, 0} ̸≡ 0, and

ℎ
±
= max{±ℎ, 0} ̸≡ 0.
We consider problem (93) in the framework of the

Sobolev space 𝑋 = 𝑊
1,𝑝
(Ω) × 𝑊

1,𝑞
(Ω). A pair of functions

(𝑢, V) ∈ 𝑋 is said to be a weak solution of problem (93) if

∫
Ω

(|∇𝑢|
𝑝−2

∇𝑢∇𝜙
1
+ |𝑢|
𝑝−2

𝑢𝜙
1
) 𝑑𝑥 − 𝜆∫

𝜕Ω

𝑔|𝑢|
𝛾−2

𝑢𝜙
1
𝑑𝑠

−
𝛼

𝛼 + 𝛽
∫
Ω

𝑓|𝑢|
𝛼−2

𝑢|V|𝛽𝜙1𝑑𝑥,

∫
Ω

(|∇V|𝑞−2∇V∇𝜙2 + |V|
𝑞−2V𝜙
2
) 𝑑𝑥 − 𝜇∫

𝜕Ω

ℎ|V|𝛾−2V𝜙2𝑑𝑠

−
𝛽

𝛼 + 𝛽
∫
Ω

𝑓|𝑢|
𝛼
|V|𝛽−2V𝜙2𝑑𝑥

(94)

hold for all (𝜙
1
, 𝜙
2
) ∈ 𝑋, where 𝑑𝑠 is the measure on the

boundary. In the following, two cases are considered.

Case 1 (2 < 𝛼 + 𝛽 < 𝑝 ≤ 𝑞 < 𝛾 < 𝑝
∗
(𝑝
∗
= (𝑁 − 1)𝑝/(𝑁 − 𝑝)

if𝑁 > 𝑝, 𝑝
∗
= ∞ if𝑁 ≤ 𝑝)). Let 𝛼 + 𝛽 = 𝑠, 𝛾 = 𝑟. Then (H

1
)

is satisfied.
For all (𝑢, V), (𝜙

1
, 𝜙
2
) ∈ 𝑋, we define potential operators

𝐵, 𝐶 : 𝑋 → 𝑋
∗ given by

⟨𝐵 (𝑢, V) , (𝜙1, 𝜙2)⟩ = 𝜆∫
𝜕Ω

𝑔|𝑢|
𝑟−2
𝑢𝜙
1
𝑑𝑠

+ 𝜇∫
𝜕Ω

ℎ|V|𝑟−2V𝜙2𝑑𝑠,

⟨𝐶 (𝑢, V) , (𝜙1, 𝜙2)⟩ =
𝛼

𝛼 + 𝛽
∫
Ω

𝑓|𝑢|
𝛼−2

𝑢|V|𝛽𝜙1𝑑𝑥

+
𝛽

𝛼 + 𝛽
∫
Ω

𝑓|𝑢|
𝛼
|V|𝛽−2V𝜙2𝑑𝑥.

(95)

Then we have

𝑟𝑏 (𝑢, V) = 𝜆∫
𝜕Ω

𝑔|𝑢|
𝑟
𝑑𝑠 + 𝜇∫

𝜕Ω

ℎ|V|𝑟𝑑𝑠,

𝑠𝑐 (𝑢, V) = ∫
Ω

𝑓|𝑢|
𝛼
|V|𝛽𝑑𝑥.

(96)

By assumption (A
1
), we have (H

2
) is satisfied.

It is clear that the corresponding energy functional of (93)
is defined by

𝐽 (𝑢, V) =
1

𝑝
‖𝑢‖
𝑝

𝑝
+
1

𝑞
‖V‖𝑞
𝑞
− 𝑏 (𝑢, V) − 𝑐 (𝑢, V) . (97)

Let 𝑆
𝜎,𝜏

and 𝐶
𝜎,𝜏

be the best Sobolev constant for the
embedding of 𝑊1,𝜏(Ω ) → 𝐿

𝜎
(Ω) for 1 ≤ 𝜎 < 𝜏

∗ and the
best Sobolev trace constant for the embedding of𝑊1,𝜏(Ω) →

𝐿
𝜎
(𝜕Ω) for 1 ≤ 𝜎 < 𝜏

∗
, respectively, where 𝜏∗ = 𝜏𝑁/(𝑁 −

𝜏), 𝜏
∗
= 𝜏(𝑁 − 1)/(𝑁 − 𝜏) if 𝑁 > 𝜏 and 𝜏∗ = 𝜏

∗
= ∞ if

𝑁 ≤ 𝜏. Then we have
𝑟𝑏 (𝑢, V)

≤ |𝜆|
𝑔
∞

∫
𝜕Ω

|𝑢|
𝑟
𝑑𝑠 +

𝜇
 ‖ℎ‖∞ ∫

𝜕Ω

|V|𝑟𝑑𝑠

≤ |𝜆|
𝑔
∞

𝐶
𝑟

𝑟,𝑝
‖𝑢‖
𝑟

𝑝
+
𝜇
 ‖ℎ‖∞𝐶

𝑟

𝑟,𝑞
‖V‖𝑟
𝑞

≤ 𝑑
1
(‖𝑢‖
𝑟

𝑝
+ ‖V‖𝑟
𝑞
) ,

∫
Ω

𝑓|𝑢|
𝛼
|V|𝛽𝑑𝑥

≤
𝑓
+∞

∫
Ω

(
1

𝜃
|𝑢|
𝛼𝜃
+
1

𝜃
|V|𝛽𝜃



)𝑑𝑥

≤
𝑓
+∞

(
1

𝜃
𝑆
𝛼𝜃

𝛼𝜃,𝑝
‖𝑢‖
𝛼𝜃

𝑝
+
1

𝜃
𝑆
𝛽𝜃


𝛽𝜃

,𝑞
‖V‖𝛽𝜃



𝑞
)

≤ 𝑑
2
(‖𝑢‖
𝑠

𝑝
+ ‖V‖𝑠
𝑞
) ,

(98)

where 𝜃 = (𝛼 + 𝛽)/𝛼, 𝜃 = 𝜃/(𝜃 − 1) = (𝛼 + 𝛽)/𝛽, and

𝑑
1
= max {|𝜆| 𝑔

∞
𝐶
𝑟

𝑟,𝑝
,
𝜇
 ‖ℎ‖∞𝐶

𝑟

𝑟,𝑞
} ,

𝑑
2
= max{ 𝛼

𝛼 + 𝛽

𝑓
+∞

𝑆
𝑠

𝑠,𝑝
,

𝛽

𝛼 + 𝛽

𝑓
+∞

𝑆
𝑠

𝑠,𝑞
} .

(99)

Thus (H
3
)–(H
4
) are satisfied.

Case 2 (1 < 𝛾 < 𝑝 ≤ 𝑞 < 𝛼 + 𝛽 < 𝑝
∗). Let 𝛼 + 𝛽 = 𝑟, 𝛾 = 𝑠.

Then (H
1
) is satisfied.

For all (𝑢, V), (𝜙
1
, 𝜙
2
) ∈ 𝑋, we define potential operators

𝐵, 𝐶 : 𝑋 → 𝑋
∗ given by

⟨𝐵 (𝑢, V) , (𝜙1, 𝜙2)⟩ =
𝛼

𝛼 + 𝛽
∫
Ω

𝑓|𝑢|
𝛼−2

𝑢|V|𝛽𝜙1𝑑𝑥

+
𝛽

𝛼 + 𝛽
∫
Ω

𝑓|𝑢|
𝛼
|V|𝛽−2V𝜙2𝑑𝑥,

⟨𝐶 (𝑢, V) , (𝜙1, 𝜙2)⟩ = 𝜆∫
𝜕Ω

𝑔|𝑢|
𝑠−2
𝑢𝜙
1
𝑑𝑠

+ 𝜇∫
𝜕Ω

ℎ|V|𝑠−2V𝜙2𝑑𝑠.

(100)

Similarly as before, we have

𝑟𝑏 (𝑢, V) = ∫
Ω

𝑓|𝑢|
𝛼
|V|𝛽𝑑𝑥 ≤ 𝑑1 (‖𝑢‖

𝑟

𝑝
+ ‖V‖𝑟
𝑞
) ,

𝑠𝑐 (𝑢, V) = 𝜆∫
𝜕Ω

𝑔|𝑢|
𝑠
𝑑𝑠 + 𝜇∫

𝜕Ω

ℎ|V|𝑠𝑑𝑠 ≤ 𝑑2 (‖𝑢‖
𝑠

𝑝
+ ‖V‖𝑠
𝑞
) ,

(101)

where

𝑑
1
= max{ 𝛼

𝛼 + 𝛽

𝑓
+∞

𝑆
𝑟

𝑟,𝑝
,

𝛽

𝛼 + 𝛽

𝑓
+∞

𝑆
𝑟

𝑟,𝑞
} ,

𝑑
2
= max {|𝜆| 𝑔

∞
𝐶
𝑠

𝑠,𝑝
,
𝜇
 ‖ℎ‖∞𝐶

𝑠

𝑠,𝑞
} .

(102)

Thus (H
2
)–(H
4
) are satisfied.
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By applyingTheorem 10, we obtain the following.

Theorem 12. If (i) 2 < 𝛼 + 𝛽 < 𝑝 ≤ 𝑞 < 𝛾 < 𝑝
∗
or (ii)

1 < 𝛾 < 𝑝 ≤ 𝑞 < 𝛼 + 𝛽 < 𝑝
∗ is satisfied, then there exists

𝐶
0
> 0 such that, for |𝜆| + |𝜇| < 𝐶

0
, system (93) has at least

two nonnegative solutions (𝑢+
0
, V+
0
) in N+ and (𝑢−

0
, V−
0
) in N−

such that 𝑢±
0

̸≡ 0, V±
0

̸≡ 0.

Proof. Notice that (25)-(26) and (51)-(52) are satisfied pro-
vided 𝐶

0
is sufficiently small; we obtain all assumptions of

Theorem 10 which are satisfied. Thus, by Theorem 10, there
exist at least two solutions (𝑢+

0
, V+
0
) ∈ N+ and (𝑢−

0
, V−
0
) ∈ N−.

Moreover, since 𝐽(𝑢±
0
, V±
0
) = 𝐽(|𝑢

±

0
|, |V±
0
|) and (|𝑢

±

0
|, |V±
0
|) ∈

N±, we may assume 𝑢±
0

≥ 0, V±
0

≥ 0. In the proof of
Propositions 8 and 9, we have proved that 𝑐(𝑢+

0
, V+
0
) > 0 and

𝑏(𝑢
−

0
, V−
0
) > 0, respectively; thus 𝑢+

0
̸≡ 0, V+
0

̸≡ 0, 𝑢
−

0
̸≡

0, V−
0

̸≡ 0.

(II)We consider themultiplicity of nonnegative solutions
for the following (𝑝, 𝑞)-Laplacian system with Dirichlet
boundary conditions:

− Δ
𝑝
𝑢 + |𝑢|

𝑝−2
𝑢

= 𝜆𝑓 (𝑥) |𝑢|
𝛾−2

𝑢 +
𝛼

𝛼 + 𝛽
ℎ (𝑥) |𝑢|

𝛼−2
𝑢|V|𝛽, in Ω,

− Δ
𝑞
V + |V|𝑞−2V

= 𝜇𝑔 (𝑥) |V|𝛾−2V +
𝛽

𝛼 + 𝛽
ℎ (𝑥) |𝑢|

𝛼
|V|𝛽−2V, in Ω,

𝑢 = V = 0, on 𝜕Ω,

(103)

where 𝛼, 𝛽, 𝛾 > 1,Ω ⊂ R𝑁 is a bounded domain with smooth
boundary, 𝜆, 𝜇 are parameters in R \ {0}, and the weight
functions 𝑓, 𝑔, ℎ ∈ 𝐶(Ω) satisfy the following condition:

(A
2
) 𝑓± = max{±𝑓, 0} ̸≡ 0, 𝑔± = max{±𝑔, 0} ̸≡ 0, and

ℎ
+
= max{ℎ, 0} ̸≡ 0.
We consider problem (103) in the framework of the

Sobolev space𝑋 = 𝑊
1,𝑝

0
(Ω) ×𝑊

1,𝑞

0
(Ω).

A pair of functions (𝑢, V) ∈ 𝑋 is said to be a weak solution
of problem (103) if

∫
Ω

(|∇𝑢|
𝑝−2

∇𝑢∇𝜙
1
+ |𝑢|
𝑝−2

𝑢𝜙
1
) 𝑑𝑥 − 𝜆∫

Ω

𝑓|𝑢|
𝛾−2

𝑢𝜙
1
𝑑𝑥

−
𝛼

𝛼 + 𝛽
∫
Ω

ℎ|𝑢|
𝛼−2

𝑢|V|𝛽𝜙1𝑑𝑥,

∫
Ω

(|∇V|𝑞−2∇V∇𝜙2 + |V|
𝑞−2V𝜙
2
) 𝑑𝑥 − 𝜇∫

Ω

𝑔|V|𝛾−2V𝜙2𝑑𝑥

−
𝛽

𝛼 + 𝛽
∫
Ω

ℎ|𝑢|
𝛼
|V|𝛽−2V𝜙2𝑑𝑥

(104)

hold for all (𝜙
1
, 𝜙
2
) ∈ 𝑋.

If 2 < 𝛼 + 𝛽 < 𝑝 ≤ 𝑞 < 𝛾 < 𝑝
∗, let 𝛼 + 𝛽 = 𝑠, 𝛾 = 𝑟;

then, for all (𝑢, V), (𝜙
1
, 𝜙
2
) ∈ 𝑋, we define potential operators

𝐵, 𝐶 : 𝑋 → 𝑋
∗ given by

⟨𝐵 (𝑢, V) , (𝜙1, 𝜙2)⟩ = 𝜆∫
Ω

𝑓|𝑢|
𝑟−2
𝑢𝜙
1
𝑑𝑥

+ 𝜇∫
Ω

𝑔|V|𝑟−2V𝜙2𝑑𝑥,

⟨𝐶 (𝑢, V) , (𝜙1, 𝜙2)⟩ =
𝛼

𝛼 + 𝛽
∫
Ω

ℎ|𝑢|
𝛼−2

𝑢|V|𝛽𝜙1𝑑𝑥

+
𝛽

𝛼 + 𝛽
∫
Ω

ℎ|𝑢|
𝛼
|V|𝛽−2V𝜙2𝑑𝑥.

(105)

Thus we have

𝑟𝑏 (𝑢, V) = 𝜆∫
Ω

𝑓|𝑢|
𝑟
𝑑𝑥 + 𝜇∫

Ω

𝑔|V|𝑟𝑑𝑥,

𝑠𝑐 (𝑢, V) = ∫
Ω

ℎ|𝑢|
𝛼
|V|𝛽𝑑𝑥.

(106)

It is clear that the corresponding energy functional of
(103) is defined by

𝐽 (𝑢, V) =
1

𝑝
‖𝑢‖
𝑝

𝑝
+
1

𝑞
‖V‖𝑞
𝑞
− 𝑏 (𝑢, V) − 𝑐 (𝑢, V) . (107)

By standard Sobolev embedding theorems, we have

𝑟𝑏 (𝑢, V) ≤ 𝑑1 (‖𝑢‖
𝑟

𝑝
+ ‖V‖𝑟
𝑞
) ,

𝑠𝑐 (𝑢, V) = ∫
Ω

ℎ|𝑢|
𝛼
|V|𝛽𝑑𝑥 ≤ 𝑑2 (‖𝑢‖

𝑠

𝑝
+ ‖V‖𝑠
𝑞
) ,

(108)

where
𝑑
1
= max {|𝜆| 𝑓

∞
𝑆
𝑟

𝑟,𝑝
,
𝜇

𝑔
∞

𝑆
𝑟

𝑟,𝑞
} ,

𝑑
2
= max{ 𝛼

𝛼 + 𝛽

ℎ
+∞

𝑆
𝑠

𝑠,𝑝
,

𝛽

𝛼 + 𝛽

ℎ
+∞

𝑆
𝑠

𝑠,𝑞
} .

(109)

Thus (H
1
)–(H
4
) are satisfied.

If 1 < 𝛾 < 𝑝 ≤ 𝑞 < 𝛼 + 𝛽 < 𝑝
∗, let 𝛼 + 𝛽 = 𝑟, 𝛾 = 𝑠, and

define potential operators 𝐵, 𝐶 : 𝑋 → 𝑋
∗ given by

⟨𝐵 (𝑢, V) , (𝜙1, 𝜙2)⟩

=
𝛼

𝛼 + 𝛽
∫
Ω

ℎ|𝑢|
𝛼−2

𝑢|V|𝛽𝜙1𝑑𝑥

+
𝛽

𝛼 + 𝛽
∫
Ω

ℎ|𝑢|
𝛼
|V|𝛽−2V𝜙2𝑑𝑥,

⟨𝐶 (𝑢, V) , (𝜙1, 𝜙2)⟩

= 𝜆∫
Ω

𝑓|𝑢|
𝑠−2
𝑢𝜙
1
𝑑𝑥 + 𝜇∫

Ω

𝑔|V|𝑠−2V𝜙2𝑑𝑥.

(110)

Similarly, we have

𝑟𝑏 (𝑢, V) = ∫
Ω

ℎ|𝑢|
𝛼
|V|𝛽𝑑𝑥 ≤ 𝑑1 (‖𝑢‖

𝑟

𝑝
+ ‖V‖𝑟
𝑞
) ,

𝑠𝑐 (𝑢, V) = 𝜆∫
Ω

𝑓|𝑢|
𝑠
𝑑𝑥 + 𝜇∫

Ω

𝑔|V|𝑠𝑑𝑥 ≤ 𝑑2 (‖𝑢‖
𝑠

𝑝
+ ‖V‖𝑠
𝑞
) ,

(111)
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where

𝑑
1
= max{ 𝛼

𝛼 + 𝛽

ℎ
+∞

𝑆
𝑟

𝑟,𝑝
,

𝛽

𝛼 + 𝛽

ℎ
+∞

𝑆
𝑟

𝑟,𝑞
} ,

𝑑
2
= max {|𝜆| 𝑓

∞
𝑆
𝑠

𝑠,𝑝
,
𝜇

𝑔
∞

𝑆
𝑠

𝑠,𝑞
} .

(112)

Thus (H
1
)–(H
4
) are satisfied.

Arguing as before, we obtain the following.

Theorem 13. If 2 < 𝛼 + 𝛽 < 𝑝 ≤ 𝑞 < 𝛾 < 𝑝
∗ or 1 < 𝛾 < 𝑝 ≤

𝑞 < 𝛼+𝛽 < 𝑝
∗, then there exists𝐶

0
> 0 such that, for |𝜆|+|𝜇| <

𝐶
0
, system (103) has at least two nonnegative solutions (𝑢+

0
, V+
0
)

inN+ and (𝑢−
0
, V−
0
) inN− such that 𝑢±

0
̸≡ 0, V±
0

̸≡ 0.

(III) Finally, we consider the multiplicity of nonnegative
solutions for the following (𝑝, 𝑞)-Laplacian system with
boundary conditions containing both convex and concave
nonlinearities:

−Δ
𝑝
𝑢 + |𝑢|

𝑝−2
𝑢 = 0, in Ω,

−Δ
𝑞
V + |V|𝑞−2V = 0, in Ω,

𝜕𝑢

𝜕𝑛
= 𝜆𝑓 (𝑥) |𝑢|

𝛾−2
𝑢 +

𝛼

𝛼 + 𝛽
ℎ (𝑥) |𝑢|

𝛼−2
𝑢|V|𝛽 on 𝜕Ω,

𝜕V
𝜕𝑛

= 𝜇𝑔 (𝑥) |V|𝛾−2V +
𝛽

𝛼 + 𝛽
ℎ (𝑥) |𝑢|

𝛼
|V|𝛽−2V, on 𝜕Ω,

(113)

where 𝛼, 𝛽, 𝛾 > 1,Ω ⊂ R𝑁 is a bounded domain with smooth
boundary, 𝜆, 𝜇 are parameters in R \ {0}, and the weight
functions 𝑓, 𝑔, ℎ ∈ 𝐶(𝜕Ω) satisfy the following condition:

(A
3
) 𝑓± = max{±𝑓, 0} ̸≡ 0, 𝑔± = max{±𝑔, 0} ̸≡ 0, and

ℎ
+
= max{ℎ, 0} ̸≡ 0.
We consider problem (113) in the framework of the

Sobolev space𝑋 = 𝑊
1,𝑝
(Ω) ×W1,𝑞(Ω).

If 2 < 𝛼+𝛽 < 𝑝 ≤ 𝑞 < 𝛾 < 𝑝
∗
, then we let 𝛼+𝛽 = 𝑠, 𝛾 = 𝑟,

and define potential operators 𝐵, 𝐶 : 𝑋 → 𝑋
∗ given by

⟨𝐵 (𝑢, V) , (𝜙1, 𝜙2)⟩ = 𝜆∫
𝜕Ω

𝑓|𝑢|
𝛾−2

𝑢𝜙
1
𝑑𝑠

+ 𝜇∫
𝜕Ω

𝑔|V|𝛾−2V𝜙2𝑑𝑠,

⟨𝐶 (𝑢, V) , (𝜙1, 𝜙2)⟩ =
𝛼

𝛼 + 𝛽
∫
𝜕Ω

ℎ|𝑢|
𝛼−2

𝑢|V|𝛽𝜙1𝑑𝑠

+
𝛽

𝛼 + 𝛽
∫
𝜕Ω

ℎ|𝑢|
𝛼
|V|𝛽−2V𝜙2𝑑𝑠,

(114)

for all (𝑢, V), (𝜙
1
, 𝜙
2
) ∈ 𝑋. By standard Sobolev embedding

theorems, we have

𝑟𝑏 (𝑢, V)

= 𝜆∫
𝜕Ω

𝑓|𝑢|
𝑟
𝑑𝑠 + 𝜇∫

𝜕Ω

𝑔|V|𝑟𝑑𝑠 ≤ 𝑑1 (‖𝑢‖
𝑟

𝑝
+ ‖V‖𝑟
𝑞
) ,

𝑠𝑐 (𝑢, V) = ∫
𝜕Ω

ℎ|𝑢|
𝛼
|V|𝛽𝑑𝑠 ≤ 𝑑2 (‖𝑢‖

𝑠

𝑝
+ ‖V‖𝑠
𝑞
) ,

(115)

where

𝑑
1
= max {|𝜆| 𝑓

∞
𝐶
𝑟

𝑟,𝑝
,
𝜇

𝑔
∞

𝐶
𝑟

𝑟,𝑞
} ,

𝑑
2
= max{ 𝛼

𝛼 + 𝛽

ℎ
+∞

𝐶
𝑠

𝑠,𝑝
,

𝛽

𝛼 + 𝛽

ℎ
+∞

𝐶
𝑠

𝑠,𝑞
} .

(116)

Thus (H
1
)–(H
4
) are satisfied.

If 1 < 𝛾 < 𝑝 ≤ 𝑞 < 𝛼+𝛽 < 𝑝
∗
, then we let 𝛼+𝛽 = 𝑟, 𝛾 = 𝑠,

and define potential operators 𝐵, 𝐶 : 𝑋 → 𝑋
∗ given by

⟨𝐵 (𝑢, V) , (𝜙1, 𝜙2)⟩ =
𝛼

𝛼 + 𝛽
∫
𝜕Ω

ℎ|𝑢|
𝛼−2

𝑢|V|𝛽𝜙1𝑑𝑠

+
𝛽

𝛼 + 𝛽
∫
𝜕Ω

ℎ|𝑢|
𝛼
|V|𝛽−2V𝜙2𝑑𝑠,

⟨𝐶 (𝑢, V) , (𝜙1, 𝜙2)⟩ = 𝜆∫
𝜕Ω

𝑓|𝑢|
𝛾−2

𝑢𝜙
1
𝑑𝑠

+ 𝜇∫
𝜕Ω

𝑔|V|𝛾−2V𝜙2𝑑𝑠,

(117)

for all (𝑢, V), (𝜙
1
, 𝜙
2
) ∈ 𝑋. By standard Sobolev embedding

theorems, we have

𝑟𝑏 (𝑢, V) = ∫
𝜕Ω

ℎ
𝑢|
𝛼 V|
𝛽
𝑑𝑠 ≤ 𝑑

1
(‖𝑢‖
𝑟

𝑝
+ ‖V‖𝑟
𝑞
) ,

𝑠𝑐 (𝑢, V) 𝜆∫
𝜕Ω

𝑓|𝑢|
𝑠
𝑑𝑠 + 𝜇∫

𝜕Ω

𝑔|V|𝑠𝑑𝑠

≤ 𝑑
2
(‖𝑢‖
𝑠

𝑝
+ ‖V‖𝑠
𝑞
) ,

(118)

where

𝑑
1
= max{ 𝛼

𝛼 + 𝛽

ℎ
+∞

𝐶
𝑟

𝑟,𝑝
,

𝛽

𝛼 + 𝛽

ℎ
+∞

𝐶
𝑟

𝑟,𝑞
} ,

𝑑
2
= max {|𝜆| 𝑓

∞
𝐶
𝑠

𝑠,𝑝
,
𝜇

𝑔
∞

𝐶
𝑠

𝑠,𝑞
} .

(119)

Thus (H
1
)–(H
4
) are satisfied.

Arguing as before, we obtain the following.
If 2 < 𝛼+𝛽 < 𝑝 ≤ 𝑞 < 𝛾 < 𝑝

∗
or 1 < 𝛾 < 𝑝 ≤ 𝑞 < 𝛼+𝛽 <

𝑝
∗
, then there exists 𝐶

0
> 0 such that, for |𝜆| + |𝜇| < 𝐶

0
,

system (113) has at least two nonnegative solutions (𝑢+
0
, V+
0
) in

N+ and (𝑢−
0
, V−
0
) inN− such that 𝑢±

0
̸≡ 0, V±
0

̸≡ 0.
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