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We employ Legendre-Galerkin spectral methods to solve state-constrained optimal control problems. The constraint on the state
variable is an integration form.We choose one-dimensional case to illustrate the techniques. Meanwhile, we investigate the explicit
formulae of constants within a posteriori error indicator.

1. Introduction

Spectral methods provide higher accurate approximations
with a relatively small number of unknowns and play increas-
ingly important roles in design optimization, engineering
design, and other scientific and engineering computations.
Gottlieb and Orszag [1] summarized the theories and appli-
cations of spectral methods. There have been extensive
researches on finite element methods for optimal control
problems, most of which focus on control-constrained prob-
lems; see [2–5]. The authors studied the optimal control
problems with the control constraint with spectral methods
in [6]. In applications of engineering, one cares more about
how to control the average value or 𝐿

2-norms of the state
variable. The authors [7] discussed state-constrained optimal
control problems with finite element methods. However,
there are few work on the state-constrained optimal control
problems with spectral methods.

In order to get a numerical solution with acceptable ac-
curacy, spectral methods only increase the degree of basis
when the error indicator is larger than the a posteriori error
indicator, while the finite element methods refine mesh-
es (see [8, 9]). There have been lots of papers on the
a posteriori error estimates for h-version finite element

methods but not for spectral methods. Guo [10] got a
reliable and efficient error indicator for 𝑝-version finite
element method in one dimension with a certain weight. The
authors [11] deduced a simple error indicator for spectral
Galerkinmethods. In [12], the authors investigated Legendre-
Galerkin spectral method for optimal control problems with
integral constraint on state. It is difficult to obtain optimal
a posteriori error indicators. Thus, if one gets the constants
within upper bound a posteriori error estimates, it is easy
to ensure the degree of polynomials to get an acceptable
accuracy.

In this paper, we employ Legendre-Galerkin spectral
methods to solve optimal control problems with state-
constrained case and calculate constants in upper bound of
the a posteriori error indicator, which can be used to decide
the least unknowns for acceptable accuracy. With the help
of auxiliary systems, we investigate explicit formulae of the
constants in the a posteriori error indicator.

The outline of this paper is as follows. In Section 2, the
model problem and its Legendre-Galerkin spectral approx-
imations are listed. In Section 3, the constants within the a
posteriori error indicator are investigated in detail and the
explicit formulae are obtained. The conclusions are given in
Section 4.
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2. A Model Problem and Its Legendre-Galerkin
Spectral Approximations

Throughout this paper we adopt the standard notations of
Sobolev spaces [13]. Let 𝐻

𝑚
(𝐼) be a Sobolev space on 𝐼 =

(−1, 1), 𝐿2(𝐼) = 𝐻
0
(𝐼) and 𝐻

1

0
(𝐼) = {V ∈ 𝐻

1
(𝐼) :

V = 0 on 𝜕𝐼}, and the corresponding norms are denoted
by ‖ ⋅ ‖

𝑚
, ‖ ⋅ ‖
0
, and ‖ ⋅ ‖

0,1
, respectively.This work focuses on

the Legendre polynomials, which are orthogonal polynomials
on [−1,1].

We concern the following distributed convex optimal
control problems with integral constraint on state:

(OCP)
{

{

{

min
𝑦∈𝐾

𝐽 (𝑢, 𝑦) =
1

2
∫
𝐼

(𝑦 − 𝑦
𝑑
)
2

+
𝛼

2
∫
𝐼

𝑢
2
,

s.t. − 𝑦
󸀠󸀠

= 𝑢 in 𝐼, 𝑦 = 0 on 𝜕𝐼, 𝑦 ∈ 𝐾,

(1)

where 𝑢 ∈ 𝑈 = 𝐿
2
(𝐼) is the control variable, 𝑦 ∈ 𝐾 = {𝑤 :

∫
𝐼
𝑤 ≥ 𝛾} ⊂ 𝐻

1

0
(𝐼) ≜ 𝑉 is the state, and 𝑦

𝑑
∈ 𝐿
2
(𝐼) is the

observation.
In order to assure the existence and regularity of the

solution, we assume that 𝛼 is a given positive constant and
𝑦
𝑑
is an infinitely smooth function. It is well known that the

problem (OCP) has a unique solution (see [3]).
We give some basic notations which will be used in the

sequel. Let

(V, 𝑤) = ∫
𝐼

V𝑤, ∀V, 𝑤 ∈ 𝐿
2
(𝐼) ,

𝑎 (V, 𝑤) = ∫
𝐼

V󸀠𝑤󸀠, ∀V, 𝑤 ∈ 𝐻
1

0
(𝐼) .

(2)

Hence, the state equation reduces to

𝑎 (𝑦, 𝑤) = (𝑢, 𝑤) , ∀𝑤 ∈ 𝐻
1

0
(𝐼) . (3)

Then (OCP) can be rewritten as finding (𝑢, 𝑦) such that

(P)

{

{

{

min
𝑦∈𝐾

𝐽 (𝑢, 𝑦) =
1

2
∫
𝐼

(𝑦 − 𝑦
𝑑
)
2

+
𝛼

2
∫
𝐼

𝑢
2
,

s.t. 𝑎 (𝑦 (𝑢) , 𝑤) = (𝑢, 𝑤) , ∀𝑤 ∈ 𝑉.

(4)

We recall the following optimal conditions of (P) (for details
please refer to [7]).

Lemma 1. The pair (𝑢, 𝑦) ∈ 𝑈 × 𝑉 is the optimal solution
of (P) if and only if there exists a unique pair (𝑝, 𝜆) ∈ 𝑉 ×

R1
−
(R1
−
≜ {𝑐 ∈ R1; 𝑐 ≤ 0}) such that

(𝑂𝐶𝑃 − 𝑂𝑃𝑇)

{{{{{

{{{{{

{

𝑎 (𝑦, 𝑤) = (𝑢, 𝑤) , ∀𝑤 ∈ 𝑉,

𝑎 (𝑞, 𝑝)

= (𝑦 − 𝑦
𝑑
, 𝑞) + 𝜆 (1, 𝑞) , ∀𝑞 ∈ 𝑉,

𝜆 (𝑤 − 𝑦) ≤ 0, ∀𝑤 ∈ 𝐾,

𝑝 + 𝛼𝑢 = 0.

(5)

Let P
𝑁
(𝐼) = {polynomials of degree ≤ 𝑁 on 𝐼} and let

𝑉
𝑁

= P
𝑁

∩ 𝐻
1

0
(𝐼). One prefers to choose appropriate bases

of 𝑉
𝑁

such that the resulting linear system is as simple as
possible. We denote by {𝐿

𝑗
}
𝑁

𝑗=0
the Legendre polynomial and

employ the following basis functions (see [14]):

𝑈
𝑁

= span {𝐿
0
(𝑥) , 𝐿

1
(𝑥) , . . . , 𝐿

𝑁
(𝑥)} ,

𝑉
𝑁

= span {𝜙
0
(𝑥) , 𝜙

1
(𝑥) , . . . , 𝜙

𝑁−2
(𝑥)} ,

(6)

where

𝜙
𝑖
(𝑥) = 𝑐

𝑖
(𝐿
𝑖
(𝑥) − 𝐿

𝑖+2
(𝑥)) , 𝑐

𝑖
=

1

√4𝑖 + 6

. (7)

For 1 ≤ 𝑗, 𝑘 ≤ 𝑁 − 2, we denote 𝑎
𝑗𝑘

= 𝑎(𝜙
𝑘
(𝑥), 𝜙
𝑗
(𝑥)) and

𝑏
𝑗𝑘

= (𝜙
𝑘
(𝑥), 𝜙
𝑗
(𝑥)). By simple calculations, these coefficients

satisfy

𝑎
𝑗𝑘

= {
1, 𝑘 = 𝑗,

0, 𝑘 ̸= 𝑗,

𝑏
𝑗𝑘

= 𝑏
𝑘𝑗

=

{{{{{

{{{{{

{

𝑐
𝑘
𝑐
𝑗
(

2

2𝑗 + 1
+

2

2𝑗 + 5
) , 𝑘 = 𝑗,

−𝑐
𝑘
𝑐
𝑗

2

2𝑘 + 1
, 𝑘 = 𝑗 + 2,

0, otherwise.

(8)

Then Legendre-Galerkin spectral approximations of (OCP)
can be read as finding (𝑢

𝑁
, 𝑦
𝑁
) such that

(P
𝑁
)

{

{

{

min
𝑦𝑁∈𝐾

𝐽 (𝑢
𝑁
, 𝑦
𝑁
) =

1

2
∫
𝐼

(𝑦
𝑁

− 𝑦
𝑑
)
2

+
𝛼

2
∫
𝐼

𝑢
2

𝑁
,

s.t. 𝑎 (𝑦
𝑁
, 𝑤
𝑁
) = (𝑢

𝑁
, 𝑤
𝑁
) , ∀𝑤

𝑁
∈ 𝑉
𝑁
.

(9)

The Legendre-Galerkin spectral approximations of (5) can be
read as follows.

Theorem 2. The pair (𝑢
𝑁
, 𝑦
𝑁
) ∈ 𝑈

𝑁
× 𝑉
𝑁

is the optimal
solution of (P𝑁) if and only if there exists a unique pair
(𝑝
𝑁
, 𝜆
𝑁
) ∈ 𝑉
𝑁

×R1
−
such that

(𝑂𝐶𝑃 − 𝑂𝑃𝑇)
𝑁

{{{{{{{{{

{{{{{{{{{

{

𝑎 (𝑦
𝑁
, V
𝑁
)

= (𝑢
𝑁
, V
𝑁
) , ∀V

𝑁
∈ 𝑉
𝑁
,

𝑎 (𝑞
𝑁
, 𝑝
𝑁
)

= (𝑦
𝑁

− 𝑦
𝑑
, 𝑞
𝑁
)

+𝜆
𝑁

(1, 𝑞
𝑁
) , ∀𝑞

𝑁
∈ 𝑉
𝑁
,

𝜆
𝑁

(1, 𝑤
𝑁

− 𝑦
𝑁
) ≤ 0, ∀𝑤

𝑁
∈ 𝐾
𝑁
,

𝛼𝑢
𝑁

+ 𝑝
𝑁

= 0.

(10)

3. Constants within the A Posteriori Error
Estimates

In this section, we calculate all constants within the a
posteriori error estimates. Here, we analyze the constant in
the Poincaré inequality.

For all V ∈ 𝑊
1,𝑝

0
(𝐼), 1 ≤ 𝑝 < ∞, we recall the Poincaré

inequality with 𝐿
2-norm as (see [15])

‖V‖0 ≤
|𝐼|

2

󵄩󵄩󵄩󵄩󵄩
V󸀠
󵄩󵄩󵄩󵄩󵄩0
. (11)
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Now, we are at the point to investigate all constants in
detail. We introduce an auxiliary state 𝑦(𝑢

𝑁
) ∈ 𝐻

1

0
(𝐼), which

satisfies

𝑎 (𝑦 (𝑢
𝑁
) , 𝑤) = (𝑢

𝑁
, 𝑤) , ∀𝑤 ∈ 𝐻

1

0
(𝐼) . (12)

Subtracting (12) from (3), we get

𝑎 (𝑦 − 𝑦 (𝑢
𝑁
) , 𝑤) = (𝑢 − 𝑢

𝑁
, 𝑤) , ∀𝑤 ∈ 𝐻

1

0
(𝐼) . (13)

Let 𝑤 = 𝑦(𝑢
𝑁
) − 𝑦 ∈ 𝐻

1

0
(𝐼). It is clear that

𝑎 (𝑦 (𝑢
𝑁
) − 𝑦, 𝑦 (𝑢

𝑁
) − 𝑦) = (𝑢

𝑁
− 𝑢, 𝑦 (𝑢

𝑁
) − 𝑦) . (14)

Then
󵄩󵄩󵄩󵄩󵄩
(𝑦 (𝑢
𝑁
) − 𝑦)

󸀠󵄩󵄩󵄩󵄩󵄩

2

0
≤

󵄩󵄩󵄩󵄩𝑢𝑁 − 𝑢
󵄩󵄩󵄩󵄩0

󵄩󵄩󵄩󵄩𝑦 (𝑢
𝑁
) − 𝑦

󵄩󵄩󵄩󵄩0

≤
|𝐼|

2

󵄩󵄩󵄩󵄩𝑢𝑁 − 𝑢
󵄩󵄩󵄩󵄩0

󵄩󵄩󵄩󵄩󵄩
(𝑦 (𝑢
𝑁
) − 𝑦)

󸀠󵄩󵄩󵄩󵄩󵄩0
,

(15)

which means

󵄩󵄩󵄩󵄩󵄩
(𝑦 (𝑢
𝑁
) − 𝑦)

󸀠󵄩󵄩󵄩󵄩󵄩0
≤

|𝐼|

2

󵄩󵄩󵄩󵄩𝑢𝑁 − 𝑢
󵄩󵄩󵄩󵄩0
. (16)

Hence
󵄩󵄩󵄩󵄩𝑦 (𝑢
𝑁
) − 𝑦

󵄩󵄩󵄩󵄩1

≤ (
󵄩󵄩󵄩󵄩󵄩
(𝑦 (𝑢
𝑁
) − 𝑦)

󸀠󵄩󵄩󵄩󵄩󵄩

2

0
+ (

|𝐼|

2
)

2
󵄩󵄩󵄩󵄩󵄩
(𝑦 (𝑢
𝑁
) − 𝑦)

󸀠󵄩󵄩󵄩󵄩󵄩

2

0
)

1/2

= (1 + (
|𝐼|

2
)

2

)

1/2

󵄩󵄩󵄩󵄩󵄩
(𝑦 (𝑢
𝑁
) − 𝑦)

󸀠󵄩󵄩󵄩󵄩󵄩0
.

(17)

Then

󵄩󵄩󵄩󵄩𝑦 (𝑢
𝑁
) − 𝑦

󵄩󵄩󵄩󵄩1
≤ (1 + (

|𝐼|

2
)

2

)

1/2

|𝐼|

2

󵄩󵄩󵄩󵄩𝑢𝑁 − 𝑢
󵄩󵄩󵄩󵄩0
. (18)

We denote by 𝑐
1
the constant in (18); that is,

𝑐
1
= (1 + (

|𝐼|

2
)

2

)

1/2

|𝐼|

2
. (19)

Similarly, we introduce an auxiliary state 𝑝(𝑢
𝑁
) ∈ 𝐻

1
(𝐼),

which satisfies

𝑎 (𝑞, 𝑝 (𝑢
𝑁
)) = (𝑦 (𝑢

𝑁
) − 𝑦
𝑑
, 𝑞) + 𝜆 (1, 𝑞) , ∀𝑞 ∈ 𝐻

1

0
(𝐼) .

(20)

Subtracting (20) from the continuous systems (5), we get

𝑎 (𝑝 − 𝑝 (𝑢
𝑁
) , 𝑤)

= (𝑦 − 𝑦 (𝑢
𝑁
) , 𝑤) + (𝜆 − 𝜆

𝑁
) (1, 𝑤) ,

∀𝑤 ∈ 𝐻
1

0
(𝐼) .

(21)

We select 𝜑 ∈ 𝐶
∞

0
(𝐼) which satisfies 𝜑 = 1, where 𝜑 ≜

∫
𝐼
𝜑/|𝐼| = 1 denotes the integral average on 𝐼 of the function

𝜑 and ‖𝜑‖
1

≤ 𝐶
𝜑
. Obviously, 𝑝 − 𝑝(𝑢

𝑁
)𝜑 ∈ 𝐶

∞

0
(𝐼). In fact,

𝑝 − 𝑝(𝑢
𝑁
) − 𝑝 − 𝑝(𝑢

𝑁
)𝜑 ∈ 𝐻

1

0
(𝐼). Then there hold

󵄩󵄩󵄩󵄩𝑝 − 𝑝 (𝑢
𝑁
)
󵄩󵄩󵄩󵄩

2

1

≤ (1 + (
|𝐼|

2
)

2

)
󵄨󵄨󵄨󵄨𝑝 − 𝑝 (𝑢

𝑁
)
󵄨󵄨󵄨󵄨

2

1

= (1 + (
|𝐼|

2
)

2

)𝑎 (𝑝 − 𝑝 (𝑢
𝑁
) , 𝑝 − 𝑝 (𝑢

𝑁
))

= (1 + (
|𝐼|

2
)

2

)

×{𝑎 (𝑝 − 𝑝 (𝑢
𝑁
)𝜑, 𝑝 − 𝑝 (𝑢

𝑁
))

+ (𝑦 − 𝑦 (𝑢
𝑁
) , 𝑝 − 𝑝 (𝑢

𝑁
) − 𝑝 − 𝑝 (𝑢

𝑁
)𝜑)}

≤ (1 + (
|𝐼|

2
)

2

)

×{
󵄨󵄨󵄨󵄨󵄨󵄨
𝑝 − 𝑝 (𝑢

𝑁
)
󵄨󵄨󵄨󵄨󵄨󵄨
⋅ (

𝜖
1

2

󵄨󵄨󵄨󵄨𝜑
󵄨󵄨󵄨󵄨

2

1
+

1

2𝜖
1

󵄨󵄨󵄨󵄨𝑝 − 𝑝 (𝑢
𝑁
)
󵄨󵄨󵄨󵄨

2

1
)

+
𝜖
2

2

󵄩󵄩󵄩󵄩𝑦 − 𝑦 (𝑢
𝑁
)
󵄩󵄩󵄩󵄩

2

0

+
1

𝜖
2

(
󵄩󵄩󵄩󵄩𝑝 − 𝑝 (𝑢

𝑁
)
󵄩󵄩󵄩󵄩

2

0
+
󵄨󵄨󵄨󵄨󵄨󵄨
𝑝 − 𝑝 (𝑢

𝑁
)
󵄨󵄨󵄨󵄨󵄨󵄨

2

⋅
󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩

2

0
)} ,

(22)

where we used the generalized Schwarz inequality, continu-
ous systems (5), and auxiliary equation (20). Let

(1 + (
|𝐼|

2
)

2

)

󵄨󵄨󵄨󵄨󵄨󵄨
𝑝 − 𝑝 (𝑢

𝑁
)
󵄨󵄨󵄨󵄨󵄨󵄨

2𝜖
1

= (1 + (
|𝐼|

2
)

2

)
1

𝜖
2

=
1

2
.

(23)

Then

𝜖
1
= (1 + (

|𝐼|

2
)

2

)
󵄨󵄨󵄨󵄨󵄨󵄨
𝑝 − 𝑝 (𝑢

𝑁
)
󵄨󵄨󵄨󵄨󵄨󵄨
, 𝜖

2
= 2(1 + (

|𝐼|

2
)

2

) .

(24)
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It is clear that (22) reduces to

󵄩󵄩󵄩󵄩𝑝 − 𝑝 (𝑢
𝑁
)
󵄩󵄩󵄩󵄩

2

1

≤ (1 + (
|𝐼|

2
)

2

)

×

{{

{{

{

1 + (|𝐼| /2)
2

2

󵄨󵄨󵄨󵄨󵄨󵄨
𝑝 − 𝑝 (𝑢

𝑁
)
󵄨󵄨󵄨󵄨󵄨󵄨

2

⋅
󵄨󵄨󵄨󵄨𝜑

󵄨󵄨󵄨󵄨

2

1

+

󵄨󵄨󵄨󵄨󵄨󵄨
𝑝 − 𝑝 (𝑢

𝑁
)
󵄨󵄨󵄨󵄨󵄨󵄨

2

2 (1 + (|𝐼| /2)
2
)

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩

2

0

+(1 + (
|𝐼|

2
)

2

)
󵄩󵄩󵄩󵄩𝑦 − 𝑦 (𝑢

𝑁
)
󵄩󵄩󵄩󵄩

2

0

}}

}}

}

+
1

2

󵄩󵄩󵄩󵄩𝑝 − 𝑝 (𝑢
𝑁
)
󵄩󵄩󵄩󵄩

2

1
.

(25)

Then

󵄩󵄩󵄩󵄩𝑝 − 𝑝 (𝑢
𝑁
)
󵄩󵄩󵄩󵄩

2

1

≤ 2(1 + (
|𝐼|

2
)

2

)

× {(1 + (
|𝐼|

2
)

2

)
󵄨󵄨󵄨󵄨󵄨󵄨
𝑝 − 𝑝 (𝑢

𝑁
)
󵄨󵄨󵄨󵄨󵄨󵄨

2

⋅
󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩

2

1

+(1 + (
|𝐼|

2
)

2

)
󵄩󵄩󵄩󵄩𝑦 − 𝑦 (𝑢

𝑁
)
󵄩󵄩󵄩󵄩

2

0
}

= 2(1 + (
|𝐼|

2
)

2

)

2

{
󵄨󵄨󵄨󵄨󵄨󵄨
𝑝 − 𝑝 (𝑢

𝑁
)
󵄨󵄨󵄨󵄨󵄨󵄨

2

⋅
󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩

2

1

+
󵄩󵄩󵄩󵄩𝑦 − 𝑦 (𝑢

𝑁
)
󵄩󵄩󵄩󵄩

2

0
} ,

(26)

where we used (1 + (|𝐼|/2)
2
)|𝑝 − 𝑝(𝑢

𝑁
)|
2

≥ (1/(1 + (|𝐼|/

2)
2
))|𝑝 − 𝑝(𝑢

𝑁
)|
2

.
Hence

󵄩󵄩󵄩󵄩𝑝 − 𝑝 (𝑢
𝑁
)
󵄩󵄩󵄩󵄩

2

1

≤ 2(1 + (
|𝐼|

2
)

2

)

2

× {
󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩

2

1
⋅
1

|𝐼|
(𝛼

󵄩󵄩󵄩󵄩𝑢 − 𝑢
𝑁

󵄩󵄩󵄩󵄩0
+
󵄩󵄩󵄩󵄩𝑝𝑁 − 𝑝 (𝑢

𝑁
)
󵄩󵄩󵄩󵄩0
)
2

+(1 + (
|𝐼|

2
)

2

)(
|𝐼|

2
)

2

󵄩󵄩󵄩󵄩𝑢 − 𝑢
𝑁

󵄩󵄩󵄩󵄩

2

0
}

= 2(1 + (
|𝐼|

2
)

2

)

2

× {[
2
󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩

2

1
𝛼
2

|𝐼|
+ (1 + (

|𝐼|

2
)

2

)(
|𝐼|

2
)

2

]

×
󵄩󵄩󵄩󵄩𝑢 − 𝑢

𝑁

󵄩󵄩󵄩󵄩

2

0
+

2
󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩

2

1

|𝐼|

󵄩󵄩󵄩󵄩𝑝𝑁 − 𝑝 (𝑢
𝑁
)
󵄩󵄩󵄩󵄩

2

0
}

= 2(1 + (
|𝐼|

2
)

2

)

2

max{
2
󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩

2

1
𝛼
2

|𝐼|
+ 𝑐
2

1
,
2
󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩

2

1

|𝐼|
}

× {
󵄩󵄩󵄩󵄩𝑢 − 𝑢

𝑁

󵄩󵄩󵄩󵄩

2

0
+
󵄩󵄩󵄩󵄩𝑝𝑁 − 𝑝 (𝑢

𝑁
)
󵄩󵄩󵄩󵄩

2

0
} ,

(27)

which means that

󵄩󵄩󵄩󵄩𝑝 − 𝑝 (𝑢
𝑁
)
󵄩󵄩󵄩󵄩1

≤ (2(1 + (
|𝐼|

2
)

2

)

2

×max{

2𝐶
2

𝜑
𝛼
2

|𝐼|
+ (1 + (

|𝐼|

2
)

2

)(
|𝐼|

2
)

2

,

2𝐶
2

𝜑

|𝐼|
})

1/2

× {
󵄩󵄩󵄩󵄩𝑢 − 𝑢

𝑁

󵄩󵄩󵄩󵄩0
+
󵄩󵄩󵄩󵄩𝑝𝑁 − 𝑝 (𝑢

𝑁
)
󵄩󵄩󵄩󵄩0
} .

(28)

Denote by 𝑐
2
the constant in (28).With simple calculation, we

have

𝑐
2
= √2(1 + (

|𝐼|

2
)

2

)

2

max{

2𝐶
2

𝜑
𝛼
2

|𝐼|
+ 𝑐
2

1
,

2𝐶
2

𝜑

|𝐼|
}. (29)

We select 𝜑 ∈ 𝐶
∞

0
(𝐼)which satisfies 𝜑 = 1 and ‖𝜑‖

1
≤ 𝐶
𝜑
.

For instance, 𝜑 = (3/2)(1 − 𝑥
2
), which satisfies

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩1

=
3

2

√
74

15
≜ 𝐶
𝜑
. (30)

Meanwhile,

(𝜆 − 𝜆
𝑁
, (𝜆 − 𝜆

𝑁
) 𝜑)

= (𝜆 − 𝜆
𝑁
)
2

∫
𝐼

𝜑 = (𝜆 − 𝜆
𝑁
)
2

|𝐼| =
󵄩󵄩󵄩󵄩𝜆 − 𝜆

𝑁

󵄩󵄩󵄩󵄩

2

0
.

(31)
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Hence
󵄩󵄩󵄩󵄩𝜆 − 𝜆

𝑁

󵄩󵄩󵄩󵄩

2

0

= (𝜆 − 𝜆
𝑁
, (𝜆 − 𝜆

𝑁
) 𝜑)

= 𝑎 ((𝜆 − 𝜆
𝑁
) 𝜑, 𝑝 − 𝑝 (𝑢

𝑁
))

− (𝑦 − 𝑦 (𝑢
𝑁
) , (𝜆 − 𝜆

𝑁
) 𝜑)

≤
󵄨󵄨󵄨󵄨𝜆 − 𝜆

𝑁

󵄨󵄨󵄨󵄨 {
󵄩󵄩󵄩󵄩󵄩
𝜑
󸀠󵄩󵄩󵄩󵄩󵄩0

⋅
󵄩󵄩󵄩󵄩󵄩
(𝑝 − 𝑝 (𝑢

𝑁
))
󸀠󵄩󵄩󵄩󵄩󵄩0

+
󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩0
⋅
󵄩󵄩󵄩󵄩𝑦 − 𝑦 (𝑢

𝑁
)
󵄩󵄩󵄩󵄩0
}

≤
𝜖
1

2

󵄨󵄨󵄨󵄨𝜆 − 𝜆
𝑁

󵄨󵄨󵄨󵄨

2

⋅
󵄩󵄩󵄩󵄩󵄩
𝜑
󸀠󵄩󵄩󵄩󵄩󵄩

2

0
+

1

2𝜖
1

󵄩󵄩󵄩󵄩󵄩
(𝑝 − 𝑝 (𝑢

𝑁
))
󸀠󵄩󵄩󵄩󵄩󵄩

2

0

+
𝜖
2

2

󵄨󵄨󵄨󵄨𝜆 − 𝜆
𝑁

󵄨󵄨󵄨󵄨

2

⋅
󵄩󵄩󵄩󵄩𝜑

󵄩󵄩󵄩󵄩

2

0
+

1

2𝜖
2

󵄩󵄩󵄩󵄩𝑦 − 𝑦 (𝑢
𝑁
)
󵄩󵄩󵄩󵄩

2

0

=
𝜖
1

2 |𝐼|

󵄩󵄩󵄩󵄩𝜆 − 𝜆
𝑁

󵄩󵄩󵄩󵄩

2

0

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩

2

1

+
1

2𝜖
1

(
󵄩󵄩󵄩󵄩󵄩
(𝑝 − 𝑝 (𝑢

𝑁
))
󸀠󵄩󵄩󵄩󵄩󵄩

2

0
+
󵄩󵄩󵄩󵄩𝑦 − 𝑦 (𝑢

𝑁
)
󵄩󵄩󵄩󵄩

2

0
) ,

(32)

where 𝜖
1
= 𝜖
2
= |𝐼|/‖𝜑‖

2

1
.

Thus

󵄩󵄩󵄩󵄩𝜆 − 𝜆
𝑁

󵄩󵄩󵄩󵄩

2

0
≤

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩

2

1

|𝐼|
{
󵄩󵄩󵄩󵄩󵄩
(𝑝 − 𝑝 (𝑢

𝑁
))
󸀠󵄩󵄩󵄩󵄩󵄩

2

0
+
󵄩󵄩󵄩󵄩𝑦 − 𝑦 (𝑢

𝑁
)
󵄩󵄩󵄩󵄩

2

0
}

≤

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩

2

1

|𝐼|
{
󵄩󵄩󵄩󵄩𝑝 − 𝑝 (𝑢

𝑁
)
󵄩󵄩󵄩󵄩

2

1
+
󵄩󵄩󵄩󵄩𝑦 − 𝑦 (𝑢

𝑁
)
󵄩󵄩󵄩󵄩

2

0
} .

(33)

With the constant 𝑐
2
, we infer that

󵄩󵄩󵄩󵄩𝜆 − 𝜆
𝑁

󵄩󵄩󵄩󵄩

2

0

≤

𝐶
2

𝜑

|𝐼|
{4(1 + (

|𝐼|

2
)

2

)

2

×max{

2𝐶
2

𝜑
𝛼
2

|𝐼|
+ (1 + (

|𝐼|

2
)

2

)(
|𝐼|

2
)

2

,

2𝐶
2

𝜑

|𝐼|
}

+(1 + (
|𝐼|

2
)

2

)(
|𝐼|

2
)

2

}

× {
󵄩󵄩󵄩󵄩𝑝𝑁 − 𝑝 (𝑢

𝑁
)
󵄩󵄩󵄩󵄩

2

0
+
󵄩󵄩󵄩󵄩𝑢 − 𝑢

𝑁

󵄩󵄩󵄩󵄩

2

0
}

=

𝐶
2

𝜑

|𝐼|
{2𝑐
2

2
+ 𝑐
2

1
} {

󵄩󵄩󵄩󵄩𝑝𝑁 − 𝑝 (𝑢
𝑁
)
󵄩󵄩󵄩󵄩

2

0
+
󵄩󵄩󵄩󵄩𝑢 − 𝑢

𝑁

󵄩󵄩󵄩󵄩

2

0
} .

(34)

Then
󵄩󵄩󵄩󵄩𝜆 − 𝜆

𝑁

󵄩󵄩󵄩󵄩0

≤

𝐶
2

𝜑

|𝐼|
{2𝑐
2

2
+ 𝑐
2

1
} {

󵄩󵄩󵄩󵄩𝑝𝑁 − 𝑝 (𝑢
𝑁
)
󵄩󵄩󵄩󵄩0

+
󵄩󵄩󵄩󵄩𝑢 − 𝑢

𝑁

󵄩󵄩󵄩󵄩0
} .

(35)

We denote by 𝑐
3
the constant in (35); that is,

𝑐
3
= √

𝐶
2

𝜑

|𝐼|
{2𝑐
2

2
+ 𝑐
2

1
}. (36)

We calculate the error of 𝑢 in 𝐿
2-norm as follows:

󵄩󵄩󵄩󵄩𝑢 − 𝑢
𝑁

󵄩󵄩󵄩󵄩

2

0

≤ (𝑝
𝑁

− 𝑝 (𝑢
𝑁
) , 𝑢 − 𝑢

𝑁
)

− (𝜆 − 𝜆
𝑁
, 𝑦
𝑁

− 𝑦 (𝑢
𝑁
))

≤
𝜖
1

2

󵄩󵄩󵄩󵄩𝑝𝑁 − 𝑝 (𝑢
𝑁
)
󵄩󵄩󵄩󵄩

2

0
+

1

2𝜖
1

󵄩󵄩󵄩󵄩𝑢 − 𝑢
𝑁

󵄩󵄩󵄩󵄩

2

0

+
1

2𝜖
2

󵄩󵄩󵄩󵄩𝑦𝑁 − 𝑦 (𝑢
𝑁
)
󵄩󵄩󵄩󵄩

2

0

+ 𝜖
2
⋅ 𝑐
2

3
{
󵄩󵄩󵄩󵄩𝑢 − 𝑢

𝑁

󵄩󵄩󵄩󵄩

2

0
+
󵄩󵄩󵄩󵄩𝑝𝑁 − 𝑝 (𝑢

𝑁
)
󵄩󵄩󵄩󵄩

2

0
}

= (
𝜖
1

2
+ 𝜖
2
⋅ 𝑐
2

3
)
󵄩󵄩󵄩󵄩𝑝𝑁 − 𝑝 (𝑢

𝑁
)
󵄩󵄩󵄩󵄩

2

0

+ (
1

2𝜖
1

+ 𝜖
2
⋅ 𝑐
2

3
)
󵄩󵄩󵄩󵄩𝑢 − 𝑢

𝑁

󵄩󵄩󵄩󵄩

2

0

+
1

2𝜖
2

󵄩󵄩󵄩󵄩𝑦𝑁 − 𝑦 (𝑢
𝑁
)
󵄩󵄩󵄩󵄩

2

0
.

(37)

Provided that 1/2𝜖
1
+ 𝜖
2
⋅ 𝑐
2

3
= 1/2, we get

󵄩󵄩󵄩󵄩𝑢 − 𝑢
𝑁

󵄩󵄩󵄩󵄩

2

0

≤ 2 (
𝜖
1

2
+ 𝜖
2
⋅ 𝑐
2

3
)
󵄩󵄩󵄩󵄩𝑝𝑁 − 𝑝 (𝑢

𝑁
)
󵄩󵄩󵄩󵄩

2

0

+
1

𝜖
2

󵄩󵄩󵄩󵄩𝑦𝑁 − 𝑦 (𝑢
𝑁
)
󵄩󵄩󵄩󵄩

2

0

= max{𝜖
1
+ 2𝜖
2
⋅ 𝑐
2

3
,
1

𝜖
2

} {
󵄩󵄩󵄩󵄩𝑝𝑁 − 𝑝 (𝑢

𝑁
)
󵄩󵄩󵄩󵄩

2

0

+
󵄩󵄩󵄩󵄩𝑦𝑁 − 𝑦 (𝑢

𝑁
)
󵄩󵄩󵄩󵄩

2

0
} .

(38)

Considering the item max{𝜖
1

+ 2𝜖
2

⋅ 𝑐
2

3
, 1/𝜖
2
} with the

constraint 1/2𝜖
1
+ 𝜖
2
⋅ 𝑐
2

3
= 1/2, we get

𝐹 (𝜖
1
) = max{𝜖

1
+ 1 −

1

𝜖
1

,
2𝑐
2

3
𝜖
1

𝜖
1
− 1

} . (39)

In fact, for ∀𝜖
1
> 1, the derivation of the following function

𝑓 (𝜖
1
) = 𝜖
1
+ 1 −

1

𝜖
1

−
2𝑐
2

3
𝜖
1

𝜖
1
− 1

(40)

is

𝑓
󸀠
(𝜖
1
) = 1 +

1

𝜖
2

1

+
2𝑐
2

3

(𝜖
1
− 1)
2
≥ 0. (41)
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Then we have 𝜖
0

1
= 2𝑐
2

3
+ 𝜖 > 1 and

lim
𝜖→0

𝑓 (𝜖
0

1
) = 0. (42)

Now, we are at the point to investigate

min𝐹 (𝜖
1
) . (43)

If 𝜖
1
= 𝜖
0

1
, we get

min𝐹 (𝜖
1
) = 𝜖
0

1
+ 1 −

1

𝜖
0

1

≤ 2𝑐
2

3
+ 𝜖 + 1. (44)

If 1 < 𝜖
1
< 𝜖
0

1
, 𝑓(𝜖
1
) < 0, we obtain

𝐹 (𝜖
1
) =

2𝑐
2

3
𝜖
1

𝜖
1
− 1

, 𝐹
󸀠
(𝜖
1
) = −

2𝑐
2

3

(𝜖
1
− 1)
2
< 0. (45)

Then

lim
𝜖
󸀠
→0

min𝐹 (𝜖
1
) = 2𝑐

2

3
(1 +

1

2𝑐
2

3
+ 𝜖 − 𝜖󸀠 − 1

) < 4𝑐
2

3
.

(46)

If 𝜖
1
> 𝜖
0

1
, 𝑓(𝜖
1
) > 0, we infer that

𝐹 (𝜖
1
) = 𝜖
1
+ 1 −

1

𝜖
1

, 𝐹
󸀠
(𝜖
1
) = 1 +

1

𝜖
2

1

> 0. (47)

Then there hold

lim
𝜖
󸀠󸀠
→0

min𝐹 (𝜖
1
) = 2𝑐

2

3
+ 𝜖 + 𝜖

󸀠󸀠
+ 1 −

1

2𝑐
2

3
+ 𝜖 + 𝜖󸀠󸀠

< 2𝑐
2

3
+ 1.

(48)

Combining the above discussions, we deduce that

min{max{𝜖
1
+ 2𝜖
2
⋅ 𝑐
2

3
,
1

𝜖
2

}} < 2𝑐
2

3
+ 1. (49)

Obviously,
󵄩󵄩󵄩󵄩𝑢 − 𝑢

𝑁

󵄩󵄩󵄩󵄩0

≤ √2𝑐
2

3
+ 1 {

󵄩󵄩󵄩󵄩𝑝𝑁 − 𝑝 (𝑢
𝑁
)
󵄩󵄩󵄩󵄩0

+
󵄩󵄩󵄩󵄩𝑦𝑁 − 𝑦 (𝑢

𝑁
)
󵄩󵄩󵄩󵄩0
} .

(50)

We denote by 𝑐
4
the constant in (50); that is,

𝑐
4
= √2𝑐

2

3
+ 1. (51)

For any V ∈ 𝐿
2
(𝐼), we define a projection operator P

𝑁
:

𝐿
2
(𝐼) → 𝑉

𝑁
, which satisfies

(P
𝑁
V − V, 𝑤

𝑁
) = 0, ∀𝑤

𝑁
∈ 𝑈
𝑁
. (52)

Lemma 3. For all V ∈ 𝐻
𝜎
(𝐼) (𝜎 ≥ 0), one has

󵄩󵄩󵄩󵄩P𝑁V − V󵄩󵄩󵄩󵄩0 ≤ 𝑐
5
𝑁
−𝜎

‖V‖𝜎, (53)

where 𝑐
5
= 2√2.

Proof. Firstly, assuming that 𝜎 = 2𝑝 (𝑝 ≥ 1) is integer, we
define a differential operator as

𝐴 =
𝑑

𝑑𝑥
((1 − 𝑥

2
)

𝑑

𝑑𝑥
) . (54)

From the fact that
𝑑

𝑑𝑥
((1 − 𝑥

2
)
𝑑𝐿
𝑘

𝑑𝑥
) + 𝑘 (𝑘 + 1) 𝐿

𝑘
= 0, (55)

it is easy to get

V̂
𝑘
= (𝑘 +

1

2
) (V, 𝐿

𝑘
)

=
𝑘 + 1/2

𝑘 (𝑘 + 1)
∫

1

−1

𝐴𝐿
𝑘
(𝑥) V (𝑥) 𝑑𝑥

= −
𝑘 + 1/2

𝑘 (𝑘 + 1)
∫

1

−1

𝐴V (𝑥) 𝐿
𝑘
(𝑥) 𝑑𝑥

= −
𝑘 + 1/2

𝑘 (𝑘 + 1)
(𝐴V (𝑥) , 𝐿

𝑘
(𝑥)) .

(56)

By iterations, we obtain

V̂
𝑘
= (

−1

𝑘 (𝑘 + 1)
)

𝑝

(𝑘 +
1

2
) (𝐴
𝑝V, 𝐿
𝑘
) . (57)

Secondly, for all V ∈ 𝐻
2𝑝
(𝐼), we note that 𝐴𝑝V = ∑

∞

𝑖=0
𝛼
𝑖
𝐿
𝑖
(𝑥)

and

(𝐴
𝑝V (𝑥) , 𝐿

𝑘
(𝑥)) = 𝛼

𝑖
(𝑘 +

1

2
)

−1

,

󵄩󵄩󵄩󵄩𝐴
𝑝V󵄩󵄩󵄩󵄩
2

0
=

∞

∑

𝑘=0

󵄨󵄨󵄨󵄨𝛼𝑘
󵄨󵄨󵄨󵄨

2

(𝑘 +
1

2
)

−1

.

(58)

Hence

󵄩󵄩󵄩󵄩P𝑁V − V󵄩󵄩󵄩󵄩
2

0
=

∞

∑

𝑘=𝑁+1

(𝑘 +
1

2
)

−1
󵄨󵄨󵄨󵄨V̂𝑘

󵄨󵄨󵄨󵄨

2

=

∞

∑

𝑘=𝑁+1

(
1

𝑘 (𝑘 + 1)
)

2𝑝

(𝑘 +
1

2
)
󵄨󵄨󵄨󵄨𝐴
𝑝V, 𝐿
𝑘

󵄨󵄨󵄨󵄨

2

≤ 𝑁
−4𝑝

∞

∑

𝑘=𝑁+1

(𝑘 +
1

2
)
󵄨󵄨󵄨󵄨𝛼𝑘

󵄨󵄨󵄨󵄨

2

(𝑘 +
1

2
)

−2

≤ 𝑁
−4𝑝󵄩󵄩󵄩󵄩𝐴

𝑝V󵄩󵄩󵄩󵄩
2

0
.

(59)

Finally, there hold

|𝐴V|2 =
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑

𝑑𝑥
((1 − 𝑥

2
)
𝑑V
𝑑𝑥

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

=
󵄨󵄨󵄨󵄨󵄨
(1 − 𝑥

2
) V󸀠󸀠 − 2𝑥V󸀠

󵄨󵄨󵄨󵄨󵄨

2

≤ (
󵄨󵄨󵄨󵄨󵄨
V󸀠󸀠

󵄨󵄨󵄨󵄨󵄨
+ 2

󵄨󵄨󵄨󵄨󵄨
V󸀠
󵄨󵄨󵄨󵄨󵄨
)
2

≤ 2V󸀠󸀠2 + 8V󸀠2

≤ 8 {V󸀠󸀠2 + V󸀠2 + V2} ,

(60)
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which means that

‖𝐴V‖2
0
≤ 8‖V‖2

2
. (61)

Let 𝑝 = 1, 𝜎 = 2. It is clear that

󵄩󵄩󵄩󵄩P𝑁V − V󵄩󵄩󵄩󵄩0 ≤ √8𝑁
−2

‖V‖2. (62)

This completes the proof.

Now, we are at the point to calculate the constant for
‖𝑦
𝑁

− 𝑦(𝑢
𝑁
)‖
1
+ ‖𝑝
𝑁

− 𝑝(𝑢
𝑁
)‖
1
. Similarly, let 𝐸

𝑝
= 𝑝
𝑁

−

𝑝(𝑢
𝑁
) and let 𝐸𝑝

𝐼
= P
𝑁
𝐸
𝑝
∈ 𝑉
𝑁
. Then

󵄩󵄩󵄩󵄩𝑝𝑁 − 𝑝 (𝑢
𝑁
)
󵄩󵄩󵄩󵄩

2

1

≤ (1 + (
|𝐼|

2
)

2

)(𝑎 (𝐸
𝑝
, 𝐸
𝑝
− 𝐸
𝑝

𝐼
) + (𝑦 (𝑢

𝑁
) − 𝑦
𝑁
, 𝐸
𝑝

𝐼
))

= (1 + (
|𝐼|

2
)

2

)(𝑎 (𝑝 (𝑢
𝑁
) − 𝑝
𝑁
, 𝐸
𝑝
− 𝐸
𝑝

𝐼
)

+ (𝑦 (𝑢
𝑁
) − 𝑦
𝑁
, 𝐸
𝑝

𝐼
))

= (1 + (
|𝐼|

2
)

2

)

× ((−𝑝
󸀠󸀠
(𝑢
𝑁
) , 𝐸
𝑝
− 𝐸
𝑝

𝐼
)

+ (𝑝
󸀠󸀠

𝑁
, 𝐸
𝑝
− 𝐸
𝑝

𝐼
) + (𝑦 (𝑢

𝑁
) − 𝑦
𝑁
, 𝐸
𝑝

𝐼
))

= (1 + (
|𝐼|

2
)

2

)((𝑦
𝑁

− 𝑦
𝑑
+ 𝜆
𝑁

+ 𝑝
󸀠󸀠

𝑁
, 𝐸
𝑝
− 𝐸
𝑝

𝐼
)

+ (𝑦 (𝑢
𝑁
) − 𝑦
𝑁
, 𝐸
𝑝
) )

≤ (1 + (
|𝐼|

2
)

2

)
󵄩󵄩󵄩󵄩𝐸
𝑝󵄩󵄩󵄩󵄩1

{𝑐
5
𝑁
−1󵄩󵄩󵄩󵄩󵄩

𝑦
𝑁

− 𝑦
𝑑
+ 𝜆
𝑁

+ 𝑝
󸀠󸀠

𝑁

󵄩󵄩󵄩󵄩󵄩0

+
󵄩󵄩󵄩󵄩𝑦𝑁 − 𝑦 (𝑢

𝑁
)
󵄩󵄩󵄩󵄩0
} ,

(63)

which means that

󵄩󵄩󵄩󵄩𝑝𝑁 − 𝑝 (𝑢
𝑁
)
󵄩󵄩󵄩󵄩1

≤ (1 + (
|𝐼|

2
)

2

){𝑐
5
𝑁
−1󵄩󵄩󵄩󵄩󵄩

𝑦
𝑁

− 𝑦
𝑑
+ 𝜆
𝑁

+ 𝑝
󸀠󸀠

𝑁

󵄩󵄩󵄩󵄩󵄩0

+
󵄩󵄩󵄩󵄩𝑦𝑁 − 𝑦 (𝑢

𝑁
)
󵄩󵄩󵄩󵄩0
} .

(64)

Likewise, let 𝐸𝑦 = 𝑦
𝑁

− 𝑦(𝑢
𝑁
) and let 𝐸𝑦

𝐼
= P0
1,𝑁

𝐸
𝑦

∈ 𝑉
𝑁
.

Then
󵄩󵄩󵄩󵄩𝑦𝑁 − 𝑦 (𝑢

𝑁
)
󵄩󵄩󵄩󵄩

2

1

=
󵄩󵄩󵄩󵄩𝐸
𝑦󵄩󵄩󵄩󵄩

2

1
≤ (1 + (

|𝐼|

2
)

2

)𝑎 (𝐸
𝑦
, 𝐸
𝑦
)

= (1 + (
|𝐼|

2
)

2

)𝑎 (𝐸
𝑦
− 𝐸
𝑦

𝐼
, 𝐸
𝑦
)

= (1 + (
|𝐼|

2
)

2

)(− (𝑢
𝑁

+ 𝑦
󸀠󸀠

𝑁
) , 𝐸
𝑦
− 𝐸
𝑦

𝐼
)

≤ (1 + (
|𝐼|

2
)

2

) 𝑐
5
𝑁
−1󵄩󵄩󵄩󵄩󵄩

𝑢
𝑁

+ 𝑦
󸀠󸀠

𝑁

󵄩󵄩󵄩󵄩󵄩0
⋅
󵄩󵄩󵄩󵄩𝐸
𝑦󵄩󵄩󵄩󵄩1

,

(65)

which is equivalent to

󵄩󵄩󵄩󵄩𝑦𝑁 − 𝑦(𝑢
𝑁
)
󵄩󵄩󵄩󵄩1

≤ (1 + (
|𝐼|

2
)

2

) 𝑐
5
𝑁
−1󵄩󵄩󵄩󵄩󵄩

𝑢
𝑁

+ 𝑦
󸀠󸀠

𝑁

󵄩󵄩󵄩󵄩󵄩0
. (66)

Hence
󵄩󵄩󵄩󵄩𝑦𝑁 − 𝑦(𝑢

𝑁
)
󵄩󵄩󵄩󵄩1

+
󵄩󵄩󵄩󵄩𝑝𝑁 − 𝑝(𝑢

𝑁
)
󵄩󵄩󵄩󵄩1

≤ 𝑐
6
𝜂, (67)

where

𝑐
6
= (1 + (

|𝐼|

2
)

2

)

2

𝑐
5
,

𝜂 = 𝑁
−1󵄩󵄩󵄩󵄩󵄩

𝑦
𝑁

− 𝑦
𝑑
+ 𝜆
𝑁

+ 𝑝
󸀠󸀠

𝑁

󵄩󵄩󵄩󵄩󵄩0
+ 𝑁
−1󵄩󵄩󵄩󵄩󵄩

𝑢
𝑁

+ 𝑦
󸀠󸀠

𝑁

󵄩󵄩󵄩󵄩󵄩0
.

(68)

Combining the above analyses, we get that
󵄩󵄩󵄩󵄩𝑢 − 𝑢

𝑁

󵄩󵄩󵄩󵄩0
+
󵄩󵄩󵄩󵄩𝑦 − 𝑦

𝑁

󵄩󵄩󵄩󵄩1
+
󵄩󵄩󵄩󵄩𝑝 − 𝑝

𝑁

󵄩󵄩󵄩󵄩1
+
󵄩󵄩󵄩󵄩𝜆 − 𝜆

𝑁

󵄩󵄩󵄩󵄩0

≤
󵄩󵄩󵄩󵄩𝑢 − 𝑢

𝑁

󵄩󵄩󵄩󵄩0
+
󵄩󵄩󵄩󵄩𝑦 − 𝑦 (𝑢

𝑁
)
󵄩󵄩󵄩󵄩1

+
󵄩󵄩󵄩󵄩𝑦𝑁 − 𝑦 (𝑢

𝑁
)
󵄩󵄩󵄩󵄩1

+
󵄩󵄩󵄩󵄩𝑝 − 𝑝 (𝑢

𝑁
)
󵄩󵄩󵄩󵄩1

+
󵄩󵄩󵄩󵄩𝑝𝑁 − 𝑝 (𝑢

𝑁
)
󵄩󵄩󵄩󵄩1

+
󵄩󵄩󵄩󵄩𝜆 − 𝜆

𝑁

󵄩󵄩󵄩󵄩0

≤
󵄩󵄩󵄩󵄩𝑦𝑁 − 𝑦 (𝑢

𝑁
)
󵄩󵄩󵄩󵄩1

+
󵄩󵄩󵄩󵄩𝑝𝑁 − 𝑝 (𝑢

𝑁
)
󵄩󵄩󵄩󵄩1

+ 𝑐
4
{
󵄩󵄩󵄩󵄩𝑝𝑁 − 𝑝 (𝑢

𝑁
)
󵄩󵄩󵄩󵄩0

+
󵄩󵄩󵄩󵄩𝑦𝑁 − 𝑦 (𝑢

𝑁
)
󵄩󵄩󵄩󵄩0
}

+ 𝑐
1
𝑐
4
{
󵄩󵄩󵄩󵄩𝑝𝑁 − 𝑝 (𝑢

𝑁
)
󵄩󵄩󵄩󵄩0

+
󵄩󵄩󵄩󵄩𝑦𝑁 − 𝑦 (𝑢

𝑁
)
󵄩󵄩󵄩󵄩0
}

+ 𝑐
2
{
󵄩󵄩󵄩󵄩𝑝𝑁 − 𝑝 (𝑢

𝑁
)
󵄩󵄩󵄩󵄩0

+𝑐
4
(
󵄩󵄩󵄩󵄩𝑝𝑁 − 𝑝 (𝑢

𝑁
)
󵄩󵄩󵄩󵄩0

+
󵄩󵄩󵄩󵄩𝑦𝑁 − 𝑦 (𝑢

𝑁
)
󵄩󵄩󵄩󵄩0
)}

+ 𝑐
3
{
󵄩󵄩󵄩󵄩𝑝𝑁 − 𝑝 (𝑢

𝑁
)
󵄩󵄩󵄩󵄩0,𝐼

+ 𝑐
4
(
󵄩󵄩󵄩󵄩𝑝𝑁 − 𝑝 (𝑢

𝑁
)
󵄩󵄩󵄩󵄩0

+
󵄩󵄩󵄩󵄩𝑦𝑁 − 𝑦 (𝑢

𝑁
)
󵄩󵄩󵄩󵄩0
)}

≤
󵄩󵄩󵄩󵄩𝑝𝑁 − 𝑝 (𝑢

𝑁
)
󵄩󵄩󵄩󵄩1

{𝑐
4
+ 1 + 𝑐

1
𝑐
4
+ 𝑐
2
(𝑐
4
+ 1) + 𝑐

3
(𝑐
4
+ 1)}

+
󵄩󵄩󵄩󵄩𝑦𝑁 − 𝑦 (𝑢

𝑁
)
󵄩󵄩󵄩󵄩1

{𝑐
4
+ 1 + 𝑐

1
𝑐
4
+ 𝑐
2
𝑐
4
+ 𝑐
3
𝑐
4
}

≤ {𝑐
4
+ 1 + 𝑐

1
𝑐
4
+ 𝑐
2
(𝑐
4
+ 1) + 𝑐

3
(𝑐
4
+ 1)}

× {
󵄩󵄩󵄩󵄩𝑝𝑁 − 𝑝 (𝑢

𝑁
)
󵄩󵄩󵄩󵄩1

+
󵄩󵄩󵄩󵄩𝑦𝑁 − 𝑦 (𝑢

𝑁
)
󵄩󵄩󵄩󵄩1
}

≤ {𝑐
4
+ 1 + 𝑐

1
𝑐
4
+ 𝑐
2
(𝑐
4
+ 1) + 𝑐

3
(𝑐
4
+ 1)} 𝑐

6
𝜂,

(69)
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which means that

󵄩󵄩󵄩󵄩𝑢 − 𝑢
𝑁

󵄩󵄩󵄩󵄩0
+
󵄩󵄩󵄩󵄩𝑦 − 𝑦

𝑁

󵄩󵄩󵄩󵄩1
+
󵄩󵄩󵄩󵄩𝑝 − 𝑝

𝑁

󵄩󵄩󵄩󵄩1
+
󵄩󵄩󵄩󵄩𝜆 − 𝜆

𝑁

󵄩󵄩󵄩󵄩0
≤ 𝐶𝜂,

(70)

where

𝐶 = {1 + 𝑐
4
+ 𝑐
1
𝑐
4
+ 𝑐
2
(𝑐
4
+ 1) + 𝑐

3
(𝑐
4
+ 1)} 𝑐

6
,

𝑐
1
= (1 + (

|𝐼|

2
)

2

)

1/2

|𝐼|

2
,

𝑐
2
= √2(1 + (

|𝐼|

2
)

2

)

2

max{

2𝐶
2

𝜑
𝛼
2

|𝐼|
+ 𝑐
2

1
,

2𝐶
2

𝜑

|𝐼|
},

𝑐
3
= √

𝐶
2

𝜑

|𝐼|
{2𝑐
2

2
+ 𝑐
2

1
},

𝑐
4
= √2𝑐

2

3
+ 1,

𝑐
5
= √2,

𝑐
6
= (1 + (

|𝐼|

2
)

2

)

2

𝑐
5
.

(71)

4. Conclusions

This paper discusses the explicit formulae of constants within
upper bound of the a posteriori error estimate for optimal
control problems with Legendre-Galerkin spectral methods
in one dimension. Thus, with those formulae, it is easy
to choose a suitable degree of polynomials to obtain an
acceptable accuracy. In the future, we will study the corre-
sponding constants in lower bound of the a posteriori error
indicator. Meanwhile, the corresponding constants in a two-
dimensional domain will be investigated.
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