
Research Article
Wind Power Assessment Based on a WRF Wind Simulation with
Developed Power Curve Modeling Methods

Zhenhai Guo and Xia Xiao

State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics,
Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

Correspondence should be addressed to Xia Xiao; xiaoxia@lasg.iap.ac.cn

Received 14 April 2014; Accepted 16 May 2014; Published 21 July 2014

Academic Editor: Jianzhou Wang

Copyright © 2014 Z. Guo and X. Xiao.This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The accurate assessment of wind power potential requires not only the detailed knowledge of the local wind resource but also an
equivalent power curve with good effect for a local wind farm. Although the probability distribution functions (pdfs) of the wind
speed are commonly used, their seemingly good performance for distributionmay not always translate into an accurate assessment
of power generation. This paper contributes to the development of wind power assessment based on the wind speed simulation of
weather research and forecasting (WRF) and two improved power curvemodelingmethods.These approaches are improvements on
the power curve modeling that is originally fitted by the single layer feed-forward neural network (SLFN) in this paper; in addition,
a data quality check and outlier detection technique and the directional curve modeling method are adopted to effectively enhance
the original model performance. The proposed two methods, named WRF-SLFN-OD and WRF-SLFN-WD, are able to avoid the
interference from abnormal output and the directional effect of local wind speed during the power curve modeling process. The
data examined are from three stations in northern China; the simulation indicates that the two developed methods have strong
abilities to provide a more accurate assessment of the wind power potential compared with the original methods.

1. Introduction

1.1. Wind Energy and the Related Power Potential Assessment.
Currently, for both developed and developing countries,
the heavy dependence on fossil fuels has caused serious
environmental problems, such as atmospheric pollution and
soil and water contaminations. The threat of global warming
and the rapid depletion of nonrenewable energy resources
are now driving one of the greatest transitions in the energy
field in the history of human civilization. Consequently,
renewable energy is considered to be the most promising
alternative energy resource because it plays a significant role
in securing the long-term sustainable energy supply and
reducing global greenhouse gases emissions [1]. As the most
active approach, wind power demonstrates its strong benefits
and good prospects; its utilization is increasing around the
world at an accelerating pace, and a large number of wind
farms have been built for power generation. In fact, because
wind is highly uncertain in both space and time, the main

obstacle for wind industry development is the variability
of the output power, which seriously limits wind power
penetration and threatens grid security. As a result, the
development of newwindprojects persists in being hampered
by the lack of reliable and accurate wind resource data in
many regions of the world. Such data are needed to enable
governments, private developers, and others to determine
the priority that should be given to wind energy utilization
and to identify the potential areas that might be suitable for
development [2, 3].

Wind energy is characterized by strong instability and
intermittency, mainly as a result of the atmospheric circu-
lation, making it difficult to estimate the generated power
that is needed to be injected into the grid and also causing
difficulties for energy transportation [4]. To build up wind
farms, it is essential to perform an accurate assessment of
the wind energy potential at promising sites [5] because the
availability of wind resources varies with location. Therefore,
an accurate wind power assessment is an important and
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critical factor to be well understood for harnessing the wind-
generated power output. Not only is it an essential part of the
development ofwindpower utilization but also it provides the
investors with the necessary confidence in financial feasibility
and mitigating risks [6]. In reality, the development and
construction of a wind farm is a process of stage extension;
the wind resource assessment is a crucial step both in the
preevaluation for the site selection and in planning addi-
tional wind energy projects; detailed knowledge of the wind
resource at a local site is needed to estimate the performance
of a wind energy project. In general, there are two categories
of power assessment methods; the first is the estimation
directly based on the power records, mainly using prediction
techniques, and the second is the evaluation of wind speeds
according to the transition of power curves. Considering the
stage-construction project of a wind farm, power assessment
is crucial to determine the future investment behavior for
both the development scale and the operationmode of a wind
farm. In this case, future power estimations cannot be directly
obtained from the historical power records, mainly due to the
change of installation. Thus, the feasible method is to model
the transition relationship from wind speed to turbine power
output.

1.2. Assessment of Wind Power Potential: Existing Works.
Researchers have exerted great effort toward the wind power
assessment of a local site, which can be categorized into
two major groups when considering the application of the
stage-construction wind farms [7]. One group is the wind
power assessment based on historical records, which mainly
combines the wind speed distribution and the WT power
curve [8]; the other group is the prediction of the future
power output through the historical data using statistical or
physical models [9].

Although the power output from wind turbines (WTs)
varies with the cube of the wind speed at the hub height, the
wind speed is not constant with time, which makes it difficult
to evaluate the accurate power output. To effectively evaluate
the wind power available for a particular site, the statistical
analysis, which concerns the use of various probability
density functions (pdfs) to describe wind speed frequency
distributions, is generally used. The pdf of wind speed
distribution indicates how often wind of different speeds
will occur at a local site with a certain average wind speed;
there are different distribution functions for determining
the wind energy potential, including Weibull [10], Rayleigh
[11], Gamma, Lognormal [12], and more [13–15]. Among the
various types of pdfs, Weibull and Rayleigh are the most
widely used, mainly due to the superior performance in
describing the wind speed distribution. The approach based
on the different pdfs consists in assimilating the distribution
law to one of these models and in determining the model
parameters so that it is closest to the discrete law achieved
by the statistical treatment of the wind speed measurements
[16]. In the actual applications, most attention according to
the wind energy assessment is given to the power output
of the turbines, which is the most significant indicator for
the site selection and construction. In this aspect, the proper

wind speed distribution describes the variation of the wind
with respect to time and the effect of the varying wind on
the power output of the turbines, according to a WT power
curve. However, the seemingly good performance of wind
speed distribution may not always translate to an accurate
assessment of the energy potential; this indicates that the
input/output relationship between the wind speed and the
power output may not be accurately matched under the pdf-
described wind speed information. The mismatch between
wind speed and power output frequently occurs during the
actual energy assessment and power generation and may
result from the power output control mechanisms of the
wind power generators, thus giving an inaccurate power
assessment.

As iswell known, theWTconverts the energy ofwind into
electric power output at the grid connection interface, which
depends on the integrated view of the complex aerodynamic,
mechanic, electromagnetic, and control aspects; there is a
direct connection between the wind resource and the power
output. To accurately describe the characteristics of wind-
related power generation and to accurately evaluate the wind
energy potential, the link between the wind speed and the
power produced by a wind generator is given by the so-called
power curve, typically provided by the WT manufacturer. In
general, a power curve describes the power delivered by a
WT by representing the turbine power output as a function
of the wind speed at hub height.With such a curve, the power
output from a WT can be estimated without the detailed
knowledge of turbine operations and its control schemes [17].
It is common that a generic equation for the modeling of the
power curvewill be preferred in studies onWTmodeling [18–
20], the analysis of wind energy potential [21], site matching
[20, 22, 23], cost modeling [24], and so forth. Considering the
accurate assessment of wind power potential, the influence of
theWT power curve cannot be ignored [7]. According to the
power output control mechanisms, the power output remains
constant in the range of the rated speed to the cut-out speed,
which changes the relation between the power output and the
wind speed.

The power curve of a WT is obtained by the manufactur-
ers from the fieldmeasurements ofwind speed andpower and
partly from the environmental values (temperature, pressure,
and relative humidity) [17]. The measurements are usually
averaged and normalized to reference the air density using
normalized procedures in predefined conditions (with flat
terrain and appropriate sampling rate) [25]. When a wind
farm consisting of many turbines is injected into the power
gird and begins operation, the focus shifts to the entire plant’s
performance. An equivalentwind plant power curve becomes
highly desirable and useful in predicting the plant output for
a given wind forecast. In the actual power generation, the
input/output relationship between the wind speed and the
power output is always inconsistent with the power curve
that is given to a WT, due to complex reasons such as
wind direction, energy loss, local topography, and turbine
layout.Thismakes it difficult to accurately evaluate the power
potential and to provide precise estimations of the future
power output; consequently, it is of great significance to
enhance the performance of the equivalent power curve
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modeling, and the following text focuses on this significant
topic.

1.3. Original Contribution: Developed Equivalent Power Curve
Modeling Strategies. The major highlight of this paper is
its development of a wind power assessment based on the
wind speed outputs of the numerical weather models and
the developed power curve modeling methods that consider
the artificial intelligence (AI) algorithm, the data quality
check, and the outlier detection technique for the turbine
outputs and the enhanced power curve modeling according
to wind directions. Specifically, as the current generation
“community” physics-based atmospheric model, the weather
research and forecasting (WRF)model is now thewidely used
meso-scale system serving both the operational forecasting
and atmospheric research needs. In this paper, the wind
speed outputs from the WRF simulation are used for future
power assessment; calculations indicate that the WRF-based
power assessment is far more accurate than the evaluations
from the basicwind speed distributionswhen considering the
total power production of a local farm. At the first step, the
single layer feed-forward neural network (SLFN) is employed
for power curve modeling by learning the input/output
transition through an AI-based nonlinear mapping. The
SLFN is chosen mainly because of its strengths in capturing
the complex nonlinear input/output relations identical to the
transition from wind speed to the wind-generated power
output; it enables the WRF-SLFN method to be far more
effective and accurate than the original methods.

Next, two improvements based on the original WRF-
SLFN are proposed to provide better assessment results.
The first, named WRF-SLFN-OD, is a mixture of not only
the WRF wind speed simulation and SLFN structure but
also an additional data quality check and outlier detection
technique. It enables the assessment process to first check and
eliminate the abnormal records within the raw data set; then,
the cleaned data set is regarded as the input of the original
WRF-SLFN process. The second, named WRF-SLFN-WD,
contains a preanalysis of the wind direction distribution and
its influence on the power output, before the curve modeling
process. Wind speeds are grouped into twelve directional
sectors, and the most frequent wind speeds always carry the
primary and most effective information of the local wind
resource, considering the power potential assessment. The
simulation indicates that both theWRF-SLFN-ODandWRF-
SLFN-WD methods can be significant enhancements for the
assessment problem.

1.4. Data Collection. To validate the effectiveness and accu-
racy of the proposed methods according to the wind power
potential assessment problem in this paper, the availablewind
speed and corresponding power output records are collected
from three sites in northern China (the site description
is displayed in Figure 2). Specifically, both the wind speed
measurements and the WRF wind speed simulations are
1-year data sets of 15-minute intervals. Each data set is
randomly divided into two subsets: the training set, which
accounts for 85% of the overall data, and the testing set, which
is a collection of the remaining 15% of the data.

1.5. The Structure of This Paper. The rest of this paper is
organized as follows. Section 2 introduces the existing works
based on the historical wind speed records. Then, Section 3
presents the assessment approach combining the WRF wind
simulation and turbine power curve. Two improved power
curve modeling methods are proposed in Sections 4 and 5
with a case study provided in detail. Finally, Section 6
provides the conclusions.

2. Potential Assessment Based on
Measured Records

This section reviews the existing works in the literature that
are related to the wind power potential assessment based on
the measured records of wind speed (see Figure 1).

2.1. Wind Speed Distribution of a Local Area. The analysis
of the wind speed distribution at hub heights is commonly
used when assessing the wind potentials at a proposed site.
In the bibliography, the wind speed frequency distribution
was represented by various probability density functions; the
most common are Weibull, Rayleigh, Gamma, and Lognor-
mal distributions; this paper also considers these commonly
used functions.

2.1.1. Weibull Distribution of Wind Speed. The Weibull dis-
tribution is one of the most important and widely used
frequency functions in the study of wind climate and wind
energy [26]. The probability density function (pdf) of a two-
parameter Weibull distribution can be expressed as

𝑓
𝑤
(V) =

𝑘

𝑐
(
V
𝑐
)
𝑘−1

exp [−(V
𝑐
)
𝑘

] , V ≥ 0, (1)

where 𝑘 and 𝑐 are the shape parameter and scale parameter,
respectively, and V represents the wind speed. The corre-
sponding Weibull cumulative distribution function (cdf) is
defined as

𝐹
𝑤
(V) = 1 − exp [−(V

𝑐
)
𝑘

] . (2)

2.1.2. Rayleigh Distribution of Wind Speed. The Rayleigh
distribution is another case of the Weibull distribution when
setting the shape parameter as 𝑘 = 2; experience indicates
that this sufficiently represents the real wind speed distribu-
tion in certain cases [11]. The pdf of Rayleigh distribution is
defined as

𝑓
𝑟
(V) =

V
𝑐2

exp(− V2

2𝑐2
) , V ≥ 0, (3)
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Figure 1: The commonly used wind speed distributions.

where 𝑐 is the scale parameter and V represents the wind
speed. Setting 𝑘 = 2 in (2), the Rayleigh cdf is

𝐹
𝑟
(V) = 1 − exp [−(V

𝑐
)
2

] . (4)

2.1.3. GammaDistribution ofWind Speed. Thepdf of Gamma
distribution is as follows:

𝑓
𝑔
(V) = V𝑘−1

exp (−V/𝜃)
Γ (𝑘) 𝜃𝑘

, (5)

where 𝑘 and 𝜃 are the shape and scale parameters, respec-
tively.

2.1.4. Lognormal Distribution of Wind Speed. The pdf of
Lognormal distribution is defined by

𝑓
𝑙
(V) =

1

V𝜎√2𝜋
exp{−

(ln V − 𝜇)2

2𝜎2
} , (6)

where 𝜎 and 𝜇 are two parameters.

2.2. Fitting Result of Wind Speed Distribution. Figure 2 rep-
resents the fitting result of wind speed distribution at three
stations; each of the four mentioned distributions is fitted. It

can be found that wind speed observations perform similarly
between station 2 and station 3, while the data from station 1
represents a higher frequencywith respect to the data interval
from 5m/s to 10m/s. Among the different distribution
functions, the Weibull pdf performs better in describing the
frequency distribution of the wind speed records, according
to the three selected stations in this paper. Next, the power
curve is introduced to convert the wind speed into power
output.

2.3. Power Curve and Statistical Power Assessment. The wind
turbine is the direct transducer that delivers wind into the
electric power output. The power curve is the most common
representation of the relation between thewind speed and the
power production, which is defined as

𝑃
𝑤𝑡𝑔

(V) =
{{{
{{{
{

𝑃
𝑟
, V

𝑟
< V ≤ Vco,

𝑃
𝑟

V − Vci
V
𝑟
− Vci

, Vci < V ≤ V
𝑟
,

0, V ≤ Vci or V > Vco,

(7)

where Vci, Vco, V𝑟, and 𝑃
𝑟
represent the cut-in, cut-off, rated

speeds, and the rated power, respectively.
There are three key points on the power curve: (i) the cut-

in speed, below which the turbine will not produce power,
(ii) the rated speed, at which the rated power of the turbine
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Figure 2: Distribution fitting according to the three stations.

is produced, and (iii) the cut-off speed, beyond which the
turbine is not allowed to deliver power. Then, the power
produced in a given period can be calculated by

𝐸
𝑤
= 𝑇∫

∞

0

𝑃
𝑤𝑡𝑔

(V) 𝑓 (V) 𝑑V, (8)

where 𝑇 represents the given time and 𝑓(V) is the pdf
associated with the wind speed V.

3. Power Estimation with Wind Speed Outputs
from the WRF Simulation

For the future potential assessment of wind-generated power
output, this paper considers a combination of the atmo-
spheric numerical simulation and the WT power curve.
Specifically, the WRF model is chosen to provide a physical
prediction of the future wind speed; then, the assessment of
power potential can be obtained through the power curve
modeling.

3.1. WRF Simulation and Model Configuration. The WRF
model is now the current generation “community” physics-
based atmospheric model, serving both the operational fore-
casting and atmospheric research needs; the WRF model has

now become one of the most popular and widely used tools
for numeric weather prediction. In the WRF model, a grid is
a set of three-dimensional points in space containing weather
data, such as wind speed and atmospheric pressure. Each grid
has a current time and an associated stop time. The WRF
simulates the atmosphere using physics calculations based on
the grid data and a specific physics model; then, the current
time of the grid is advanced by a unit of time called a time-
step [27].

In this paper, the wind speed from the WRF outputs will
be used for future power assessment with the proposed power
curve modeling strategies. The physical options of the WRF
model are described in Table 1.

3.2. Energy Estimation and Assessment with Wind Speed
Outputs from the WRF Simulation. After acquiring the wind
speed outputs from the WRF simulation process, the WT
power curve can be employed to transform the wind speed
into power generation; thus, the future wind power potential
of the chosen promising site can be obtained and can be used
for further construction and operation of the wind farm.

Different from the power assessment based on the his-
torical measurements discussed in Section 2, the developed
approach here is more reasonable and effective when consid-
ering the future power potential at a local site. The reason
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Table 1: Model configuration of the WRF simulation.

Physical options
Cumulus parameterization Grell 3D ensemble cumulus scheme
Short-wave radiation RRTM scheme
Long-wave radiation Dudhia scheme
Surface layer physics Eta similarity
Land surface processes Fractional sea-ice
Planetary boundary layer Mellor-Yamada-Janjic scheme

is that the wind speed output from the WRF simulation
describes the future atmospheric circumstance and condi-
tions, which directly affect the efficiency of wind power gen-
eration and, furthermore, have an impact on the operation
behavior of the wind farm. Moreover, both statistical and
physical models are the popular methods to predict future
wind speed; the statistical models focus more attention on
finding the inner regulation of the historical data and perform
better in short-term prediction. According to the assessment
problem considered in this paper, physical simulation is
more powerful because the input of the physical models is
physical or meteorology information, such as the description
of orography, roughness, obstacle, atmospheric data, and
more [28]. All of these factors in actual could impact the wind
speed significantly. The following sections will demonstrate
that the developed assessment, combining the WRF wind
speed simulation and the improved power curve modeling
methods, performs decisively in the future power potential
assessment according to the simulation result.

4. Equivalent Power Curve Modeling: Neural
Network and Improved Methods

Power curve modeling is the most straightforward approach
to accurately match the wind speed and the actual power
output according to a specific condition of power generation.
A single turbine power curve is determined by measuring
the turbine output and inflow wind speed at the hub height.
While considering the power potential assessment for a wind
farm, the power curves are adversely affected by the wind
farm layout and the changing environmental and topograph-
ical conditions. In fact, mainly due to the wakes created
by the wind turbines upstream, the wind speed reduces
the efficiency of the turbine array. Therefore, the equivalent
power curve modeling is of great significance, incorporating
the effect of the array efficiency, the high wind speed cut-out,
the topographic effect spatial averaging, the availability, and
the electrical losses [29]. Such a curve, if it can be developed,
will help plant and system operators predict the plant output
for a given wind speed that takes into account these pertinent
factors. The following text focuses on the equivalent power
curve modeling by ANNs and two improved strategies.

4.1. Basic Formulation of Single Layer Feed-Forward Neural
Network (SLFN). The neural network (NN) technique is an
information-processing model simulating the operation of
the biological nervous system, which is widely used to model

complex functions for various applications. An NN model
consists of interconnected groups of artificial neurons that
emulate the function of neuron cells; therefore, it is able to
identify the complicated patternwithin a certain data set [30].
Considering the wind power potential assessment, it can be a
significant practice to apply the NNs with other methods in
modeling the relationship between the wind speed and power
output.

The chosen neural network in this paper is the SLFN
model, which is considered as a powerful and effective
network frame to address complex problems, such as the
power curve modeling problem.

Consider a set of 𝑀 distinct samples (x
𝑖
, y
𝑖
) with x

𝑖
=

[𝑥
𝑖1
, 𝑥
𝑖2
, . . . , 𝑥

𝑖𝑛
]𝑇 ∈ R𝑛 and y

𝑖
= [𝑦
𝑖1
, 𝑦
𝑖2
, . . . , 𝑦

𝑖𝑚
]𝑇 ∈ R𝑚;

then, a standard SLFNwith𝑁 hidden neurons and activation
function 𝑓 is mathematically modeled as

O
𝑗
=
𝑁

∑
𝑖=1

𝛽
𝑖
𝑓
𝑖
(x
𝑗
) =
𝑁

∑
𝑖=1

𝛽
𝑖
𝑓 (w
𝑖
x
𝑗
+ 𝑏
𝑖
) , 1 ≤ 𝑗 ≤ 𝑀, (9)

where O
𝑗
is the simulated output of SLFN, w

𝑖
is the input

weights connecting the 𝑖th hidden neural and the input
neuron, 𝑏

𝑖
is the biases of the 𝑖th hidden neural, and 𝛽

𝑖
is the

output weight vector connecting the 𝑖th hidden neural and
the output neuron.

Then, the mean square error (MSE) of the SLFN simula-
tion according to the given data can be defined as

𝐸 (w, 𝑏, 𝛽) = 1

𝑀

𝑀

∑
𝑗=1

(O
𝑗
− y
𝑗
)
2

. (10)

4.2. Evaluation Criteria for Modeling Accuracy. In this paper,
the relative error (RE) is selected for accuracy evaluation
according to the equivalent power curve modeling; the def-
inition of RE is as follows:

RE =
𝑃
𝑒
− 𝑃
𝑎

𝑃
𝑎

, (11)

where 𝑃
𝑒
and 𝑃

𝑎
are the estimated and actual power, respec-

tively.

4.3. Power Curve Modeling Result. This section employs the
SLFN to model the complex relationship between wind
speed and actual power output, which is usually mismatched
according to the WT power curve provided by the man-
ufacturer. Figures 3, 4, and 5 represent the curve fitting
result for each chosen station; the wind speed data used
here are the WRF wind speed output, which has been
introduced in Section 3.1. Generally, the larger wind speed
can be transformed into higher power output; however, the
transformational relation is not a simple and certain function
during actual power generation due to complex reasons. A
rough corresponding relation between the wind speed and
the WT power output can be found, but the relationship is
not very clear; the wind speeds with the same value can be
transformed into different values of power output that have a
large fluctuation range.As exemplified by station 1 in Figure 3,
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Figure 3: Original curve fitting result of station 1.
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Figure 4: Original curve fitting result of station 2.

wind speeds of approximately 10m/s correspond to power
output ranges from 0 to approximately 50MW. Moreover,
the corresponding relation is more ruleless as the wind speed
increases. This makes it quite difficult to extract the effective
information of the transform relation, which is the most
significant concern for an accurate power assessment.

Therefore, the SLFN is regarded as a powerful tool to
learn the transition relation. It is clear that the SLFN-fitted
power curve is complicated and is unlike the form of the
power curve provided by the manufacturer. When the wind
speed value is relatively small, the SLFN-fitted power curve
exhibits a steady upward trend as the wind speed increases.
For the larger wind speeds, the fitting result is complex and
is obviously somewhat lower than the normal power outputs.
This may result from the abnormal outputs that existed in the
data sets, which have a large wind speed but quite low power
output; a detailed discussion about abnormal outputs will be
provided in the next section.
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Figure 5: Original curve fitting result of station 3.

Traditional power assessment is usually based on the
frequency distribution of the wind speed, and it then trans-
forms the wind speed into the power output. A significant
undertaking is to compare the performance among the
developed WRF-SLFN method with the methods according
to a certain pdf of the wind speed. Figure 6 provides a
comparison of the results; the testing data are randomly
selected from the entire data set with a proportion of
15% introduced in Section 1.4. The results indicate that the
strength of the WRF-SLFN method may be its overall grasp
when considering a power assessment problem; these results
can also be found in Table 2. Divide the range of power
output into ten intervals as exhibited in Figure 6; clearly,
the power output has a high frequency according to the
first subinterval that contains the power outputs with the
smallest values. Each of the five methods mismatches this
characteristic. Specifically, the methods that depend on the
Weibull and Rayleigh distributions perform similarly to each
other; they also have similar RE values.TheLognormal-SLFN
method exhibits a large assessment error in each of the three
stations, while the Gamma-SLFN obtains a relatively lower
RE. Meanwhile, theWRF-SLFNmethod performs better; the
frequency of the estimated power output steadily decreases
with the rise of the power output values. It has a good
ability for power assessment, especially for the intervals with
larger wind speeds. Comparing the RE values of the different
methods, the WRF-SLFN obtains the lowest RE value in
stations 1 and 2 and has the same error as the Weibull-
SLFN in station 3. In the following text, the original WRF-
SLFN method can be improved to provide a more accurate
assessment of the wind power potential.

5. Improvement according to a Data Quality
Check and Outlier Detection Technique

The WRF-SLFN approach performs much better compared
with the other four pdf-SLFN methods, which was intro-
duced in the above text; the developed method also has its
weakness, mainly due to the use of unfiltered raw data sets.
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Table 2: Performance comparison between the WRF-SLFN and the four pdf-SLFN methods.

RE of wind power assessment
0–10MW 10–20MW 20–30MW 30–40MW 40–50MW Total

Site 1

Weibull-SLFN 0.22 0.35 0.73 1.06 −0.41 −0.28
Rayleigh-SLFN 0.38 0.71 0.75 0.61 −0.66 −0.23
Gamma-SLFN 0.54 0.49 0.46 0.32 −0.53 −0.15

Lognormal-SLFN 0.04 0.66 1.51 1.36 −0.19 −0.56
WRF-SLFN 0.40 0.99 0.56 0.05 −0.86 −0.09

0–20MW 20–40MW 40–60MW 60–80MW 80–100MW Total

Site 2

Weibull-SLFN 0.40 0.50 0.32 1.27 −1.00 −0.19
Rayleigh-SLFN 0.40 0.81 0.59 0.71 −1.00 −0.19
Gamma-SLFN 0.71 0.65 0.23 0.41 −0.70 −0.14

Lognormal-SLFN 0.13 0.70 0.86 1.30 −0.81 −0.37
WRF-SLFN 0.44 1.07 0.46 −0.03 −0.85 −0.10

0–10MW 10–20MW 20–30MW 30–40MW 40–50MW Total

Site 3

Weibull-SLFN 0.62 0.34 1.15 0.99 −1.00 −0.20
Rayleigh-SLFN 0.72 0.63 1.40 0.42 −1.00 −0.18
Gamma-SLFN 0.77 0.54 1.29 0.37 −1.00 −0.14

Lognormal-SLFN 0.29 0.56 2.10 1.07 −0.89 −0.40
WRF-SLFN 0.76 1.02 0.60 0.57 −0.85 −0.20
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Figure 6: Comparison between the WRF-SLFN and the assessments based on wind speed distributions.
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5.1. Outlier within Measurements. It is clear that the wind
plant power curve may have a general shape that is similar to
the power curve of a single turbine. Figures 3–5 demonstrate
that the SLFN-fitted power curve is obviously lower than the
expected form; this may be the result of the abnormal values
of the power output within the raw data sets. Considering the
power curve modeling for a wind farm, the abnormal value
indicates that the actual power output contains serious energy
loss, as Figure 7 illustrates. Furthermore, the abnormal power
output leads the fitted power curve far from the ideal curve,
and the gap between the curves becomes larger with the
increase in the wind speed. In addition, from the scatter plot,
it can be found that the raw data set needs additional cleaning
to eliminate the apparent outliers. Therefore, a data quality
check and outlier detection process is necessary to eliminate
the obvious data errors, such as abnormal output, constant
value, and negative values, and to provide a more effective
result for the wind power curve modeling.

5.2. DataQuality Check andOutlier Detection Technique. The
data quality check and outlier detection technique adopted
in this paper was introduced in [31], initially used for the
power loss calculation. Set the original data sets as (𝑥

𝑖
, 𝑦
𝑖
),

𝑖 = 1, 2, . . . , 𝑛; then the WT active output curve 𝑓(𝑥) can be
expressed as a 𝑘-order polynomial function of 𝑥:

𝑓 (𝑥
𝑖
, 𝛽) =

𝑘

∑
𝑗=0

𝛽
𝑗
𝑥
𝑗

𝑖
. (12)

Define the signal residual, which represents the deviation
between the observed and ideal power outputs, as follows:

𝑟
𝑖
= (𝑦
𝑖
− 𝑓(𝑥

𝑖
, 𝛽))
2

. (13)

Thus, the total signal residual is

𝑆 =
𝑛

∑
𝑖=1

𝑟
𝑖
=
𝑛

∑
𝑖=1

(𝑦
𝑖
− 𝑓(𝑥

𝑖
, 𝛽))
2

. (14)

The key concept of this method is to find an optimal 𝛽,
which makes the observation sets in accordance with (13)
through an iterative regression process. Define an index

𝐾 =
𝑘

∑
𝑗=0

𝛽2
𝑗
. (15)

The value of 𝐾 will tend to be stable when the estimation of
the WT output approximates to the ideal output. Then, the
termination condition of iteration is

Δ𝐾 = 𝐾
𝑝+1

− 𝐾
𝑝
< 𝜉, (16)

where 𝐾
𝑝
represents the value of 𝐾 with respect to the pth

iteration and 𝜉 is a threshold value.

5.3. Improved Power Curve Modeling with Outlier Eliminated.
During the power curve modeling process addressed by the
WRF-SLFN method, it is demonstrated that using the entire
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Figure 7: Abnormal power output within the raw data sets.

data sets is not necessary and will not improve the model
performance. As a consequence, this section displays the
power curve modeling result by using an improved method-
ology that combines the SLFN with the outlier detection
technique; this improved power curve modeling method is
named the SLFN-OD. During the SLFN-OD process, the
data quality check and outlier detection technique introduced
in Section 5.2 is adopted as the first step to determine the
abnormal values within the raw data set. After that, the
detected abnormal subset is eliminated from the raw data
set, and the cleaned data set is chosen as an input of the
SLFN structure. Figures 8, 9, and 10 represent the curve
fitting results of both the cleaned and raw data sets at all
three stations selected in this paper. In the main, the power
curve fitted by the cleaned data sets is above the curve that is
modeledwith the rawdata set; the gap between the two power
curves expands with the increase of wind speed.This process
will enhance the performance of the power curve modeling,
especially for the subintervals with large wind speeds. It
can be regarded as a direct benefit from the detection and
elimination process of the outliers that are contained in the
raw data sets.

Table 3 provides the performance comparison between
theWRF-SLFN and the improvedWRF-SLFN-ODmethods.
Similar to the discussion in Section 4.3, here, the range of
power output is also divided into five subintervals for each
of the three stations. In the gross, the improved WRF-SLFN-
OD method outperforms the WRF-SLFN with an effective
enhancement according to the RE calculation; it leads to
a RE reduction of 22.22%, 30.00%, and 70.00% according
to the three stations, respectively, compared with the WRF-
SLFNmethod.This indicates that theWRF-SLFN-OD brings
a mean RE reduction of 40.74% compared to the original RE.
Specifically, in the first subinterval for all three stations, the
WRF-SLFN-OD provides an apparently higher assessment
than the actual power output; this results in the negative
RE values according to these subintervals. While considering
the other subintervals, theWRF-SLFN-OD brings significant
improvements in most cases, especially in the second and
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Table 3: Performance comparison between the WRF-SLFN and WRF-SLFN-OD methods.

RE of wind power assessment
0–10MW 10–20MW 20–30MW 30–40MW 40–50MW Total

Site 1 WRF-SLFN 0.40 0.99 0.56 0.05 −0.86 −0.09
WRF-SLFN-OD −0.48 0.24 0.41 0.01 −0.01 −0.07

0–20MW 20–40MW 40–60MW 60–80MW 80–100MW Total

Site 2 WRF-SLFN 0.44 1.07 0.46 −0.03 −0.85 −0.10
WRF-SLFN-OD −1.00 −0.83 −0.21 0.31 0.11 −0.07

0–10MW 10–20MW 20–30MW 30–40MW 40–50MW Total

Site 3 WRF-SLFN 0.76 1.02 0.60 0.57 −0.85 −0.20
WRF-SLFN-OD −0.61 0.28 0.45 0.12 −0.15 −0.06
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Figure 8: Curve fitting using the cleaned data from station 1.
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Figure 9: Curve fitting using the cleaned data from station 2.

last subintervals. This enables the improved WRF-SLFN-OD
method to construct amore propermodel of the power curve
fitting and to provide a more accurate assessment of the wind
power output.
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Figure 10: Curve fitting using the cleaned data from station 3.

6. Improvement Considering Wind Direction
Modeling

During the abovementionedmodeling processes, discussions
on wind speed only focused on the numerical value; however,
there is another important characteristic, wind direction,
which will be quite helpful in wind-related modeling such as
the wind power assessment discussed in this paper.

6.1. Performance and Analysis according to Wind Direction.
Considering a specific local site, wind direction has its
distinctive distribution and characteristic. Exemplified by
the data collected from station 1, Figure 11 represents the
distribution of the wind direction through a wind rose map.
Specifically, the wind speed observations are grouped into
twelve directional sectors, as the wind rose map indicates; the
east direction is set as zero degree, and each sector contains a
range of thirteen degrees. For station 1, the prevailing wind
direction during the period when the data are available is
between 330∘ and 360∘; the wind blows from this sector more
than 15% of the time. Moreover, the most frequent wind
directions of stations 2 and 3 are also located in the last
directional sector, the same as in station 1; the wind rosemaps
of these two stations are displayed in Figure 13.
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Figure 11: Wind rose of station 1 and the division of the wind direction.

The layout of turbines at a wind farm is always designed
to take advantage of the prevailing wind directions because
the wind from other directions may not produce as much
power as the wind from the prevailing direction as a result
of the wake effect. Thus, what is the relationship between
the directional wind speed and the actual power output?
Figure 12 exhibits the power output performance according
to the different wind direction sectors, also exemplified by
station 1; the numbers of wind speed sectors accord with
the division exhibited in Figure 11. It is clear that the trans-
formation relation varies according to the wind speed from
the different directional sectors. The most important reason
may be that the WTs are not always arrayed in conformity
with the direction of the wind due to the change of the wind
direction. Although the yaw device can make an adjustment
to the WT heading, depending on the anemometer and
wind vane at the hub height, some lag cannot be eliminated.
As a consequence, the wind speeds that come from the
prevailing direction can be transformed into power outputs
with the maximum utilization rate. This indicates that the
most frequent wind speeds carry the major information
of the local wind, considering the wind power generation
from the WTs; the winds from other directional sectors,
especially the positions that are nearly perpendicular to the
prevailing direction, may not be helpful in improving the
model performance and may introduce additional errors
during the wind-related modeling process.

6.2. Improved Power CurveModeling ConsideringWindDirec-
tion. The above discussion indicates that the wind farm
production varies under the different wind directions; the
wind direction is also a significant factor for an accurate
estimation of the wind power output. This section develops
an improved FLFN-handled power curve modeling with the
wind direction factor; it is designated the SLFN-WD. Figures

14, 15, and 16 display the curve fitting results using the data
in the prevailing directional sector and using the raw data for
each of the three selected stations. On the whole, the power
curves fitted by the prevailing directional data sets exhibit
the same trend as the curves modeled by the raw data sets,
for each station. This indicates that the wind speeds located
in the most frequent directional sector contain the major
and most effective information of the local wind resource
because the prevailing directional wind speed has the highest
cumulative frequency and the most power potential. In
addition, there are differences between the curves modeled
using the prevailing direction and raw data sets. Power curves
fitted with the prevailing directional wind speeds are overall
above those fitted by the raw sets; the gap between these two
categories becomes larger with the increase of the wind speed
value.

The performance of the WRF-SLFN-WD is represented
in Figure 17; both the polar diagrams and a table of the
RE comparison are included. The result demonstrates that
the power curve modeling process performs well in the
prevailing directional sector; it achieves a quite low RE in all
three stations. At the same time, the power curve modeling
in certain directional sectors leads to a large evaluation
error, even higher than 1.50. Therefore, the power curve
modeling with the unselected raw data may introduce addi-
tional interferences instead of leading to an error reduction;
modeling with the prevailing directional wind speeds is
useful for obtaining the effective information of the power
transformation and for providing an accurate assessment of
the local wind power potential.

7. Conclusion

To build up wind farms, it is essential to perform an accurate
assessment of the wind energy potential at the promising
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Figure 12: Power output performance according to the different wind direction sectors, exemplified by station 1.

sites because it is a necessary and crucial step both in
the preevaluation for the site selection and in the further
planning of the project. As one of the most important factors
during the assessment process, the knowledge of wind power
transformation, from the wind speed to the wind-generated
power output, is required, but it is not an easy task. The
statistical analysis, concerning the use of the various pdfs to
describe the wind speed frequency distributions, is generally
used. However, their performance is expected to be enhanced
in the actual applications.

This original method of wind power assessment is a com-
bination of the WRF wind speed simulation and the SLFN
algorithm, due to the recognized strengths of both meth-
ods. In most cases, the WRF-SLFN method demonstrates
good performance compared with the pdf-based power
assessment. Next, two improvements are proposed through
the aid of the abovementioned data quality check and the
outlier detection technique and the directional power curve

modelingmethod, named theWRF-SLFN-ODand theWRF-
SLFN-WD. Specifically, the first improved method contains
a data filtering process that eliminates the abnormal outputs
within the raw data set and uses the cleaned set as the input
of the original SLFN-fitting structure. The WRF-SLFN-OD
method leads to an RE reduction of 40.74%, which is the
mean value from the simulation of all three stations compared
with the original RE. Then, the WRF-SLFN-WD method
includes a data analysis according to the twelve directional
sectors of the local wind speeds; the data with the prevailing
directional wind speeds is chosen for further power curve
modeling and power potential assessment. The result indi-
cates that power curve modeling with unselected raw data
may introduce additional interferences instead of leading to
an error reduction; thus, both of the proposed methods are
of great significance to filter the effective information of the
power transformation and to provide an accurate assessment
of the local wind power potential.
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Figure 13: Wind rose of stations 2 and 3.
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Figure 14: Curve fitting using the data in the prevailing direction of station 1.
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Figure 16: Curve fitting using the data in the prevailing direction of station 3.
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Figure 17: Performance of power curve modeling considering the wind direction.
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