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Recently, sufficient descent property plays an important role in the global convergence analysis of some iterative methods. In this
paper, we propose a new iterative method for solving unconstrained optimization problems. This method provides a sufficient
descent direction for objective function. Moreover, the global convergence of the proposed method is established under some
appropriate conditions. We also report some numerical results and compare the performance of the proposed method with some
existing methods. Numerical results indicate that the presented method is efficient.

1. Introduction

Consider the unconstrained optimization problem

min
𝑥∈𝑅
𝑛

𝑓 (𝑥) , (1)

where 𝑓 : 𝑅𝑛 → 𝑅 is a continuously differentiable function.
For solving (1), the following iterative formula is often used:

𝑥
𝑘+1

= 𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
, 𝑘 = 0, 1, 2, . . . , (2)

where 𝑥
𝑘
is the current iterative point, 𝛼

𝑘
> 0 is a step size

which is determined by some line search, and 𝑑
𝑘
is a search

direction. Different search directions correspond to different
iterative methods [1–4]. Throughout this paper, 𝑔

𝑘
= ∇𝑓(𝑥

𝑘
)

is an 𝑛-dimensional column vector,𝑦
𝑘−1

= 𝑔
𝑘
−𝑔
𝑘−1

, ‖⋅‖ and𝑇
are defined as the Euclidian norm and transpose of vectors,
respectively. Generally, if there exists a positive constant 𝑐 >
0, such that

𝑔𝑇
𝑘
𝑑
𝑘
≤ −𝑐

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩
2

, (3)

then the search direction𝑑
𝑘
possesses sufficient descent prop-

erty.This property may be crucial for the iterative methods to
be global convergence [5], and some numerical experiments
have shown that sufficient descent methods are efficient [6].
However, not all iterative methods can satisfy sufficient

descent condition (3) under some inexact linear search condi-
tions, such as the conjugate gradientmethod proposed byWei
et al. [7] or the gradient method presented in [8]. In order to
make the search direction 𝑑

𝑘
satisfy the condition (3) at each

step, much effort has been done [9–12].
In [9], Cheng proposed a modified PRP conjugate gradi-

ent method in which the search direction 𝑑
𝑘
is determined

by

𝑑
𝑘
=
{{
{{
{

−𝑔
𝑘
, 𝑘 = 0,

−𝑔
𝑘
+ 𝛽
𝑘
(𝐼 −

𝑔
𝑘
𝑔𝑇
𝑘

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩
2
)𝑑
𝑘−1

, 𝑘 ≥ 1,
(4)

where𝛽
𝑘
= 𝛽PRP
𝑘

= 𝑔𝑇
𝑘
𝑦
𝑘−1

/‖𝑔
𝑘−1

‖2, 𝑔
𝑘
𝑔𝑇
𝑘
is a 𝑛×𝑛matrix and

𝐼 is an identity matrix.
In [10], Zhang et al. derived a simple sufficient descent

method; the search direction 𝑑
𝑘
is given by

𝑑
𝑘
=
{{
{{
{

−𝑔
𝑘
, 𝑘 = 0,

−𝑔
𝑘
+ (𝐼 −

𝑔
𝑘
𝑔𝑇
𝑘

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩
2
)𝑔
𝑘−1

, 𝑘 ≥ 1.
(5)
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Recently, Zhang et al. [11] presented a three-term modi-
fied PRP conjugate gradient method; the search direction 𝑑

𝑘

is generated by

𝑑
𝑘
= {

−𝑔
𝑘
, 𝑘 = 0,

−𝑔
𝑘
+ 𝛽
𝑘
𝑑
𝑘−1

− 𝜃
𝑘
𝑦
𝑘−1

, 𝑘 ≥ 1,
(6)

where

𝛽
𝑘
= 𝛽PRP
𝑘

=
𝑔𝑇
𝑘
𝑦
𝑘−1

󵄩󵄩󵄩󵄩𝑔𝑘−1
󵄩󵄩󵄩󵄩
2
, 𝜃

𝑘
=
𝑔𝑇
𝑘
𝑑
𝑘−1

󵄩󵄩󵄩󵄩𝑔𝑘−1
󵄩󵄩󵄩󵄩
2
. (7)

We note that (4), (5), and (6) can be written as a linear
combination of the steepest descent direction and the projec-
tion of the original direction; that is,

𝑑
𝑘
=
{{
{{
{

−𝑔
𝑘
, 𝑘 = 0,

−𝑔
𝑘
+ 𝜆
𝑘
(𝐼 −

𝜇
𝑘
𝑔𝑇
𝑘

𝜇𝑇
𝑘
𝑔
𝑘

)𝑑
𝑘
, 𝑘 ≥ 1,

(8)

where 𝑑
𝑘
is an original direction, 𝜆

𝑘
is a scalar, and 𝜇

𝑘
∈ 𝑅𝑛 is

any vector such that𝜇𝑇
𝑘
𝑔
𝑘

̸= 0holds. Indeed, if𝜆
𝑘
= 𝛽PRP
𝑘

,𝜇
𝑘
=

𝑔
𝑘
, and 𝑑

𝑘
= 𝑑
𝑘−1

, then (8) reduces to the method (4). Let
𝜆
𝑘
= 1, 𝜇

𝑘
= 𝑔
𝑘
, and 𝑑

𝑘
= 𝑔
𝑘−1

; then (8) reduces to the
method (5). When 𝜆

𝑘
= 𝛽PRP
𝑘

, 𝜇
𝑘
= 𝑦
𝑘−1

, and 𝑑
𝑘
= 𝑑
𝑘−1

, it is
easy to deduce that (8) reduces to the method (6). From (8),
we can easily obtain

𝑔𝑇
𝑘
(𝜆
𝑘
(𝐼 −

𝜇
𝑘
𝑔𝑇
𝑘

𝜇𝑇
𝑘
𝑔
𝑘

)𝑑
𝑘
) = 0. (9)

Thus, one has 𝑔𝑇
𝑘
𝑑
𝑘
= −‖𝑔

𝑘
‖2 for all 𝑘. It implies that the

sufficient descent condition (3) holds with 𝑐 = 1. But the
method (5) does not possess a restart feature which can avoid
the jamming phenomenon. In addition, the methods (4) and
(6) may not always be globally convergent under some
inexact linear search [13], such as the standard Armijo-type
line search which is given as follows:

𝛼
𝑘
= max {𝜌𝑗, 𝑗 = 0, 1, 2, . . .} ,

𝑓 (𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
) ≤ 𝑓
𝑘
+ 𝛿𝛼
𝑘
𝑔𝑇
𝑘
𝑑
𝑘
,

(10)

where 𝜌 ∈ (0, 1) and 𝛿 ∈ (0, 1/2).
Motivated by (8) and (9), our purpose is to design a direc-

tion in the subspace {𝑑 ∈ 𝑅𝑛 | 𝑔𝑇
𝑘
𝑑 = −𝑡

𝑘
}, where 𝑡

𝑘
≥ 0 is a

parameter. This direction can be written as

𝑑
𝑘
= 𝜆
𝑘
(𝐼 −

𝜇
𝑘
𝑔𝑇
𝑘

𝜇𝑇
𝑘
𝑔
𝑘

)𝑑
𝑘
− 𝑡
𝑘

V
𝑘

V𝑇
𝑘
𝑔
𝑘

, (11)

where V
𝑘
∈ 𝑅𝑛 is any vector such that V𝑇

𝑘
𝑔
𝑘

̸= 0 holds. Let

𝑑
𝑘
= {

−𝑔
𝑘
, 𝑘 = 0,

−𝑔
𝑘
+ 𝑑
𝑘
, 𝑘 ≥ 1.

(12)

It is clear that (8) can be regarded as a special case of (12) with
𝑡
𝑘
= 0. Therefore, (12) will have a wider application than (8).

If we take 𝜆
𝑘
= 𝛽PRP
𝑘

, 𝜇
𝑘
= 𝑦
𝑘−1

, V
𝑘
= 𝑦
𝑘−1

, 𝑑
𝑘
= 𝑔
𝑘−1

, and 𝑡
𝑘
=

(𝑔𝑇
𝑘
𝑦
𝑘−1

)2/‖𝑔
𝑘−1

‖2 in (12), then a new search direction is given
as follows:

𝑑
𝑘
= {

−𝑔
𝑘
, 𝑘 = 0,

−𝑔
𝑘
+ 𝛽
𝑘
𝑔
𝑘−1

− 𝜃
𝑘
𝑦
𝑘−1

, 𝑘 ≥ 1,
(13)

where

𝛽
𝑘
=
𝑔𝑇
𝑘
𝑦
𝑘−1

󵄩󵄩󵄩󵄩𝑔𝑘−1
󵄩󵄩󵄩󵄩
2
, 𝜃

𝑘
=

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩
2

󵄩󵄩󵄩󵄩𝑔𝑘−1
󵄩󵄩󵄩󵄩
2
. (14)

In this paper, we present a new iterative method for
unconstrained optimization problems; the search direction is
defined by (13) and (14). We prove that 𝑑

𝑘
satisfies 𝑔𝑇

𝑘
𝑑
𝑘
≤

−‖𝑔
𝑘
‖2 without any line search. It means that the sufficient

descent condition (3) holds with 𝑐 = 1. Furthermore, we
prove that the proposedmethod is globally convergent under
the standardArmijo-type line search or themodifiedArmijo-
type line search. From (13) and (14), we can see that the pro-
posed method has a restart feature that directly addresses the
jamming problem. In fact, when the step 𝑥

𝑘
− 𝑥
𝑘−1

is small,
then the factor 𝑦

𝑘−1
tends to zero vector.Therefore, the direc-

tion 𝑑
𝑘
generated by (13) is very close to the steepest descent

direction −𝑔
𝑘
.

The rest of this paper is organized as follows. In Section 2,
we propose a new algorithm and discuss its sufficient descent
property. In Section 3, the global convergence of the proposed
method is proved under themodifiedArmijo-type line search
or the standard Armijo line search. Some numerical results
are given to test the performance of the proposed method in
Section 4. Finally, we have some conclusions about the
proposed method.

2. New Algorithm

In this section, the specific iterative steps of the proposed
algorithm are listed as follows.

Algorithm 1. Consider the following.

Step 1. Choose parameters 𝛿 ∈ (0, 1), 𝜌 ∈ (0, 1), and
𝛽 > 0; given an initial point 𝑥

0
∈ 𝑅𝑛. Set 𝑑

0
= −𝑔
0

and 𝑘 := 0.
Step 2. If ‖𝑔

𝑘
‖ = 0, then stop; otherwise go to the next

step.
Step 3. Determine a step size 𝛼

𝑘
satisfying modified

Armijo-type line search conditions:

𝛼
𝑘
= max {𝛽𝜌𝑗, 𝑗 = 0, 1, 2, . . .} ,

𝑓 (𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
) ≤ 𝑓 (𝑥

𝑘
) − 𝛿𝛼2

𝑘

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩
2

.

(15)

Step 4. Let 𝑥
𝑘+1

= 𝑥
𝑘
+ 𝛼
𝑘
𝑑
𝑘
.

Step 5. Calculate the search direction 𝑑
𝑘+1

by (13) and
(14).
Step 6. Set 𝑘 := 𝑘 + 1, and go to Step 2.
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Theorem 2. Let sequences {𝑑
𝑘
} and {𝑥

𝑘
} be generated by (13)

and (2); then

𝑔𝑇
𝑘
𝑑
𝑘
≤ −

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩
2

, (16)

for all 𝑘 ≥ 0.

Proof. Obviously, the conclusion is true for 𝑘 = 0.
If 𝑘 ≥ 1, multiplying (13) by 𝑔𝑇

𝑘
, we have

𝑔𝑇
𝑘
𝑑
𝑘
= −

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩
2

+ 𝑔𝑇
𝑘
(𝛽
𝑘
𝑔
𝑘−1

− 𝜃
𝑘
𝑦
𝑘−1

)

= −
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩
2

+
𝑔𝑇
𝑘
𝑦
𝑘−1

󵄩󵄩󵄩󵄩𝑔𝑘−1
󵄩󵄩󵄩󵄩
2
𝑔𝑇
𝑘
𝑔
𝑘−1

−

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩
2

󵄩󵄩󵄩󵄩𝑔𝑘−1
󵄩󵄩󵄩󵄩
2
𝑔𝑇
𝑘
𝑦
𝑘−1

= −
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩
2

+
𝑔𝑇
𝑘
𝑦
𝑘−1

󵄩󵄩󵄩󵄩𝑔𝑘−1
󵄩󵄩󵄩󵄩
2
(𝑔𝑇
𝑘
𝑔
𝑘−1

−
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩
2

)

= −
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩
2

+
𝑔𝑇
𝑘
𝑦
𝑘−1

󵄩󵄩󵄩󵄩𝑔𝑘−1
󵄩󵄩󵄩󵄩
2
𝑔𝑇
𝑘
(𝑔
𝑘−1

− 𝑔
𝑘
)

= −
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩
2

−
(𝑔𝑇
𝑘
𝑦
𝑘−1

)
2

󵄩󵄩󵄩󵄩𝑔𝑘−1
󵄩󵄩󵄩󵄩
2

≤ −
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩
2

.

(17)

Therefore, the inequality (16) holds for all 𝑘 ≥ 0. The proof is
completed.

Theorem 2 shows that the search direction 𝑑
𝑘
given by

(13) possesses the sufficient descent property for any line
search.

3. Convergence Analysis

The following assumptions are often needed to prove the
global convergence of nonlinear conjugate gradient methods
[14, 15]. In this section, we also use these assumptions in the
convergence analysis of the proposed method.

Assumption 3. Consider the following.

(i) The level set 𝑆 = {𝑥 ∈ 𝑅𝑛 : 𝑓(𝑥) ≤ 𝑓(𝑥
0
)} is bounded.

(ii) In a neighborhood 𝑁 of 𝑆, the function 𝑓 is contin-
uously differentiable and its gradient is Lipchitz con-
tinuous; namely, there exists a constant 𝐿 > 0, such
that
󵄩󵄩󵄩󵄩𝑔 (𝑥) − 𝑔 (𝑦)

󵄩󵄩󵄩󵄩 ≤ 𝐿
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ 𝑁. (18)

Lemma4. Suppose that Assumption 3 holds. Let {𝑥
𝑘
} and {𝑑

𝑘
}

be generated by Algorithm 1. If the step size 𝛼
𝑘
is obtained by

(15) or (10), then there exists a constant𝑚 > 0, such that

𝛼
𝑘
≥ 𝑚

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩
2

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩
2
, (19)

and one can also have
∞

∑
𝑘=0

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩
4

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩
2
< ∞. (20)

Proof. The results of this lemma will be proved in the follow-
ing two cases.

Case 1. Let the step size 𝛼
𝑘
be computed by (15). From

Theorem 2, we have ‖𝑔
𝑘
‖‖𝑑
𝑘
‖ ≥ −𝑔𝑇

𝑘
𝑑
𝑘
≥ ‖𝑔
𝑘
‖2; thus ‖𝑑

𝑘
‖ ≥

‖𝑔
𝑘
‖. If 𝛼

𝑘
= 𝛽, then we obtain 𝛼

𝑘
≥ 𝛽‖𝑔

𝑘
‖2/‖𝑑
𝑘
‖2. If 𝛼

𝑘
< 𝛽,

thenwe know 𝜌−1𝛼
𝑘
does not satisfy the inequality (15). So we

have

𝑓 (𝑥
𝑘
+ 𝜌−1𝛼

𝑘
𝑑
𝑘
) − 𝑓
𝑘
> −𝛿𝛼2

𝑘
𝜌−2

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩
2

. (21)

By Assumption 3(ii) and the mean value theorem, we have

𝑓 (𝑥
𝑘
+ 𝜌−1𝛼

𝑘
𝑑
𝑘
) − 𝑓
𝑘

= 𝜌−1𝛼
𝑘
𝑔(𝑥
𝑘
+ 𝑡
𝑘
𝜌−1𝛼
𝑘
𝑑
𝑘
)
𝑇

𝑑
𝑘
= 𝜌−1𝛼

𝑘
𝑔𝑇
𝑘
𝑑
𝑘

+ 𝜌−1𝛼
𝑘
(𝑔 (𝑥
𝑘
+ 𝑡
𝑘
𝜌−1𝛼
𝑘
𝑑
𝑘
) − 𝑔
𝑘
)
𝑇

𝑑
𝑘

≤ 𝜌−1𝛼
𝑘
𝑔𝑇
𝑘
𝑑
𝑘
+ 𝐿𝜌−2𝛼2

𝑘

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩
2

,

(22)

where 𝑡
𝑘
∈ (0, 1).

From (21) and (22), we have

−𝛿𝛼2
𝑘
𝜌−2

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩
2

< 𝜌−1𝛼
𝑘
𝑔𝑇
𝑘
𝑑
𝑘
+ 𝐿𝜌−2𝛼2

𝑘

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩
2

. (23)

UsingTheorem 2 again, we get

𝛼
𝑘
>

𝜌
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩
2

(𝐿 + 𝛿)
󵄩󵄩󵄩󵄩𝑑𝑘

󵄩󵄩󵄩󵄩
2
. (24)

Let𝑚 = min{𝛽, 𝜌/(𝐿+𝛿)}; then the inequality (19) is obtained.
From Assumption 3(i), there exists a constant 𝑀 > 0,

such that |𝑓(𝑥)| < 𝑀, ∀𝑥 ∈ 𝑆. By (15), (19), and Theorem 2,
we have
𝑛−1

∑
𝑘=0

(𝛿𝑚2
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩
4

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩
4

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩
2

) ≤
𝑛−1

∑
𝑘=0

(𝛿𝛼2
𝑘

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩
2

)

≤
𝑛−1

∑
𝑘=0

(𝑓
𝑘
− 𝑓
𝑘+1

) < 2𝑀.

(25)

Therefore, from the above inequality, we have
∞

∑
𝑘=0

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩
4

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩
2
< ∞. (26)

Case 2. Let the step size 𝛼
𝑘
be computed by (10). Similar to the

proof of the above case, we can obtain

𝛼
𝑘
≥

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩
2

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩
2
, if 𝛼

𝑘
= 1,

𝛼
𝑘
>
𝜌 (1 − 𝛿)

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩
2

𝐿
󵄩󵄩󵄩󵄩𝑑𝑘

󵄩󵄩󵄩󵄩
2

, if 𝛼
𝑘
< 1.

(27)
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Let 𝑚 = min{1, 𝜌(1 − 𝛿)/𝐿}; then the inequality (19) is
obtained. From (10), (19), andTheorem 2, we obtain

𝑛−1

∑
𝑘=0

(𝛿𝑚

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩
2

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩
2

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩
2

) ≤
𝑛−1

∑
𝑘=0

(−𝛿𝛼
𝑘
𝑔𝑇
𝑘
𝑑
𝑘
)

≤
𝑛−1

∑
𝑘=0

(𝑓
𝑘
− 𝑓
𝑘+1

) < 2𝑀.

(28)

By the above inequality, we can get (20). The proof is com-
pleted.

Theorem 5. Suppose that Assumption 3 holds. If Algorithm 1
generates infinite sequences {𝑑

𝑘
} and {𝑥

𝑘
}, then one has

lim
𝑘→∞

inf 󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩 = 0. (29)

Proof. We obtain this conclusion (29) by contradiction.
Suppose that (29) does not hold, then there exists a positive
constant 𝜆

1
> 0, such that ‖𝑔

𝑘
‖ ≥ 𝜆

1
, for all 𝑘 ≥ 0. From

Assumption 3(i), we know that there also exists a positive
constant 𝜆

2
> 0, such that ‖𝑔

𝑘
‖ ≤ 𝜆

2
, for all 𝑘 ≥ 0. Since

𝑑
𝑘
= −𝑔
𝑘
+ 𝛽
𝑘
𝑔
𝑘−1

+ 𝜃
𝑘
𝑦
𝑘−1

, then we have
󵄩󵄩󵄩󵄩𝑑𝑘

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩 +
󵄨󵄨󵄨󵄨𝛽𝑘

󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑔𝑘−1

󵄩󵄩󵄩󵄩 +
󵄨󵄨󵄨󵄨𝜃𝑘

󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩𝑦𝑘−1

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩 (
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑔𝑘−1

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩𝑔𝑘−1

󵄩󵄩󵄩󵄩
2

󵄩󵄩󵄩󵄩𝑔𝑘−1
󵄩󵄩󵄩󵄩

+

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩
2

󵄩󵄩󵄩󵄩𝑔𝑘−1
󵄩󵄩󵄩󵄩
2
(
󵄩󵄩󵄩󵄩𝑔𝑘

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑔𝑘−1

󵄩󵄩󵄩󵄩)

≤ 𝜆
2
+
2𝜆2
2

𝜆
1

+
2𝜆3
2

𝜆2
1

≜ 𝑀
1
.

(30)

The above inequality implies

∞

∑
𝑘=0

󵄩󵄩󵄩󵄩𝑔𝑘
󵄩󵄩󵄩󵄩
4

󵄩󵄩󵄩󵄩𝑑𝑘
󵄩󵄩󵄩󵄩
2
≥
∞

∑
𝑘=0

𝜆4
1

𝑀2
1

, (31)

which contradicts with (20). This completes the proof.

Remark 6. If the search direction 𝑑
𝑘
is defined by (13) with

𝛽
𝑘
= −(𝑔𝑇

𝑘
𝑦
𝑘−1

)/(𝑔𝑇
𝑘−1

𝑑
𝑘−1

), 𝜃
𝑘
= −‖𝑔

𝑘
‖2/(𝑔𝑇
𝑘−1

𝑑
𝑘−1

), then the
sufficient descent property and global convergence can also
be proved similar to the proof of Theorems 2 and 5.

4. Numerical Results

In this section, some numerical results are provided to test
the performance of the proposed method, and the proposed
method is comparedwith the existingmethods [9–11]. For the
sake of simplicity, the proposed method and other compara-
tive methods are named by NSDM, LPRP [11], SSD [10], and
MPRP [9], respectively. The test problems and initial points

Table 1: The test problems.

Number Function name
P1 Generalized Tridiagonal 1
P2 Extended Himmelblau
P3 Liarwhd
P4 Diagonal 7
P5 Diagonal 8
P6 Nonscomp
P7 Cosine
P8 Hager
P9 Diagonal 2
P10 Raydan 1
P11 Extended Penalty
P12 Diagonal 3
P13 Generalized Quartic
P14 Power
P15 Extended Denschnf
P16 Perturbed Tridiagonal Quadratic
P17 Extended Denschnb
P18 Raydan 2
P19 Almost Perturbed Quadratic
P20 Extended BD1
P21 Extebded Tet
P22 Extended Denschnb
P23 Arwhead
P24 Extended Tridiagonal 2
P25 Quartc
P26 Extended Maratos
P27 Engval 1
P28 Extended Quadratic Exponential EP1

are from [16]. The test problems are listed in Table 1. In our
experiment, all the codes were written in MATLAB 7.0 and
run on PC with 2.00GB RAM memory, 2.10GHz CPU, and
windows 7 operation system.

In all algorithms, the step size 𝛼
𝑘
is computed satisfying

the modified Armijo-type line search (15) with 𝛿 = 0.1, 𝜌 =
0.1, and 𝛽 = 1, and the stopping condition is ‖𝑔

𝑘
‖ ≤ 10−5. We

also stop these algorithms if CPU time is over 500(s).
InTable 2, P,N,NI,NF,NG, andCPU stand for th number

of test problems, the dimension of the vectors, the number of
iterations, the number of function evaluations, the number
of gradient evaluations, and the run time of CPU in seconds,
respectively. The symbol “—” means that the corresponding
method fails in solving the test problems when the CPU time
is more than 500 seconds, and the star ∗ denotes that the
numerical result is the best one among all the comparative
methods.

In Table 2, we compare the performance of the new
method by testing 28 different problems. According to the
distribution of the star ∗, one can see that the NSDMmethod
performs better than the LPRP,MPRP, and SSDmethodswith
14 test problems, worse than the MPRP method with 1 test
problem and worse than the LPRP method with 6 test
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Table 2: The numerical results of the NSDM/LPRP/SSD/MPRP methods.

P 𝑁
NSDM LPRP SSD MPRP

NI/NF/NG/CPU NI/NF/NG/CPU NI/NF/NG/CPU NI/NF/NG/CPU
P1 400 57/164/58/1.934∗ 70/199/71/2.098 65/187/66/2.337 74/210/75/2.984
P2 1000 53/161/54/4.715∗ 60/181/61/4.764 119/361/120/13.974 58/175/59/7.881
P3 900 24/68/25/3.276∗ 68/140/69/8.175 65/199/66/9.594 80/216/81/13.400
P4 1000 36/73/37/5.990∗ 41/83/42/6.053 41/83/42/7.410 41/83/42/8.424
P5 900 29/59/30/3.946∗ 36/73/37/4.352 36/73/37/5.336 36/73/37/6.052
P6 300 70/213/71/1.424∗ 108/310/109/1.921 293/879/294/6.316 —/—/—/—
P7 4000 41/115/42/32.339∗ 73/201/74/49.889 79/216/80/95.581 82/203/83/115.440
P8 100 57/118/58/0.156 65/125/66/0.172 100/218/101/0.280 59/109/60/0.188
P9 100 960/1108/961/2.606 780/781/781/1.888∗ 1096/1266/1097/2.886 780/781/781/2.293
P10 100 362/802/363/0.967 230/414/231/0.546 742/1578/743/1.872 151/266/152/0.437∗

P11 1000 53/186/54/9.388∗ 65/245/66/10.329 146/496/147/28.011 64/242/65/14.234
P12 1000 44/89/45/7.896∗ 49/99/50/7.933 49/99/50/9.718 49/99/50/10.955
P13 3000 52/105/53/35.802 54/109/55/33.056 55/116/56/48.891 54/109/55/55.973
P14 200 613/2798/614/5.210∗ 839/4045/840/6.412 650/2990/651/5.491 1601/5914/1602/16.114
P15 800 31/118/32/3.354∗ 86/331/87/8.206 78/304/79/9.142 82/302/83/10.982
P16 100 298/1015/299/0.796 157/504/158/0.374 499/1943/500/1.310 143/480/144/0.421
P17 1000 67/135/68/5.523 71/143/72/5.210 70/141/71/7.317 70/141/71/8.486
P18 3000 13/20/14/10.076 5/6/6/3.659∗ 5/6/6/5.373 5/6/6/6.194
P19 100 274/937/275/0.734 125/396/126/0.312∗ 544/2281/545/1.435 141/448/142/0.421
P20 3000 47/110/48/16.895 23/49/24/7.395∗ 58/140/59/39.243 27/59/28/19.451
P21 500 59/129/60/1.420 44/89/45/0.951∗ 81/185/82/2.527 46/93/47/1.576
P22 2000 69/139/70/23.469 73/147/74/22.386 73/147/74/32.423 73/147/74/36.179
P23 500 183/914/184/8.221∗ —/—/—/— —/—/—/— —/—/—/—
P24 500 87/176/88/4.072 74/136/75/3.089 338/678/339/16.957 60/109/61/3.463
P25 100 3093/3096/3094/9.485 3145/3147/3146/8.159 3145/3147/3146/9.064 3145/3147/3146/9.984
P26 100 293/1189/294/0.936 111/410/112/0.327∗ —/—/—/— 131/447/132/0.421
P27 1000 78/184/79/12.699∗ 92/238/93/13.478 101/267/102/18.533 —/—/—/—
P28 200 17/70/18/0.092∗ 29/121/30/0.137 29/121/30/0.183 29/121/30/0.198

problems. However, there also exist 7 test problems that are
not marked by the symbol ∗. Among these 7 test problems,
the NSDMmethod performs better than other methods with
5 test problems in the number of iterations, 4 test problems
in the number of function evaluations, 5 test problems in the
number of gradient evaluations, and 1 test problem in CPU
time.

In order to compare the performance of these methods
clearly, we adopt the performance profiles introduced by
Dolan and Moré [17]. The performance results are shown in
Figures 1–4, respectively. In [17], Dolan andMoré introduced
the notion as a means to evaluate and compare the perfor-
mance of the set solvers 𝑆 on a test set 𝑃. Assuming 𝑛

𝑠
solvers

and 𝑛
𝑝
problems exist, for each problem 𝑝 and solver 𝑠, they

defined

𝑡
𝑝,𝑠

= computing time (the number of iterations or others)

required to solve problem 𝑝 by solver 𝑠.
(32)

The performance ratio is given by

𝛾
𝑝,𝑠

=
𝑡
𝑝,𝑠

min {𝑡
𝑝,𝑠

: 𝑠 ∈ 𝑆}
. (33)

Assume that a parameter 𝛾
𝑀
≥ 𝛾
𝑝,𝑠

for all 𝑝, 𝑠 is chosen, and
𝛾
𝑝,𝑠

= 𝛾
𝑀
if and only if solver s does not solve problem 𝑝. The

performance profile is defined by

𝑃
𝑠
(𝑡) =

1

𝑛
𝑝

size {𝑝 ∈ 𝑃 : 𝛾
𝑝,𝑠

≤ 𝑡} . (34)

Hence, 𝑃
𝑠
(𝑡) is the probability for solver 𝑠 ∈ 𝑆 that a per-

formance ratio 𝛾
𝑝,𝑠

is within a factor 𝑡 ∈ 𝑅 of the best possible
ratio.Theperformance profile𝑃

𝑠
: 𝑅 → [0, 1] for a solverwas

nondecreasing, piecewise, and continuous from the right.The
value of 𝑃

𝑠
(1) is the probability that the solver will win over

the rest of the solvers. In general, a solver with high values of
𝑃
𝑠
(𝑡) or at the top right of the figure is preferable or represents

the best solver.
From Figures 1–4, we can obviously see that the NSDM

method performs better than the MPRP method and SSD
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Figure 1: Performance profiles about the number of iterations.
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Figure 2: Performance profiles about the number of function eval-
uations.

method. Although the LPRPmethod outperforms theNSDM
method for 1.2 < 𝑡 < 2.4 in Figure 1, 1.2 < 𝑡 < 3.2 in Figure 2,
1.2 < 𝑡 < 2.2 in Figure 3, and 1.1 < 𝑡 < 2.8 in Figure 4,
the NSDM method is superior to the LPRP method in the
remaining interval. Moreover, from Figures 1–4, we can see
that the NSDM method can solve 100% of the test problems,
while the LPRPmethod can solve about 96% of the problems.
Hence, the NSDM method is superior to the LPRP method.
By comparing the value of 𝑃

𝑠
(1) in Figures 1–4, one can have

a conclusion that the NSDMmethod is competitive to others;
for example, the NSDMmethod is superior to other methods
at least 45% in the number of iterations. In a word, one can
have a conclusion that the presented method is much better
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Figure 3: Performance profiles about the number of gradient eval-
uations.
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Figure 4: Performance profiles about CPU time.

than the LPRP, MPRP, and SSDmethods from the analysis of
the numerical results.

5. Conclusions

In this paper, we have proposed a new formula (11) that can
generate different search directions by taking different para-
meters. Based on this formula, we have proposed a new suffi-
cient descentmethod for solving unconstrained optimization
problems. At each iteration, the generated direction is only
related to the gradient information of two successive points.
We have shown that this method is globally convergent. The
numerical results indicate that the given method is superior
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to other methods for the test problems. In the future, we will
study much better iterative methods according to (11) and
perform new convergence analysis on them.
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