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This paper addresses the finite-time synchronizing problem for a class of chaotic neural networks. In a real communication network,
parameters of the master system may be time-varying and the system may be perturbed by external disturbances. A simple high-
gain observer is designed to track all the nonlinearities, unknown system functions, and disturbances. Then, a dynamic active
compensatory controller is proposed and by using the singular perturbation theory, the control method can guarantee the finite-
time stability of the error system between the master system and the slave system. Finally, two illustrative examples are provided to
show the effectiveness and applicability of the proposed scheme.

1. Introduction

The chaotic system exhibits unpredictable and irregular
dynamics which has been found in many practical systems.
Interestingly, small differences in the initial state can lead to
significant differences in the chaotic system state. Chaotic
synchronization is receiving increasing attention within the
area of nonlinear dynamics [1]. One of the most impor-
tant applications is secure communication [2], where an
information-bearing signal is hidden on a chaotic carrier
signal. Synchronization of chaotic systems has been thought
possible since the seminal work of Pecora and Carroll. They
proposed a drive-response concept for constructing synchro-
nization of coupled chaotic systems [3]. State variables of a
given chaotic master system are used as inputs to drive a slave
system that is a duplicated one of the drive system. Under
some conditions, the state evolution of the slave system is
shown to synchronize with that of the master system. There
are many important results focusing on many typical chaotic
systems such as the Chua system, Lorenz system, and Lur’e
system (see, e.g., [3–7] and references therein).

On the other hand, neural networks have been extensively
studied over the past two decades for their potential appli-
cations in modeling complex dynamics, nonlinear program-
ming, image processing, pattern recognition, associative
memory, and so forth [8]. Recently, it has been shown that

if the networks parameters and time delays are appropri-
ately chosen, these networks can exhibit some complicated
dynamics and even chaotic behaviors [9–11]. Therefore, the
synchronization of chaotic neural networks has become an
important area of study as other kinds of chaotic systems.
In this field, various synchronization schemes have been
proposed (see, e.g., [12–28]). In [12, 13], synchronization of
delayed neural networks is realized by using adaptive control
and parameters identification. For time-varying networks,
the property of synchronization is discussed in [14, 15].
Adaptive synchronization of two different chaotic neural
networks is realized by using Lyapunov method and linear
matrix inequalities in [16]. Periodically intermittent control
is used to solve the problem of exponential synchronization
of stochastic Cohen-Grossberg neural networks [18].

In real physical systems, how to design the systems for
special signal transmission channels has become a critical
issue. Secure communication has to rely on common com-
munication networks in many applications. Because of the
network communication introduced [19], signal transmission
channels often involve data missing, system varying, and
environment disturbances [20–23].These lead to a limitation
of some existing control schemes when they are applied to
a practical environment since they are based on the accurate
master-slave system parameters. However, there are few stud-
ies on the synchronization issue for this class of chaotic neural
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networks with unknown parameters and disturbances [24–
29]. Most of them focus on either the unknown parameters
or the disturbance, but not both.In addition, some of them
take the disturbances as a kind of special stochastic structure
[25, 26].

Moreover, in real applications, we not only need the
systems to guarantee synchronization but also need them to
synchronize in the shortest possible time. If the slave system
synchronizes with the master system in infinite time, the
systemwill not be able to work effectively. In view of all of the
above-mentioned facts, the aim of this paper is to investigate
the finite-time synchronization for a class of delayed neural
networks with all the uncertainty and external disturbances.

In this paper, an active control method is proposed to
control the slave system based on the terminal attractor for
the purpose of guaranteeing that the error system between
the master system and the slave system will achieve finite-
time stability. In the meantime, in order to realize the con-
troller, an effective state observer based on a special tracking
differentiator is designed to estimate all the uncertainties and
disturbances in a very short time. The approximate finite-
time stability of the closed-loop system is analysed in detail
on the basis of the singular perturbation theory. Moreover,
the results are applied to some chaotic neural networks.
Two numerical simulations are also given to validate the
effectiveness of the proposed control strategy on the Matlab
TrueTime simulation platform.

The rest of this paper is organized as follows. In Section 2,
the problem formulations are presented after some prelim-
inaries are given. In Section 3, the observer and the con-
troller are proposed to realize the finite-time synchronization.
Numerical simulations are given to demonstrate and also
visualize the effectiveness of the proposed theoretical results
in Section 4. Finally, some concluding remarks are drawn in
Section 5.

2. Problem Formulation and Some
Preliminaries

In this section, we formulate an error system for the master-
slave synchronization of delayed neural networks. Some
preliminary knowledge will be presented for the derivation
of our main results. Consider a class of delayed neural
network models consisting of 𝑁 identical nodes, which can
be described by the following differential equation:

𝑥̇
𝑖 (𝑡) = −𝑐

𝑖
𝑥
𝑖 (𝑡) +

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗 (𝑡))

+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗 (𝑡 − 𝜏 (𝑡))) ,

(1)

or in a compact form as follows:

𝑥̇ (𝑡) = −𝐶𝑥 (𝑡) + 𝐴𝑓 (𝑥 (𝑡)) + 𝐵𝑓 (𝑥 (𝑡 − 𝜏 (𝑡))) , (2)

where 𝑥(𝑡) = [𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑖
(𝑡), . . . , 𝑥

𝑛
(𝑡)]
𝑇

∈ R𝑛

is the state vector associated with the 𝑛 neurons, 𝐶 =

diag{𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑛
} is a positive diagonal matrix, denoting the

rate with which the cell 𝑖 resets its potential to the resting
state when isolated from other cells and inputs, and 𝐴 =

(𝑎
𝑖𝑗
)
𝑛×𝑛

and 𝐵 = (𝑏
𝑖𝑗
)
𝑛×𝑛

are the connection weightmatrix and
the delayed connection weight matrix. 𝑓

𝑗
(⋅)(𝑗 = 1, 2, . . . , 𝑛)

stands for activation functions, so 𝑓
𝑖
(𝑥
𝑗
(𝑡)) is the output of

the 𝑗th neuron of the network and 𝜏(𝑡) are time-varying time
delays of the neural network. The initial conditions are given
by 𝑥
𝑖
(𝑡) = 𝜙

𝑥𝑖
(𝑠) ∈ 𝐶([−𝜏, 0],R), where 𝐶([−𝜏, 0],R) denotes

the set of all continuous functions from [−𝜏, 0] to R.
The corresponding slave system is established as follows:

̇𝑦
𝑖 (𝑡) = −𝑐

𝑖
𝑦
𝑖 (𝑡) +

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑓
𝑗
(𝑦
𝑗 (𝑡))

+

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑓
𝑗
(𝑦
𝑗 (𝑡 − 𝜏 (𝑡))) + 𝑢

𝑖 (𝑡) ,

(3)

where 𝑦(𝑡) = [𝑦
1
(𝑡), 𝑦
2
(𝑡), . . . , 𝑦

𝑖
(𝑡), . . . , 𝑦

𝑛
(𝑡)]
𝑇

∈ R𝑛 is the
neuron state of the slave system. All the system parameters
𝐶 = diag(𝑐

1
, 𝑐
2
, . . . , 𝑐

𝑛
), 𝐴 = (𝑎

𝑖𝑗
)
𝑛×𝑛

, and 𝐵 = (𝑏
𝑖𝑗
)
𝑛×𝑛

have the same definitions as in (1) but may not be equal
to parameters of the master system all the time. 𝑢

𝑖
(𝑡)(𝑖 =

1, 2, . . . , 𝑛) is the control signals and the initial conditions are
given by 𝑦

𝑖
(𝑡) = 𝜑

𝑦𝑖
(𝑠) ∈ 𝐶([−𝜏, 0],R).

In network-based synchronization systems, there exist
system uncertainties and external disturbances when net-
work communications are introduced. In this paper, we
assume that all the parameters of themaster system are uncer-
tain or even time-varying to represent the system’s internal
uncertainty. For the external disturbance, it is inevitable in
physics systems and it plays an important role in chaos
synchronization in different ways [25]. Some papers regard
a type of Brownian motions as a result of the occurrence
of random uncertainties in the communication channels in
the error system between the master system and the slave
system. In this paper we do not care about the specific form of
the disturbance, so we regard all the input disturbances and
other uncertain nonlinearities as a more general form 𝐻(𝑡).
𝐻(𝑡) = [ℎ

1
(𝑡), ℎ
2
(𝑡), . . . , ℎ

𝑛
(𝑡)]
𝑇 is unknown and bounded;

that is, ‖𝐻
𝑖
(𝑡)‖ ≤ 𝐷 and 𝐷 is an unknown positive number.

For simplicity, the master system is supposed to be without
disturbances and disturbance dynamics are exhibited in the
slave system.

In order to give a better explanation, subtract the master
system (1) from the slave system (3) and define the synchro-
nization errors as 𝑒

𝑖
(𝑡) = 𝑦

𝑖
(𝑡) − 𝑥

𝑖
(𝑡). Consider the input

disturbance 𝐻(𝑡), writing the error system in an expanded
form as follows:

̇𝑒
𝑖 (𝑡) = −𝑐

𝑖
𝑒
𝑖 (𝑡) − (𝑐

𝑖
− 𝑐
𝑖
) 𝑦
𝑖 (𝑡) +

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑔
𝑗
(𝑒
𝑗 (𝑡))

+

𝑛

∑

𝑗=1

(𝑎
𝑖𝑗
− 𝑎
𝑖𝑗
) 𝑓
𝑗
(𝑦
𝑗 (𝑡)) +

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑔
𝑗
(𝑒
𝑗 (𝑡 − 𝜏 (𝑡)))
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+

𝑛

∑

𝑗=1

(𝑏
𝑖𝑗
− 𝑏
𝑖𝑗
) 𝑓
𝑗
(𝑦
𝑗 (𝑡 − 𝜏 (𝑡))) + 𝑢

𝑖 (𝑡) + ℎ
𝑖 (𝑡) 𝑒𝑖 (𝑠)

= 𝜑
𝑖 (𝑠) − 𝜙

𝑖 (𝑠) , 𝑠 ∈ (−𝜏, 0] ,

(4)

where 𝑔
𝑗
(𝑒
𝑗
(𝑡)) = 𝑓

𝑗
(𝑒
𝑗
(𝑡) + 𝑥

𝑗
(𝑡)) − 𝑓

𝑗
(𝑥
𝑗
(𝑡)). Then, our goal

is to design the controller 𝑢
𝑖
(𝑡)(𝑖 = 1, 2, . . . , 𝑛) which makes

the dynamical system (4) stabilized in a finite-time.
To facilitate further work, it is assumed that some reason-

able conditions are satisfied.

(H1) The activation functions 𝑓
𝑖
(⋅)(𝑗 = 1, 2, . . . , 𝑛) satisfy

the Lipschitz condition with a positive 𝐿
𝑖
:

󵄩󵄩󵄩󵄩𝑓𝑖 (𝑥1) − 𝑓
𝑖
(𝑥
2
)
󵄩󵄩󵄩󵄩 ≤ 𝐿
𝑖

󵄩󵄩󵄩󵄩𝑥1 − 𝑥
2

󵄩󵄩󵄩󵄩 , ∀𝑥
1
, 𝑥
2
∈ 𝑅. (5)

(H2) The time delay 𝜏(𝑡) is a bounded and differentiable
function satisfying 0 ≤ 𝜏(𝑡) < ∞ and ̇𝜏(𝑡) < ∞.

(H3) The unknown nonlinear disturbance ℎ
𝑖
(𝑡) is a differ-

entiable function satisfying ℎ̇(𝑡) < ∞ and 0 ≤ ℎ
𝑖
(𝑡) <

∞.

3. Main Results

In this section, we introduce the terminal attractor and its
work principle first, and then we give the design of the
controller and the observer. Finally, some criteria are derived
to ensure finite-time synchronization between themaster and
slave systems.

In system (4), we define

𝜂
𝑖
= −𝑐
𝑖
𝑒
𝑖 (𝑡) − (𝑐

𝑖
− 𝑐
𝑖
) 𝑦
𝑖 (𝑡) +

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑔
𝑗
(𝑒
𝑗 (𝑡))

+

𝑛

∑

𝑗=1

(𝑎
𝑖𝑗
− 𝑎
𝑖𝑗
) 𝑓
𝑗
(𝑦
𝑗 (𝑡)) +

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑔
𝑗
(𝑒
𝑗 (𝑡 − 𝜏 (𝑡)))

+

𝑛

∑

𝑗=1

(𝑏
𝑖𝑗
− 𝑏
𝑖𝑗
) 𝑓
𝑗
(𝑦
𝑗 (𝑡 − 𝜏 (𝑡))) + ℎ

𝑖

(6)

and rewrite the error dynamical system (4) as follows:

̇𝑒
1 (𝑡) = 𝜂

1
+ 𝑢
1

̇𝑒
2 (𝑡) = 𝜂

2
+ 𝑢
2

...

̇𝑒
𝑛 (𝑡) = 𝜂

𝑛
+ 𝑢
𝑛
.

(7)

Obviously, 𝜂 = [𝜂
1
, . . . , 𝜂

𝑖
, . . . , 𝜂

𝑛
]
𝑇 denotes the overall

uncertainty of all the unknown parameters and disturbances.
Considering the form of 𝜂 and assumptions in the previous
section, we obtain that 𝜂 is differentiable and satisfies 0 ≤

̇𝜂
𝑖
(𝑡) < ∞.

3.1. Terminal Attractor. Terminal attractor can realize finite-
time stability of the systemusing the non-Lipschitz continuity
of equilibrium points [30]. Consider a differential equation as
follows:

̇𝜌 = −𝛽𝜌
𝑞/𝑝

, (8)

where 𝑞 and 𝑝 are positive odd numbers. Obviously, 𝜌 = 0

is the equilibrium point and we can obtain lim
𝜌→0

𝑑 ̇𝜌 = ∞.
If 𝜌 = 0, 𝑑 ̇𝜌 does not satisfy Lipschitz continuity and this
leads to the finite-time stability of (8). Meanwhile, 𝑑 ̇𝜌 →

−∞(𝜌 → 0), and we can calculate the Jacobian matrix of
(8). Consider

lim
𝜌→0

𝑑 ̇𝜌

𝑑𝜌
= −∞. (9)

In other words, if 𝜌 approaches the equilibrium point
𝜌 = 0, its eigenvalue will approach −∞. The trajectory of the
system will converge to the equilibrium point at an infinite
rate and this leads to its finite-time stability. On the other
hand, we solve the equation directly, and the solutions all
satisfy (10) for arbitrary initial states 𝜌(0). Consider

𝑝

𝑝 − 𝑞
[𝜌(𝑡
𝑠
)
(𝑝−𝑞)/𝑝

− 𝜌(0)
(𝑝−𝑞)/𝑝

] = −𝛽𝑡
𝑠
. (10)

From (10), we can obtain 𝑡
𝑠
= (𝑝/𝛽(𝑝 − 𝑞))|𝜌(0)|

(𝑝−𝑞)/𝑝, and
𝑡
𝑠
is the required time from 𝜌(0) to 𝜌 = 0.

3.2. Controller and Observer Design. If 𝜂 = [𝜂
1
, . . . , 𝜂

𝑖
,

. . . , 𝜂
𝑛
]
𝑇 is previously identified, thenwe can design the active

compensatory controller based on the terminal attractor.
Consider

𝑢
1
= −𝑘
1
𝑒
𝛼

1
− 𝜂
1

𝑢
2
= −𝑘
2
𝑒
𝛼

2
− 𝜂
2

...

𝑢
𝑖
= −𝑘
𝑖
𝑒
𝛼

𝑖
− 𝜂
𝑖

...

𝑢
𝑛
= −𝑘
𝑛
𝑒
𝛼

𝑛
− 𝜂
𝑛
,

(11)

where 𝑘
1
, 𝑘
2
, . . . , 𝑘

𝑛
> 0, is the feedback strength and𝛼 = 𝑞/𝑝,

with 𝑞, 𝑝 being positive odd numbers and 𝑞 < 𝑝.
Substitute (11) into the error dynamical system (7); a new

form of the system is shown in (12). It is easy to check the
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finite-time stability of this closed-loop system according to
terminal attractor. Consider

̇𝑒
1 (𝑡) = −𝑘

1
𝑒
𝛼

1

̇𝑒
2 (𝑡) = −𝑘

2
𝑒
𝛼

2

...

̇𝑒
𝑖 (𝑡) = −𝑘

𝑖
𝑒
𝛼

𝑖

...

̇𝑒
𝑛 (𝑡) = −𝑘

𝑛
𝑒
𝛼

𝑛
.

(12)

In practice, the uncertain nonlinear term 𝜂
𝑖
is totally

unknown, so we cannot realize the synchronization by (11).
We need to achieve its realistic form.

To estimate𝑓
𝑖
, based on [31–33], here we introduce a

differential observer (13). Using a similar method mentioned
in [31, 34], it is easy to prove that the observer can track
system uncertainties in a short time.The time needed is𝑂(𝜀).
Consider

𝑤̇
𝑖
= −𝑢̃
𝑖
−

𝜆

𝜀2
(𝑤
𝑖
+ 𝑒
𝑖
) ,

𝜂
𝑖
=

𝜆

𝜀2
(𝑤
𝑖
+ 𝑒
𝑖
) ,

(13)

where 𝑖 = 1, 2, . . . , 𝑛, 𝑤
𝑖
(0) = −𝑒

𝑖
(0), and 𝜂

𝑖
= 0, 𝜂

𝑖
is the

estimation value of 𝜂
𝑖
, 𝜆 > 0, and 0 < 𝜀 ≪ 1. Therefore, we

can obtain the realistic form of 𝑢
𝑖
. Consider

𝑢̃
1
= −𝑘
1
𝑒
𝛼

1
− 𝜂
1

𝑢̃
2
= −𝑘
2
𝑒
𝛼

2
− 𝜂
2

...

𝑢̃
𝑖
= −𝑘
𝑖
𝑒
𝛼

𝑖
− 𝜂
𝑖

...

𝑢̃
𝑛
= −𝑘
𝑛
𝑒
𝛼

𝑛
− 𝜂
𝑛
.

(14)

But peaking phenomenon is an important feature of the
observer and in particular the controller may destabilize the
closed-loop system as the observer gain is driven sufficiently
high [34]. So we design the control as a globally bounded
function so that it is saturated during the peaking period.
Define 𝑚

𝑖
as the upper bound of all input control 𝑢̃

𝑖
that can

stabilize the closed-loop system. Consider

𝑢̃
𝑖
= Sat (𝑢̃

𝑖
) = {

𝑚
𝑖
⋅ sign (𝑢̃

𝑖
)

󵄨󵄨󵄨󵄨𝑢̃𝑖
󵄨󵄨󵄨󵄨 > 𝑚
𝑖
,

𝑢̃
𝑖

󵄨󵄨󵄨󵄨𝑢̃𝑖
󵄨󵄨󵄨󵄨 ≤ 𝑚
𝑖
.

(15)

3.3. Analysis of the Finite-Time Synchronization. Define the
estimate error as 𝛿

𝑖
= 𝜂
𝑖
− 𝜂
𝑖
, substitute controller (14) into

system (11), and rewrite the error dynamical system as

̇𝑒
1 (𝑡) = −𝑘

1
𝑒
𝛼

1
+ 𝛿
1

̇𝑒
2 (𝑡) = −𝑘

2
𝑒
𝛼

2
+ 𝛿
2

...

̇𝑒
𝑖 (𝑡) = −𝑘

𝑖
𝑒
𝛼

𝑖
+ 𝛿
𝑖

...

̇𝑒
𝑛 (𝑡) = −𝑘

𝑛
𝑒
𝛼

𝑛
+ 𝛿
𝑛

(16)

or in a compact form as ė = F(e) + 𝛿, where 𝐹
𝑖
(𝑒
𝑖
) = −𝑘

𝑖
𝑒
𝛼

𝑖
.

From (13), we obtain 𝛿
𝑖
= −(𝜆/𝜀

2
)𝛿
𝑖
+ ̇𝜂
𝑖
or in a compact form

𝜀
2
𝛿̇ = A𝛿 − 𝜀

2
𝜂̇, where 𝑛 × 𝑛matrix A = diag{−𝜆, . . . , −𝜆}.

So we can describe the error dynamical system as

ė = F (e) + 𝛿,

𝜀
2
𝛿̇ = A𝛿 − 𝜀

2
𝜂̇.

(17)

When 𝜀 is small enough, system (17)will be a singular per-
turbation system. The stability of this system is determined
by its two subsystems [35]. When 𝜀 = 0, equation A𝛿 = 0 has
an only solution 𝛿 = 0. Based on the singular perturbation
theory, the slow subsystem of the closed-loop system (16) is

ė = F (e) (18)

and the fast subsystem is

𝜁̇ = A𝜁, (19)

where 𝜁̇ = 𝑑𝛿/𝑑𝜎 and 𝜎 = 𝑡/𝜀
2.

Lemma 1 (see [36]). Consider system ẋ = 𝑓(x), where x ∈ R𝑛,
𝑓(x) : R𝑛 → R, is a continuous function vector. The system is
finite-time stable if and only if there exists a Lyapunov function
𝑉(x)which satisfies the following inequality (20) for the system:

𝑉̇ (x) =
𝜕𝑉

𝜕𝑥
𝑓 (x) ≤ −𝛽

1(𝑉 (x))𝛽2 , (20)

where 𝛽
1
> 0 and 𝛽

2
∈ (0, 1).

Theorem 2. If there exists a small positive 𝜀
∗, when 𝜀 < 𝜀

∗,
the controller (14) based on the observer (13) makes the error
system (17) finite-time stable and, thus, master system (1) and
slave system (3) are finite-time synchronized.

Proof. For the subsystem (19), becauseA is a positive definite
diagonal matrix, this system is exponentially stable, and it is
easy to check its stability using Lyapunov function 𝑊(𝛿) =

𝛿
T
𝛿, differentiating𝑊(𝛿) with respect to (17). Consider

𝑊̇ = −
2𝜆

𝜀2
𝛿
T
𝛿 + 2𝛿

T
𝜂̇ ≤ −

2𝜆

𝜀2
𝑊 + 2

󵄩󵄩󵄩󵄩𝜂̇
󵄩󵄩󵄩󵄩
√𝑊. (21)
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Figure 1: The phase plot of the master system (34).

Define 𝑘
0
= sup{‖𝜂̇‖} and 𝑐

1
= 4𝑘
2

0
/𝜆
2. If 𝑊(𝛿) ≥ 𝑐

1
𝜀
4, (21)

will change to

𝑊̇ ≤ −
𝜆

𝜀2
𝑊. (22)

Define the initial time as 𝑡
0
and make 𝑐

2
= 𝑊(𝛿(𝑡

0
)).

When 𝑐
2
≥ 𝑐
1
𝜀
4, there exists a positive constant 𝜏

𝜀
for system

(17) and𝑊(𝛿) will satisfy (24). Consider

𝜏
𝜀
= −

𝜀
2

𝜆
ln(

𝑐
1
𝜀
4

𝑐
2

) , (23)

𝑊(𝛿 (𝑡)) ≤ 𝑐
2
𝑒
−(𝜆/𝜀

2
)(𝑡−𝑡
0
)

𝑡 ∈ (𝑡
0
, 𝑡
1
]

𝑊 (𝛿 (𝑡
1
)) ≤ 𝑐
1
𝜀
4
,

(24)

where 𝑡
1
= 𝑡
0
+ 𝜏
𝜀
. When 𝑊(𝛿) = 𝑐

1
𝜀
4, (21) can still hold. So

we obtain

𝑊(𝛿) < 𝑐
1
𝜀
4
(𝑡 > 𝑡
1
) . (25)

In other words,𝑊(𝛿) is𝑂(𝜀). According to the definition
of this Lyapunov function, we can get

‖𝛿‖ ≤ 𝑐
3
𝜀
2

(𝑡 > 𝑡
1
) , (26)

where 𝑐
3

= √𝑐
1
. Equation (26) tells us that ‖𝛿‖ is also 𝑂(𝜀)

when 𝑡 > 𝑡
1
.

For the order-reduced system (18), it is easy to explain its
finite-time stability using the terminal attractor theory [30].
So, according to Lemma 1, there exists a Lyapunov function
𝑉(e) that satisfies 𝑉(0) = 0 and for ∀e ̸= 0:

𝑉̇ (e) =
𝜕𝑉

𝜕𝑒
ė =

𝜕𝑉

𝜕e
F (e) ≤ −𝛽

1
𝑉
𝛽
2 , (27)

where 𝛽
1
> 0 and 0 < 𝛽

2
< 1.

On the other hand, we differentiate 𝑉(e) with respect to
the system (17). Consider

𝑉̇ (e) =
𝜕𝑉

𝜕e
F (e) + 𝜕𝑉

𝜕e
𝛿 ≤ −𝛽

1
𝑉
𝛽
2 +

𝜕𝑉

𝜕e
𝛿. (28)

Because the error e is bounded, we can get that 𝜕𝑉/𝜕e
is bounded and define 𝑀 as the bound. When 𝑡 → ∞,
consider (26) and then we have

𝑉̇ (e) =≤ −𝛽
1
𝑉
𝛽
2 +

𝜕𝑉

𝜕e
𝛿 ≤ −𝛽

1
𝑉
𝛽
2 + 𝑐
3
𝑀𝜀
2
. (29)

If 𝑉(e) ≥ 𝑐
4
𝜀
2/𝛽
2 (𝑐
4

= (2𝑐
3
𝑀/𝛽
1
)
1/𝛽
2) and 𝑡 > 𝑡

1
, (28) will

change to

𝑉̇ (e) ≤ −
𝛽
1

2
𝑉
𝛽
2 . (30)

If 𝑉(e(𝑡
1
)) ≥ 𝑐

4
𝜀
2/𝛽
2 , there exists a time constant 𝑇 which

makes (31) hold according to Lemma 1. Consider

𝑉 (e (𝑡
2
)) ≤ 𝑐
4
𝜀
2/𝛽
2 𝑡
2
= 𝑡
1
+ 𝑇. (31)

Calculate the integral of (29) from𝑉(e(𝑡
1
)) to 𝑐

4
𝜀
2/𝛽
2 , and we

can obtain

𝑇 ≤
2

𝛽
1
(1 − 𝛽

2
)
((𝑉 (e (𝑡

1
)))
1−𝛽
2

− (𝑐
4
𝜀
2/𝛽
2)
1−𝛽
2

) . (32)

When 𝑉(e) = 𝑐
4
𝜀
2/𝛽
2(𝑡 > 𝑡

1
), (29) can still hold and 𝑉̇(e) < 0.

So we obtain

𝑉 (e) < 𝑐
4
𝜀
2/𝛽
2 (𝑡 > 𝑡

2
) . (33)

From (32) and 𝛽
2

∈ (0, 1), we can obtain that 𝑉(e) is
𝑂(𝜀) when 𝑡 > 𝑡

2
. In other words, for arbitrary small positive

constant 𝑟, there exists a constant 𝜀∗. Any 𝜀 < 𝜀
∗ willmake the

states of the closed-loop system (16) satisfy e ∈ 𝐵
𝑟
(0), where

lim
𝜀
∗
→0

𝑟 = 0 and 𝐵
𝑟
(0) is a closed sphere whose centre is

e ∈ 𝐵
𝑟
(0) and radius is 𝑟.

Meanwhile, according to the analysis above, the closed-
loop system (17) is finite-time stable and the time it needs to
achieve stability is 𝜏

𝜀
+ 𝑇. This also means that the master

system and the slave system are synchronized.
The proof is complete.

4. Illustrative Examples

In this section, two examples are presented below to illustrate
the effectiveness of the previous results.

Example 3. Consider a typical two-dimensional chaotic neu-
ral network withmixed delay to be themaster system (1) with
the following parameters:

𝐶 = [
1 0

0 1
] , 𝐴 = [

[

1 +
𝜋

4
20

0.1 1 +
𝜋

4

]

]

,

𝐵 =
[
[
[

[

−
1.3√2𝜋

4
0.1

0.1 −
1.3√2𝜋

4

]
]
]

]

,

𝑓 (𝑠) =
1

2
(|𝑠 + 1| − |𝑠 − 1|) , 𝜏 (𝑡) = 1.

(34)

It is investigated in [29] that the systempossesses a chaotic
behaviour. Figure 1 shows the chaotic behaviour of the system
with the initial condition [𝑥

1
(𝑡), 𝑥
2
(𝑡)] = [0, 1] (𝑡 ∈ [−1, 0]).

The slave system is given by (3) with parameters given by (34).
Assume that there is an overall disturbanceh(𝑡) = 0.01 sin 𝑡 in
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Figure 2: State trajectories of slave system and master system.
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Figure 3: Synchronization errors of slave and master systems.
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Figure 4: The phase plot of the master system (36).

the communication channels.Theobserver and the controller
are designed as in (14) and (13), and the parameters are given
as follows:

𝜆 = 8, 𝜀 = 0.05, 𝛼 =
3

5

𝑘
1
= 4, 𝑘

2
= 3.

(35)

Now we begin to simulate the synchronization in Matlab
TrueTime simulation platform. The initial condition asso-
ciated with the slave system is [0.1, 0.1]. The simulation
time is 15 s, and the control signal begins to work at 5 s.
Figure 2 shows the trajectories of the master system and the
slave system, and the dynamics of synchronization errors are
illustrated in Figure 3. It can be seen that the error system
is stabilized in a short time and the slave system indeed
synchronizes with the master system.

Remark 4. There are some nondifferentiable points in 𝜂 of
this system because of the form of 𝑓(𝑠). However, we can see
the effectiveness and applicability of the proposed method
from these simulation results. That is to say, this control
scheme has a great potential for complex systems.

Example 5. Consider the neural network (1) with the follow-
ing parameters:

𝐶 = [
1 0

0 1
] , 𝐴 = [

2 −0.1

−5 4.5
] ,

𝐵 = [
−1.5 −0.1

−0.2 −4
] ,

(36)

and 𝑓(𝑠) = tanh(𝑠).

The chaotic dynamic behaviours of this system have been
studied in [37]. In the case of a time-varying time delay, let
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Figure 5: State trajectories of system (36) and system (37).
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Figure 6: Synchronization errors of system (36) and system (37).
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Figure 7: Control input of the slave system (37).
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𝜏(𝑡) = 0.1(sin(0.5𝑡)) + 0.95 in the master system. Figure 4
shows its dynamic behaviour with the initial condition
[𝑥
1
(𝑡), 𝑥
2
(𝑡)] = [0.4, 0.6] (𝑡 ∈ [−1.05, 0]). Assume that the

slave system cannot get the accurate parameters of themaster
system, so the slave system is given by (3) with the following
parameters:

𝐶 = [
1 0

0 1
] , 𝐴 = [

1 −0.2

−3 4.6
] ,

𝐵 = [
−2 −0.1

−0.1 −3
] ,

𝑓 (𝑠) = tanh (𝑠) , 𝜏 (𝑡) = 1.

(37)

Assume that there is a nonlinear high frequency external
disturbance h(𝑡) = cos 10𝑡+sign(sin 𝑡) in the communication
channels. The observer and the controller are designed as in
(14) and (13), and the parameters are given as follows:

𝜆 = 8, 𝜀 = 0.05, 𝛼 =
3

7
,

𝑘
1
= 4, 𝑘

2
= 3.

(38)

Now we begin to simulate the synchronization for these
two different systems on Matlab simulation platform. The
initial condition associated with the slave system is [−1, −1].
The total simulation time is 10 s, and the control signal
begins to work at 0

+s. Figure 5 shows the trajectories of
the master system and the slave system, and the dynamics
of synchronization errors are illustrated in Figure 6. The
control inputs are shown in Figure 7. In addition, Figure 5 is
magnified to show the synchronization performance clearly.
It can be seen that the error system is stabilized in a short time
and the slave system indeed synchronizes with the master
system.

5. Conclusions

We have proposed an active finite-time synchronization
method for uncertain chaotic neural networks. By using a
differential observer, all the uncertainties have been estimated
without requiring any prior information about the factors.
The error dynamic system will become a singular perturba-
tion system if 𝜀 is small enough and we obtain its finite-
time stability by analyzing two subsystems. Therefore, the
slave system can synchronize with the master system even
if there exist complex nonlinear disturbances and model
uncertainties. As the method is simple to achieve and the
control system shows strong robustness, it is believed that the
results should provide some practical guidelines in practical
engineering applications such as secure communication.
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