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This paper investigates the finite-time𝐻
∞
fault estimation problem for linear time-delay systems, where the delay appears in both

state and measurement equations. Firstly, the design of finite horizon 𝐻
∞
fault estimation is converted into a minimum problem

of certain quadratic form. Then we introduce a stochastic system in Krein space, and a sufficient and necessary condition for the
minimum is derived by applying innovation analysis approach and projection theory. Finally, a solution to the𝐻

∞
fault estimation

is obtained by recursively computing a partial difference Riccati equation, which has the same dimension as the original system.
Compared with the conventional augmented approach, the solving of a high dimension Riccati equation is avoided.

1. Introduction

Krein-space theory has proven to be an effective tool in
dealing with the indefinite quadratic control/filtering prob-
lems. Some recent researches on 𝐻

∞
filtering have led to an

interesting connection with Kalman filtering in Krein space
[1, 2]. Comparing with the linear estimation approaches in
Hilbert space, the Krein-space theory can lead to not only
less conservative results but also computationally attractive
algorithms. It has been shown in [1] that a finite horizon
linear estimation problem can be cast into a problem of cal-
culating the minimum point of a certain quadratic form. By
applying linear estimation in Krein space, one can calculate
recursively the minimum point via Riccati equation. In [2]
the authors consider the 𝐻

∞
prediction problem for time-

varying continuous-time systems with delayed measure-
ments in the finite horizon case. The necessary and sufficient
condition for the existence of an𝐻

∞
predictor is obtained by

applying a reorganized innovation approach in Krein space.
On the other hand, fault estimation is one of the most

important issues. The paper [3] designs a fuzzy fault detec-
tion filter for T-S fuzzy systems with intermittent measure-
ments, and all the results are formulated in the form of
linear matrix inequalities. In [4], a sufficient condition for

the existence of a fault filter is exploited in terms of certain
linear matrix inequality. Reference [5] is concerned with the
robust fault detection problem for a class of discrete-time
networked systems with distributed sensors. The existence
of the desired fault detection filter can be determined from
the feasibility of a set of linear matrix inequalities. The paper
[6] addresses the fault detection problem for discrete-time
Markovian jump systems. The characterization of the gains
of the desired fault detection filters is derived in terms of
the solution to a convex optimization problem that can be
easily solved by using the semidefinite program method. As
for the fault estimation problem, the Krein-space approach
has received much attention so far [7–12]. A Krein-space
approach is presented in [7] to 𝐻

∞
fault estimation for

LDTV system, where the augmented approach [13] is also
used. Different from [7], a more further result is obtained
by a Krein-space approach and nonaugmented approach for
the same problem in [8]. Recently, by applying Krein-space
approach and reorganized innovation approach, [9] consid-
ers the finite-horizon𝐻

∞
fault estimation for linear discrete

time-varying systems with delayedmeasurements [9]. Finite-
horizon 𝐻

∞
fault estimation for uncertain linear discrete

time-varying systems with known inputs is considered in
[10].
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Recently, we note that time-delay systems have received
much attention [14–19]. For optimal estimation problem,
when the delay appears in state, the reorganized innovation
approach is not suitable for estimation problem. Motivated
by this point, we consider the finite-horizon problem 𝐻

∞

fault estimation for linear discrete systems with time delay,
where the delay appears in both state and measurement,
which contain [9] as a special case. To the best of our knowl-
edge, this problem has not yet been investigated, and this
constitutes the primary motivation for our research. On the
other hand, we desire to obtain the necessary and sufficient
condition for the existence of an𝐻

∞
fault estimator. Anatural

idea is to use Krein space to deal with the finite-horizon
𝐻
∞

fault estimation for linear time-delay systems, and this
gives rise to another motivation of our work. The main con-
tributions of the paper are highlighted as follows. (i) The
necessary and sufficient condition will be derived for fault
estimation problem with time delay. (ii) Compared with the
augmentation approach [13], our result on estimation is given
based on a partial difference Riccati equation, and hence the
solving of an high dimension Riccati equation is avoided.

The organization of this paper is as follows. The problem
statement is given in Section 2. Section 3 presents the fault
estimator design in terms of a partial difference Riccati
equation. A numerical example is given to demonstrate the
effectiveness of the approach in Section 4, and the paper is
concluded in Section 5.

Notation. Throughout this paper, a real symmetric matrix
𝑃 > 0 (≥0) denotes 𝑃 being a positive definite (or positive
semidefinite) matrix. 𝐼 denotes an identity matrix of appro-
priate dimension. The superscripts “−1” and “𝑇” represent
the inverse and transpose of a matrix. R𝑛 denotes the 𝑛-
dimensional Euclidean space.R𝑛×𝑚 is the set of all 𝑛×𝑚 real
matrices. 𝛿

𝑖𝑗
= 0 for 𝑖 ̸= 𝑗 and 𝛿

𝑖𝑖
= 1. For stochastic vectors 𝛼

and 𝛽, inner product ⟨𝛼, 𝛽⟩ equals the covariance matrix of 𝛼
and 𝛽. 𝜃(𝑘) ∈ 𝑙

2
[0,𝑁]means ∑𝑁

𝑘=0
𝜃
𝑇

(𝑘)𝜃(𝑘) < ∞. Matrices,
if the dimensions are not explicitly stated, are assumed to have
compatible dimensions for algebraic operations.

2. Problems Statement

Consider the following linear systems with time delay:

𝑥 (𝑘 + 1) =

𝑑

∑

𝑖=0

𝐴
𝑖
𝑥 (𝑘 − ℎ

𝑖
) + 𝐵
𝑑
𝑑 (𝑘) + 𝐵

𝑓
𝑓 (𝑘) , (1)

𝑦 (𝑘) =

𝑑

∑

𝑖=0

𝐶
𝑖
𝑥 (𝑘 − 𝑙

𝑖
) + 𝐷
𝑓
𝑓 (𝑘) + V (𝑘) , (2)

where 𝑥(𝑘) ∈ R𝑛, 𝑑(𝑘) ∈ R𝑝, and 𝑓(𝑘) ∈ R𝑟 are the state,
the driving disturbance, and the fault to be estimated, respec-
tively. Also, 𝑦(𝑘) ∈ R𝑚 and V(𝑘) ∈ R𝑚 are measurements
and noises, respectively. Without loss of generality, the delays
are assumed to be of an increasing order: 0 = ℎ

0
< ℎ
1
<

⋅ ⋅ ⋅ < ℎ
𝑑
, 0 = 𝑙

0
< 𝑙
1
< ⋅ ⋅ ⋅ < 𝑙

𝑑
. Moreover, it is assumed

that 𝑑(𝑘), 𝑓(𝑘), and V(𝑘) belong to 𝑙
2
[0,𝑁]. For simplicity

of presentation, we assume that 𝐴
𝑖
, 𝐵
𝑑
, 𝐵
𝑓
, 𝐶
𝑖
, and 𝐷

𝑓
are

constant matrices even though the later development and
results can be easily adapted to the time-varying case.

Problem. Given the observation {𝑦(0), . . . , 𝑦(𝑁)}, seek a fault
estimator 𝑟(𝑘) (𝑘 = 0, . . . , 𝑁) such that

sup
(𝑥0 ,𝑤) ̸=0

∑
𝑁

𝑘=0

𝑟(𝑘) − 𝑓(𝑘)


2

(𝑥
0
− 𝑥
0
)
𝑇

Π
−1

0
(𝑥
0
− 𝑥
0
) + ∑
𝑁

𝑘=0
‖𝑤(𝑘)‖

2

< 𝛾
2

,

(3)

where 𝛾 is a given positive scalar, Π
0
is a positive definite

matrix, and

𝑤 (𝑘) = [𝑑
𝑇

(𝑘) 𝑓
𝑇

(𝑘) V𝑇(𝑘)]
𝑇

. (4)

Without loss of generality, the initial state estimator 𝑥
0
is

assumed to be zero.The value of 𝑥(−𝑘) is assumed to be zero,
where 1 ≤ 𝑘 ≤ 𝜏, 𝜏 = max(ℎ

𝑑
, 𝑙
𝑑
), 𝐸{𝑥(−𝑖)𝑥𝑇(−𝑗)} = 0.

Define the fault estimation error between 𝑟(𝑘) and 𝑓(𝑘)
as

V
𝑓
(𝑘) = 𝑟 (𝑘) − 𝑓 (𝑘) , (5)

and introduce the following quadratic form:

𝐽
𝑁
= 𝑥
𝑇

0
Π
−1

0
𝑥
0
+

𝑁

∑

𝑘=0

‖𝑤(𝑘)‖
2

− 𝛾
−2

𝑁

∑

𝑘=0


V
𝑓
(𝑘)


2

. (6)

Obviously, the𝐻
∞

performance (3) is satisfied if and only if
𝐽
𝑁
> 0 for all (𝑥

0
, 𝑤(𝑘)) ̸= 0.

3. Main Result

We consider constructing an equivalent Krein-space problem
to the minimum for 𝐽

𝑁
. To do so we need to introduce the

following stochastic systems in a Krein space:

x (𝑘 + 1) =
𝑑

∑

𝑖=0

𝐴
𝑖
x (𝑘 − ℎ

𝑖
) + 𝐵
𝑑
d (𝑘) + 𝐵

𝑓
f (𝑘) , (7)

y (𝑘) =
𝑑

∑

𝑖=0

𝐶
𝑖
x (𝑘 − 𝑙

𝑖
) + 𝐷
𝑓
f (𝑘) + k (𝑘) , (8)

r (𝑘) = f (𝑘) + k
𝑓
(𝑘) , (9)

with

⟨

[
[
[
[
[

[

x (0)
d (𝑘)
f (𝑘)
k (𝑘)
k
𝑓
(𝑘)

]
]
]
]
]

]

,

[
[
[
[
[

[

x (0)
d (𝑗)
f (𝑗)
k (𝑗)
k
𝑓
(𝑗)

]
]
]
]
]

]

⟩

= diag (Π
0
, 𝐼𝛿
𝑘𝑗
, 𝐼𝛿
𝑘𝑗
, 𝐼𝛿
𝑘𝑗
, −𝛾
2

𝐼𝛿
𝑘𝑗
) .

(10)

Let y
𝑟
(𝑘) = [y𝑇(𝑘) r𝑇(𝑘)]

𝑇

; then the linear space generated
by the measurements in the Krein space up to time𝑁 can be
written as

L {y
𝑟
(𝑘) , 0 ≤ 𝑘 ≤ 𝑁} . (11)
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It is readily known that y
𝑟
(𝑘) satisfies

y
𝑟
(𝑘) =

𝑑

∑

𝑖=0

𝐶
𝑟𝑖
x (𝑘 − 𝑙

𝑖
) + 𝐷
𝑓𝑟
f (𝑘) + k

𝑟
(𝑘) , (12)

𝐶
𝑟𝑖
= [

𝐶
𝑖

0
] , 𝐷

𝑓𝑟
= [

𝐷
𝑓

𝐼
] , k

𝑟
(𝑘) = [

k (𝑘)
k
𝑓
(𝑘)
] .

(13)

In the sequel, we denote the Krein-space projection of
m(𝑘) onto L{{y

𝑟
(𝑗)}
𝑠

𝑗=0
} by m̂(𝑘 | 𝑠). Construct the innova-

tions

ỹ
𝑟
(𝑘) = y

𝑟
(𝑘) − ŷ

𝑟
(𝑘 | 𝑘 − 1) . (14)

Defining x̃(𝑘 | 𝑗) = x(𝑘) − x̂(𝑘 | 𝑗), we further have

ỹ
𝑟
(𝑘) =

𝑑

∑

𝑖=0

𝐶
𝑟𝑖
x̃ (𝑘 − 𝑙

𝑖
| 𝑘 − 1) + 𝐷

𝑓𝑟
f (𝑘) + k

𝑟
(𝑘) . (15)

Furthermore, we define the cross-covariance matrices of the
state estimation error:

𝑃 (𝑖, 𝑗, 𝑘) = 𝐸 {(x (𝑖) − x̂ (𝑖 | 𝑘)) (x (𝑗) − x̂(𝑗 | 𝑘))𝑇} . (16)

By employing the Krein-space theory, a necessary and suf-
ficient condition for the existence of the desired 𝐻

∞
fault

estimator is given in the following.

Lemma 1. Consider the stochastic systems (7)–(9). For a given
𝛾 > 0, a fault estimator r(𝑘) achieving the performance (3)
exists if and only if

Θ (𝑘) =

𝑑

∑

𝑖=0

𝑑

∑

𝑗=0

𝐶
𝑖
𝑃 (𝑘 − 𝑙

𝑖
, 𝑘 − 𝑙
𝑗
, 𝑘 − 1)𝐶

𝑇

𝑗
+ 𝐼 + 𝐷

𝑓
𝐷
𝑇

𝑓
> 0,

Ξ (𝑘) = (1 − 𝛾
2

) 𝐼 − 𝐷
𝑇

𝑓
Θ
−1

(𝑘)𝐷
𝑓
< 0.

(17)

Furthermore, if the above conditions are satisfied, the desired
𝐻
∞

fault estimator is given by

r (𝑘) = 𝐷𝑇
𝑓
Θ
−1

(𝑘) ỹ (𝑘) , (18)

where ỹ(𝑘) = y(𝑘) − ŷ(𝑘 | 𝑘 − 1), and the minimum of the
quadratic form 𝐽

𝑁
is

min 𝐽
𝑁
=

𝑁

∑

𝑘=0

ỹ𝑇 (𝑘)Θ−1 (𝑘) ỹ (𝑘) . (19)

Proof. It can be seen from (12) and (15) that

𝑅ỹ𝑟(𝑘) = ⟨ỹ𝑟 (𝑘) , ỹ𝑟 (𝑘)⟩

=

𝑑

∑

𝑖=0

𝑑

∑

𝑗=0

𝐶
𝑟𝑖
𝑃 (𝑘 − 𝑙

𝑖
, 𝑘 − 𝑙
𝑗
, 𝑘 − 1)𝐶

𝑇

𝑟𝑖
+ 𝐷
𝑓𝑟
𝐷
𝑇

𝑓𝑟
− 𝛾
2

𝐼

= [
Θ (𝑘) 𝐷

𝑓

𝐷
𝑇

𝑓
(1 − 𝛾

2

) 𝐼
] .

(20)

Equation (20) can be further written as

𝑀(𝑘) 𝑅ỹ𝑟(𝑘)𝑀
𝑇

(𝑘) = Λ (𝑘) , (21)

where

𝑀(𝑘) = [

𝐼 0

−𝐷
𝑇

𝑓
Θ
−1

(𝑘) 𝐼
] , Λ (𝑘) = [

Θ (𝑘) 0

0 Ξ (𝑘)
] .

(22)

We can draw the conclusion from (17) and (21) that 𝑅ỹ𝑟(𝑘) and
𝑅k𝑟(𝑘) have the same inertia.Therefore following the same line
as in [1], theminimum value of 𝐽

𝑁
can be obtained as follows:

min 𝐽
𝑁
=

𝑁

∑

𝑘=0

ỹ𝑇
𝑟
(𝑘) 𝑅
−1

ỹ𝑟(𝑘)ỹ𝑟 (𝑘)

=

𝑁

∑

𝑘=0

[ỹ𝑇 (𝑘) r𝑇 (𝑘) − ỹ𝑇 (𝑘)Θ−1 (𝑘)𝐷
𝑓
]

× [

Θ
−1

(𝑘) 0

0 Ξ
−1

(𝑘)

] [

ỹ (𝑘)

r (𝑘) − 𝐷𝑇
𝑓
Θ
−1

(𝑘) ỹ (𝑘)
].

(23)

Thus the rest of the proof is clear.

In the following, we are devoted to the estimator design in
terms of the solution to a partial difference Riccati equation.

Lemma 2. The state estimate is recursively calculated as

x̂ (𝑘 + 1 | 𝑘) =
𝑑

∑

𝑖=0

𝐴
𝑖
x̂ (𝑘 − ℎ

𝑖
| 𝑘) ,

x̂ (𝑘 − 𝑗 | 𝑘)

= x̂ (𝑘 − 𝑗 | 𝑘 − 1) + 𝐾
𝑗
(𝑘) ỹ
𝑟
(𝑘)

= x̂ (𝑘 − 𝑗 | 𝑘 − 1) +
𝑑

∑

𝑖=0

𝑃 (𝑘 − 𝑗, 𝑘 − ℎ
𝑖
, 𝑘 − 1) 𝐶

𝑇

𝑖

Θ
−1

(𝑘) ỹ (𝑘) , 𝑗 = 0, . . . , 𝑙,

(24)

where the initial values are x̂(−𝑗 | −1) = 0 and 𝐾
𝑗
(𝑘) can be

calculated by

𝐾
𝑗
(𝑘) =

𝑑

∑

𝑖=0

𝑃 (𝑘 − 𝑗, 𝑘 − ℎ
𝑖
, 𝑘 − 1) 𝐶

𝑇

𝑟𝑖
𝑅
−1

ỹ𝑟(𝑘),

𝑅ỹ𝑟(𝑘) = [
Θ (𝑘) 𝐷

𝑓

𝐷
𝑇

𝑓
(1 − 𝛾

2

) 𝐼
] ,

(25)
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while 𝑃(., ., .) is calculated by the partial difference Riccati
equation as

𝑃 (𝑘 − 𝑖, 𝑘 − 𝑗, 𝑘)

= 𝑃 (𝑘 − 𝑖, 𝑘 − 𝑗, 𝑘 − 1)

− 𝐾
𝑖
(𝑘) 𝑅ỹ𝑟(𝑘)𝐾

𝑇

𝑗
(𝑘) , 0 ≤ 𝑖 ≤ 𝑗 ≤ 𝜏,

(26)

𝑃 (𝑘 + 1, 𝑘 − 𝑗, 𝑘) =

𝑑

∑

𝑖=0

𝐴
𝑖
𝑃 (𝑘 − ℎ

𝑖
, 𝑘 − 𝑗, 𝑘) , 0 ≤ 𝑗 ≤ 𝜏,

(27)

𝑃 (𝑘 + 1, 𝑘 + 1, 𝑘)

=

𝑑

∑

𝑖=0

𝑑

∑

𝑗=0

𝐴
𝑖
𝑃 (𝑘 − ℎ

𝑖
, 𝑘 − ℎ

𝑗
, 𝑘) 𝐴
𝑇

𝑗

+ 𝐵
𝑑
𝐵
𝑇

𝑑
+ 𝐵
𝑓
𝐵
𝑇

𝑓
,

(28)

𝑃 (𝑘 − 𝑖, 𝑘 − 𝑗, 𝑘) = 𝑃
𝑇

(𝑘 − 𝑗, 𝑘 − 𝑖, 𝑘) , (29)

𝑃 (−𝑖, −𝑗, −1) = 𝑃
0
(−𝑖, −𝑗) , 0 ≤ 𝑖 ≤ 𝑗, 0 ≤ 𝑗 ≤ 𝜏. (30)

Proof. Applying projection theory, we have

x̂ (𝑘 + 1 | 𝑘) =
𝑑

∑

𝑖=0

𝐴
𝑖
x̂ (𝑘 − ℎ

𝑖
| 𝑘) , (31)

x̂ (𝑘 − 𝑗 | 𝑘) = x̂ (𝑘 − 𝑗 | 𝑘 − 1) + 𝐾
𝑗
(𝑘) ỹ
𝑟
(𝑘) , (32)

where𝐾
𝑗
(𝑘) is given as

𝐾
𝑗
(𝑘) = 𝐸 {x (𝑘 − 𝑗) ỹ𝑇

𝑟
(𝑘)} 𝑅

−1

ỹ𝑟(𝑘). (33)

Noting that x(𝑘 − 𝑗) = x̂(𝑘 − 𝑗 | 𝑘 − 1) + x̃(𝑘 − 𝑗 | 𝑘 − 1), then
based on (15) one has

𝐾
𝑗
(𝑘)

= 𝐸 {x̃ (𝑘 − 𝑗 | 𝑘 − 1) ỹ𝑇
𝑟
(𝑘)} 𝑅

−1

ỹ𝑟(𝑘)

= 𝐸

{

{

{

x̃ (𝑘 − 𝑗 | 𝑘 − 1) [
𝑑

∑

𝑖=0

𝐶
𝑟𝑖
x̃ (𝑘 − 𝑙

𝑖
| 𝑘 − 1)

+ 𝐷
𝑓𝑟
f (𝑘) + k

𝑟
(𝑘)]

𝑇

}

}

}

𝑅
−1

ỹ𝑟(𝑘)

=

𝑑

∑

𝑖=0

𝑃 (𝑘 − 𝑗, 𝑘 − 𝑙
𝑖
, 𝑘 − 1) 𝐶

𝑇

𝑟𝑖
𝑅
−1

ỹ𝑟(𝑘).

(34)

Then one has

x̂ (𝑘 − 𝑗 | 𝑘)

= x̂ (𝑘 − 𝑗 | 𝑘 − 1) + 𝐾
𝑗
(𝑘) ỹ
𝑟
(𝑘)

= x̂ (𝑘 − 𝑗 | 𝑘 − 1)

+

𝑑

∑

𝑖=0

𝑃 (𝑘 − 𝑗, 𝑘 − 𝑙
𝑖
, 𝑘 − 1) 𝐶

𝑇

𝑟𝑖
𝑅
−1

ỹ𝑟(𝑘)ỹ𝑟 (𝑘)

= x̂ (𝑘 − 𝑗 | 𝑘 − 1) +
𝑑

∑

𝑖=0

𝑃 (𝑘 − 𝑗, 𝑘 − 𝑙
𝑖
, 𝑘 − 1)

× [𝐶
𝑇

𝑖
0]𝑀
𝑇

(𝑘) Λ
−1

(𝑘)𝑀 (𝑘) ỹ
𝑟
(𝑘)

= x̂ (𝑘 − 𝑗 | 𝑘 − 1)

+

𝑑

∑

𝑖=0

𝑃 (𝑘 − 𝑗, 𝑘 − 𝑙
𝑖
, 𝑘 − 1) 𝐶

𝑇

𝑖
Θ
−1

(𝑘) ỹ (𝑘) .

(35)

Next it follows from (7) and (32) that

x̃ (𝑘 − 𝑗 | 𝑘) = x̃ (𝑘 − 𝑗 | 𝑘 − 1) − 𝐾
𝑗
(𝑘) ỹ
𝑟
(𝑘) ,

x̃ (𝑘 − 𝑖 | 𝑘) = x̃ (𝑘 − 𝑖 | 𝑘 − 1) − 𝐾
𝑖
(𝑘) ỹ
𝑟
(𝑘) .

(36)

Based on (36), we have the estimation error covariance
matrices

𝑃 (𝑘 − 𝑖, 𝑘 − 𝑗, 𝑘)

= 𝐸 {x̃ (𝑘 − 𝑖 | 𝑘) x̃𝑇 (𝑘 − 𝑗 | 𝑘)}

= 𝐸 {x̃ (𝑘 − 𝑖 | 𝑘 − 1) x̃𝑇 (𝑘 − 𝑗 | 𝑘 − 1)}

+ 𝐸 {𝐾
𝑖
(𝑘) ỹ
𝑟
(𝑘) ỹ𝑇
𝑟
(𝑘)𝐾
𝑇

𝑗
(𝑘)}

− 𝐸 {x̃ (𝑘 − 𝑖 | 𝑘 − 1) ỹ𝑇
𝑟
(𝑘)}𝐾

𝑇

𝑗
(𝑘)

− 𝐾
𝑖
(𝑘) 𝐸 {ỹ

𝑟
(𝑘) x̃𝑇 (𝑘 − 𝑗 | 𝑘 − 1)}

= 𝑃 (𝑘 − 𝑖, 𝑘 − 𝑗, 𝑘 − 1)

− 𝐾
𝑖
(𝑘) 𝑅ỹ𝑟(𝑘)𝐾

𝑇

𝑗
(𝑘) ,

(37)

which is (26). Combining (7) and (31), we obtain

x̃ (𝑘 + 1 | 𝑘) =
𝑑

∑

𝑖=0

𝐴
𝑖
x̃ (𝑘 − ℎ

𝑖
| 𝑘) + 𝐵

𝑑
d (𝑘) + 𝐵

𝑓
f (𝑘) .

(38)



Abstract and Applied Analysis 5

Furthermore, one has
𝑃 (𝑘 + 1, 𝑘 − 𝑗, 𝑘)

= 𝐸 {x̃ (𝑘 + 1 | 𝑘) x̃𝑇 (𝑘 − 𝑗 | 𝑘)}

= 𝐸{[

𝑑

∑

𝑖=0

𝐴
𝑖
x̃ (𝑘 − ℎ

𝑖
| 𝑘) + 𝐵

𝑑
d (𝑘)

+ 𝐵
𝑓
f (𝑘)] x̃𝑇 (𝑘 − 𝑗 | 𝑘)}

=

𝑑

∑

𝑖=0

𝐴
𝑖
𝑃 (𝑘 − ℎ

𝑖
, 𝑘 − 𝑗, 𝑘) ,

𝑃 (𝑘 + 1, 𝑘 + 1, 𝑘)

= 𝐸 {x̃ (𝑘 + 1 | 𝑘) x̃𝑇 (𝑘 + 1 | 𝑘)}

= 𝐸

{

{

{

[

𝑑

∑

𝑖=0

𝐴
𝑖
x̃ (𝑘 − ℎ

𝑖
| 𝑘) + 𝐵

𝑑
d (𝑘) + 𝐵

𝑓
f (𝑘)]

× [

𝑑

∑

𝑖=0

𝐴
𝑖
x̃ (𝑘 − ℎ

𝑖
| 𝑘)

+ 𝐵
𝑑
d (𝑘) + 𝐵

𝑓
f (𝑘)]

𝑇

}

}

}

=

𝑑

∑

𝑖=0

𝑑

∑

𝑗=0

𝐴
𝑖
𝑃 (𝑘 − ℎ

𝑖
, 𝑘 − ℎ

𝑗
, 𝑘) 𝐴
𝑇

𝑗
+ 𝐵
𝑑
𝐵
𝑇

𝑑
+ 𝐵
𝑓
𝐵
𝑇

𝑓
.

(39)

Finally (29) is straightforward by virtue of the definition of
(16). Thus the proof is completed here.

Theorem 3. Consider the system (1)-(2). For a given 𝛾 > 0, a
fault estimator 𝑟(𝑘) that achieves the performance index (3)
exists if and only if Θ(𝑘) > 0 and Ξ(𝑘) < 0, where Θ(𝑘) and
Ξ(𝑘) are defined in Lemma 1. In this case, one possible finite-
time𝐻

∞
fault estimator is given by

𝑟 (𝑘) = 𝐷
𝑇

𝑓
Θ
−1

(𝑘) 𝑦 (𝑘)

= 𝐷
𝑇

𝑓
Θ
−1

(𝑘) [𝑦 (𝑘) −

𝑑

∑

𝑖=0

𝐶
𝑖
𝑥 (𝑘 − 𝑙

𝑖
| 𝑘 − 1)] ,

(40)

where

𝑥 (𝑘 + 1 | 𝑘) =

𝑑

∑

𝑖=0

𝐴
𝑖
𝑥 (𝑘 − ℎ

𝑖
| 𝑘) ,

𝑥 (𝑘 − 𝑗 | 𝑘)

= 𝑥 (𝑘 − 𝑗 | 𝑘 − 1)

+

𝑑

∑

𝑖=0

𝑃 (𝑘 − 𝑗, 𝑘 − 𝑙
𝑖
, 𝑘 − 1) 𝐶

𝑇

𝑖
Θ
−1

(𝑘) 𝑦 (𝑘) ,

𝑗 = 0, . . . , 𝑙.

(41)

Proof. According to [1], we can see that the fault estimation
problem addressed for the deterministic systems (1) with (2)
and (5) is partially equivalent to that for the stochastic systems
(7) with (8) and (9) in a Krein space, and therefore the proof
is readly and we omitted here.

Remark 4. In fact, the problem mentioned in this paper can
be converted into the problem in [7, 8] by applying aug-
mented approach. However, due to the existence of time
delay, we need to solve a high dimension Riccati equation.
Here the solutions to the fault estimator can be obtained by
solving partial difference Riccati equations (26)–(28), which
have the same dimension as the original system (1).Therefore
solving a high dimension Riccati equation is avoided. Here
we present a simple explanation. Because the multiplications
and divisions costmuchmore in computation than additions,
hence we only use the number of multiplications and divi-
sions as the operation count. Denote 𝐶aug and 𝐶new as the
numbers of multiplications and divisions for augmentation
method and our proposed approach in one step, respectively.
According to [18], one can see that the order of ℎ

𝑑
in 𝐶aug is

3, while the order of ℎ
𝑑
in 𝐶new is 2. Therefore if ℎ

𝑑
is large

enough, 𝐶aug ≫ 𝐶new.

Remark 5. Recently, by applying Krein-space approach and
reorganized innovation approach, [9] has considered the
finite-horizon 𝐻

∞
fault estimation for linear discrete time-

varying systems with two-channel single measurement delay.
In this paper, we have investigated the finite-horizon problem
𝐻
∞

fault estimation for linear discrete systems with time
delay,where the delay appears in both state andmeasurement,
which contain [9] as a special case.

4. Numerical Example

Consider the linear discrete-time system:

𝑥 (𝑘 + 1)

= [
0.3 0.5

0 0.4
] 𝑥 (𝑘) + [

0.2 0.1

−0.05 0.2
] 𝑥 (𝑘 − 1)

+ [
0.4 0.1

−0.5 0.3
] 𝑥 (𝑘 − 2)

+ [
0.5

0.4
] 𝑑 (𝑘) + [

1.2

1.8
] 𝑓 (𝑘) ,

𝑦 (𝑘) = [−0.5 0.5] 𝑥 (𝑘)

+ [0.5 0] 𝑥 (𝑘 − 1) + [0.7 −0.3] 𝑥 (𝑘 − 2)

+ 2.5𝑓 (𝑘) + V (𝑘) .

(42)

The finite time horizon concerned here is [0, 100]. The
driving disturbance and measurement noise are selected as
𝑑(𝑘) = 0.4 cos(𝑘), V(𝑘) = 0.6 sin(𝑘). The fault to be estimated
is assumed to be

𝑓 (𝑘) = {
1, 10 ≤ 𝑘 ≥ 25, 50 ≤ 𝑘 ≥ 70,

0, others.
(43)
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Figure 1: Fault and its estimation.

Set initial values as 𝑥
0
= [1 − 0.5]

𝑇, 𝑃(𝑖, 𝑗, −1) = 0, −2 ≤ 𝑖 ≤
−1, 𝑃(𝑖, 𝑗, −1) = 0, −2 ≤ 𝑗 ≤ −1, 𝑃(0, 0, −1) = 𝐼. By using
the result given in Theorem 3, the desired fault estimator is
designed with 𝛾 = 0.85. Figure 1 shows the fault and its
estimate, which confirm that the designed estimator performs
very well.

5. Conclusion

The finite-time𝐻
∞

fault estimation problem for linear time-
delay systems has been investigated.The design of finite hori-
zon𝐻

∞
fault estimation has been converted into a minimum

problem of certain quadratic form.Then an stochastic system
in Krein space has been proposed, and a sufficient and neces-
sary condition for theminimumhas been derived by applying
innovation analysis approach and projection theory. Finally
a solution to the 𝐻

∞
fault estimation has been obtained by

recursively computing a partial difference Riccati equation.
Compared with the conventional augmented approach, the
presented approach lessens the computational demand when
the delay is large. In the further study, we will consider the
𝐻
∞

fault estimation problem for linear time-delay systems
with multiplicative noise.
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