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By using the strong fuzzy Henstock integral and its controlled convergence theorem, we generalized the existence theorems of
solution for initial problems of fuzzy discontinuous integral equation.

1. Introduction

The fuzzy differential and integral equations are important
part of the fuzzy analysis theory and they have the important
value of theory and application in control theory.

The Cauchy problems for fuzzy differential equations
have been studied by several authors [1–6] on the metric
space (𝐸𝑛, 𝐷) of normal fuzzy convex set with the distance
𝐷 given by the maximum of the Hausdorff distance between
the corresponding level sets. Seikkala in [7] defined the fuzzy
derivative and then some generalizations of that have been
investigated in [8, 9]. Consequently, the fuzzy integral which
is the same as that of Dubois and Prade in [10], by means of
the extension principle of Zadeh, showed that the fuzzy initial
value problem 𝑥

󸀠(𝑡) = 𝑓(𝑡, 𝑥(𝑡)), 𝑥(0) = 𝑥
0
, has a unique

fuzzy solution when𝑓 satisfies the generalized Lipschitz con-
dition which guarantees a unique solution of the determinis-
tic initial value problem. Kaleva [1] studied the Cauchy prob-
lem of fuzzy differential equation and characterized those
subsets of fuzzy sets in which the Peano theorem is valid. Park
et al. in [11–14] have considered the existence of solution of
fuzzy integral equation in Banach space. In 2002, Xue and Fu
[15] established solutions to fuzzy differential equations with
right-hand side functions satisfyingCaratheodory conditions
on a class of Lipschitz fuzzy sets.

However, there are discontinuous systems in which the
right-hand side functions 𝑓 : [𝑎, 𝑏] × 𝐸

𝑛 → 𝐸𝑛 are not
integrable in the sense of Kaleva [1] on certain intervals and
their solutions are not absolute continuous functions. To
illustrate, we consider the following example.

Example 1. Consider the following discontinuous system:

𝑥
󸀠

(𝑡) = ℎ (𝑡) , 𝑥 (0) = 𝐴,

𝑔 (𝑡) =
{

{

{

2𝑡 sin 1

𝑡2
−
2

𝑡
cos 1

𝑡2
, 𝑡 ̸= 0,

0, 𝑡 = 0,

𝐴 (𝑠) =

{{

{{

{

𝑠, 0 ≤ 𝑠 ≤ 1,

2 − 𝑠, 1 < 𝑠 ≤ 2,

0, others,

ℎ (𝑡) = 𝜒
|𝑔(𝑡)|

+ 𝐴.

(1)

Then ℎ(𝑡) = 𝜒
|𝑔(𝑡)|

+𝐴 is not integrable in the sense of Kaleva.
However, the above system has the following solution:

𝑥 (𝑡) = 𝜒
|𝐺(𝑡)|

+ 𝐴𝑡, (2)

where

𝐺 (𝑡) =
{

{

{

𝑡2 sin 1

𝑡2
, 𝑡 ̸= 0,

0, 𝑡 = 0.
(3)

It is well known that the Henstock integral is designed
to integrate highly oscillatory functions which the Lebesgue
integral fails to do. It is known as nonabsolute integral and it
is a powerful tool. It is well known that the Henstock integral
includes the Riemann, improper Riemann, Lebesgue, and

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 932696, 8 pages
http://dx.doi.org/10.1155/2014/932696

http://dx.doi.org/10.1155/2014/932696


2 Abstract and Applied Analysis

Newton integrals. Though such an integral was defined by
Denjoy in 1912 and also by Perron in 1914, it was difficult
to handle using their definitions. But with the Riemann-type
definition introduced more recently by Henstock in 1963 and
also independently by Kurzweil, the definition is now simple
and furthermore the proof involving the integral also turns
out to be easy. For more detailed results about the Henstock
integral, we refer to [16]. Recently, Wu and Gong [17, 18]
have combined the fuzzy set theory and nonabsolute integral
theory and discussed the fuzzy Henstock integrals of fuzzy-
number-valued functions which extended Kaleva [1] integra-
tion. In order to complete the theory of fuzzy calculus and
to transfer a fuzzy differential equation into a fuzzy integral
equation, we [19, 20] have defined the strong fuzzy Henstock
integrals and discussed some of their properties and the
controlled convergence theorem.

In this paper, according to the idea of [6, 21, 22] and using
the concept of generalized differentiability [8], we will deal
with the Cauchy problem of discontinuous fuzzy systems as
follows:

𝑥 (𝑡) = 𝑓 (𝑡) + ∫
𝑎

0

𝑘
1
(𝑡, 𝑠) 𝑥 (𝑠) d𝑠 + ∫

𝑎

0

𝑘
2
(𝑡, 𝑠) 𝑔 (𝑠, 𝑥 (𝑠)) d𝑠,

(4)

where 𝑡 ∈ 𝐼
𝑎
= [0, 𝑎], 𝑎 ∈ 𝑅

+, and 𝑥, 𝑓, 𝑔 : 𝐼
𝛼
→ 𝐸

𝑛 are
fuzzy-number-valued function and integrals which are taken
in sense of strong fuzzyHenstock integration, and 𝑘

1
, 𝑘

2
: 𝐼

𝑎
×

𝐼
𝑎
→ 𝑅+ are measurable functions such that 𝑘

1
(𝑡, ⋅), 𝑘

2
(𝑡, ⋅)

are continuous.

2. Preliminaries

2.1. Fuzzy Number Theory. Let 𝑃
𝑘
(𝑅𝑛) denote the family of

all nonempty compact convex subset of 𝑅𝑛 and define the
addition and scalar multiplication in 𝑃

𝑘
(𝑅𝑛) as usual. Let 𝐴

and 𝐵 be two nonempty bounded subsets of 𝑅𝑛. The distance
between 𝐴 and 𝐵 is defined by the Hausdorff metric [10]

𝑑
𝐻
(𝐴, 𝐵) = max{sup

𝑎∈𝐴

inf
𝑏∈𝐵

‖𝑎 − 𝑏‖ , sup
𝑏∈𝐵

inf
𝑎∈𝐴

‖𝑏 − 𝑎‖} . (5)

Denote 𝐸𝑛 = {𝑢 : 𝑅𝑛 → [0, 1] | 𝑢 satisfies (1)–(4) below},
where

(1) 𝑢 is normal; that is, there exists an 𝑥
0
∈ 𝑅𝑛 such that

𝑢(𝑥
0
) = 1,

(2) 𝑢 is fuzzy convex; that is, 𝑢(𝜆𝑥 + (1 − 𝜆)𝑦) ≥

min{𝑢(𝑥), 𝑢(𝑦)} for any 𝑥, 𝑦 ∈ 𝑅𝑛 and 0 ≤ 𝜆 ≤ 1,

(3) 𝑢 is upper semicontinuous,

(4) [𝑢]0 = cl{𝑥 ∈ 𝑅𝑛 | 𝑢(𝑥) > 0} is compact.

Then it is easy to see that 𝐸𝑛 is a fuzzy number space.
For 0 < 𝛼 ≤ 1, denote [𝑢]𝛼 = {𝑥 ∈ 𝑅𝑛 | 𝑢(𝑥) ≥ 𝛼}. Then

from the above conditions (1)–(4), it follows that the 𝛼-level
set [𝑢]𝛼 ∈ 𝑃

𝑘
(𝑅𝑛) for all 0 ≤ 𝛼 < 1.

According to Zadeh’s extension principle, we have addi-
tion and scalar multiplication in the fuzzy number space 𝐸𝑛

as follows [10]:

[𝑢 + V]𝛼 = [𝑢]
𝛼

+ [V]𝛼, [𝑘𝑢]
𝛼

= 𝑘[𝑢]
𝛼

, (6)

where 𝑢, V ∈ 𝐸𝑛 and 0 ≤ 𝛼 ≤ 1.
Define𝐷 : 𝐸𝑛 × 𝐸𝑛 → [0,∞)

𝐷 (𝑢, V) = sup {𝑑
𝐻
([𝑢]

𝛼

, [V]𝛼) : 𝛼 ∈ [0, 1]} , (7)

where 𝑑 is the Hausdorff metric defined in 𝑃
𝑘
(𝑅𝑛). Then it is

easy to see that 𝐷 is a metric in 𝐸𝑛. Using the results in [23],
we know that

(1) (𝐸𝑛, 𝐷) is a complete metric space;
(2) 𝐷(𝑢 + 𝑤, V + 𝑤) = 𝐷(𝑢, V) for all 𝑢, V, 𝑤 ∈ 𝐸𝑛;
(3) 𝐷(𝜆𝑢, 𝜆V) = |𝜆|𝐷(𝑢, V) for all 𝑢, V, 𝑤 ∈ 𝐸𝑛 and 𝜆 ∈ 𝑅.

The metric space (𝐸𝑛, 𝐷) has a linear structure; it can
be embedded isomorphically as a cone in a Banach space of
function 𝑢∗ : 𝐼 × 𝑆𝑛−1 → 𝑅, where 𝑆𝑛−1 is the unit sphere in
𝑅𝑛, with an embedded function 𝑢∗ = 𝑗(𝑢) defined by

𝑢
∗

(𝑟, 𝑥) = sup
𝛼∈[𝑢]

𝛼

⟨𝛼, 𝑥⟩ (8)

for all ⟨𝑟, 𝑥⟩ ∈ 𝐼 × 𝑆𝑛−1 (see [23]).

Theorem 2 (see [24]). There exists a real Banach space𝑋 such
that 𝐸𝑛 can be embed as a convex cone 𝐶 with vertex 0 into𝑋.
Furthermore the following conditions hold true:

(1) the embedding 𝑗 is isometric;
(2) addition in 𝑋 induces addition in 𝐸𝑛;
(3) multiplication by nonnegative real number in 𝑋

induces the corresponding operation in 𝐸𝑛;
(4) 𝐶 − 𝐶 is dense in𝑋;
(5) 𝐶 is closed.

It is well known that the𝐻-derivative for fuzzy-number-
functions was initially introduced by Puri and Ralescu [5]
and it is based on the condition (𝐻) of sets. We note that
this definition is fairly strong, because the family of fuzzy-
number-valued functions𝐻-differentiable is very restrictive.
For example, the fuzzy-number-valued function𝑓 : [𝑎, 𝑏] →

𝐸
𝑛 defined by 𝑓(𝑥) = 𝐶 ⋅ 𝑔(𝑥), where 𝐶 is a fuzzy number,

⋅ is the scalar multiplication (in the fuzzy context), and 𝑔 :

[𝑎, 𝑏] → 𝑅
+, with 𝑔󸀠(𝑡

0
) < 0, is not 𝐻-differentiable in 𝑡

0

(see [8, 9]). To avoid the above difficulty, in this paper we
consider a more general definition of a derivative for fuzzy-
number-valued functions enlarging the class of differentiable
fuzzy-number-valued functions, which has been introduced
in [8].

Definition 3 (see [8]). Let 𝑓 : (𝑎, 𝑏) → 𝐸
𝑛 and 𝑥

0
∈ (𝑎, 𝑏).

We say that 𝑓 is differentiable at 𝑥
0
, if there exists an element

𝑓󸀠(𝑡
0
) ∈ 𝐸𝑛, such that,
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(1) for all ℎ > 0 sufficiently small, there exists 𝑓(𝑥
0
+

ℎ)−
𝐻
𝑓(𝑥

0
), 𝑓(𝑥

0
)−

𝐻
𝑓(𝑥

0
− ℎ) and the limits (in the

metric𝐷)

lim
ℎ→0

𝑓 (𝑥
0
+ ℎ) −

𝐻
𝑓 (𝑥

0
)

ℎ

= lim
ℎ→0

𝑓 (𝑥
0
) −

𝐻
𝑓 (𝑥

0
− ℎ)

ℎ
= 𝑓

󸀠

(𝑥
0
)

(9)

or
(2) for all ℎ > 0 sufficiently small, there exists 𝑓(𝑥

0
)

−
𝐻
𝑓(𝑥

0
+ ℎ), 𝑓(𝑥

0
− ℎ)−

𝐻
𝑓(𝑥

0
) and the limits

lim
ℎ→0

𝑓 (𝑥
0
) −

𝐻
𝑓 (𝑥

0
+ ℎ)

−ℎ

= lim
ℎ→0

𝑓 (𝑥
0
− ℎ) −

𝐻
𝑓 (𝑥

0
)

−ℎ
= 𝑓

󸀠

(𝑥
0
)

(10)

or
(3) for all ℎ > 0 sufficiently small, there exists 𝑓(𝑥

0
+

ℎ)−
𝐻
𝑓(𝑥

0
), 𝑓(𝑥

0
− ℎ)−

𝐻
𝑓(𝑥

0
) and the limits

lim
ℎ→0

𝑓 (𝑥
0
+ ℎ) −

𝐻
𝑓 (𝑥

0
)

ℎ

= lim
ℎ→0

𝑓 (𝑥
0
− ℎ) −

𝐻
𝑓 (𝑥

0
)

−ℎ
= 𝑓

󸀠

(𝑥
0
)

(11)

or
(4) for all ℎ > 0 sufficiently small, there exists 𝑓(𝑥

0
)

−
𝐻
𝑓(𝑥

0
+ ℎ), 𝑓(𝑥

0
)−

𝐻
𝑓(𝑥

0
− ℎ) and the limits

lim
ℎ→0

𝑓 (𝑥
0
) −

𝐻
𝑓 (𝑥

0
+ ℎ)

−ℎ

= lim
ℎ→0

𝑓 (𝑥
0
) −

𝐻
𝑓 (𝑥

0
− ℎ)

ℎ
= 𝑓

󸀠

(𝑥
0
)

(12)

(ℎ and −ℎ at denominators mean (1/ℎ)⋅ and −(1/ℎ)⋅,
resp.).

2.2. The Strong Henstock Integrals of Fuzzy-Number-Valued
Functions in 𝐸

𝑛. In this section we define the strong Hen-
stock integrals of fuzzy-number-valued functions in the fuzzy
number space𝐸𝑛 andwe give some properties of this integral.

Definition 4 (see [20]). A fuzzy-number-valued function 𝑓

will be termed piecewise additive on [𝑎, 𝑏] if there exists a
division 𝑇 : 𝑎 = 𝑎

0
< 𝑎

1
< ⋅ ⋅ ⋅ < 𝑎

𝑛
= 𝑏, such that 𝑓(𝑥)

is additive on each [𝑎
𝑖
, 𝑎

𝑖+1
] (𝑖 = 0, 1, . . . , 𝑛 − 1).

Definition 5 (see [19, 20]). A fuzzy-number-valued function
𝑓 is said to be strong Henstock integrable on [𝑎, 𝑏] if there
exists a piecewise additive fuzzy-number-valued function 𝐹

on [𝑎, 𝑏] such that for every 𝜀 > 0 there exists a function

𝛿(𝜉) > 0 and for any 𝛿-fine division 𝑃 = {[𝑥
𝑖−1
, 𝑥

𝑖
], 𝜉

𝑖
}
𝑛

𝑖=1
of

[𝑎, 𝑏] we have

(𝑃) ∑
𝑖∈𝐾
𝑛

𝐷(𝑓 (𝜉
𝑖
) (𝑥

𝑖
− 𝑥

𝑖−1
) , 𝐹 ([𝑥

𝑖−1
, 𝑥

𝑖
]))

+ (𝑃) ∑
𝑗∈𝐼
𝑛

𝐷(𝑓 (𝜉
𝑗
) (𝑥

𝑗
− 𝑥

𝑗−1
) ,

(−1) ⋅ 𝐹 ([𝑥
𝑗
, 𝑥

𝑗−1
])) < 𝜀,

(13)

where 𝐾
𝑛
= {𝑖 ∈ {1, 2, . . . , 𝑛} such that 𝐹([𝑥

𝑖−1
, 𝑥

𝑖
]) is a fuzzy

number and 𝐼
𝑛
= {𝑗 ∈ {1, 2, . . . , 𝑛} such that 𝐹([𝑥

𝑗
, 𝑥

𝑗−1
]) is a

fuzzy number. We write 𝑓 ∈ 𝑆𝐹𝐻[𝑎, 𝑏].

Definition 6 (see [20]). A fuzzy-number-valued function 𝐹

defined on 𝑋 ⊂ [𝑎, 𝑏] is said to be 𝐴𝐶∗(𝑋) if for every 𝜀 > 0

there exists 𝜂 > 0 such that for every finite sequence of
nonoverlapping intervals {[𝑎

𝑖
, 𝑏

𝑖
]}, satisfying∑𝑛

𝑖=1
|𝑏
𝑖
− 𝑎

𝑖
| < 𝜂

where 𝑎
𝑖
, 𝑏

𝑖
∈ 𝑋 for all 𝑖, we have

∑𝜔(𝐹, [𝑎
𝑖
, 𝑏

𝑖
]) < 𝜀, (14)

where 𝜔 denotes the oscillation of 𝐹 over [𝑎
𝑖
, 𝑏

𝑖
]; that is,

𝜔 (𝐹, [𝑎
𝑖
, 𝑏

𝑖
]) = sup {𝐷 (𝐹 (𝑦) , 𝐹 (𝑥)) ; 𝑥, 𝑦 ∈ [𝑎

𝑖
, 𝑏

𝑖
]} .

(15)

Definition 7 (see [20]). A fuzzy-number-valued function 𝐹 is
said to be𝐴𝐶𝐺∗ on𝑋 if𝑋 is the union of a sequence of closed
sets {𝑋

𝑖
} such that, on each𝑋

𝑖
, 𝐹 is 𝐴𝐶∗(𝑋

𝑖
).

For the strong fuzzy Henstock integrable we have the
following theorems.

Theorem 8. Let 𝑓 : [𝑎, 𝑏] → 𝐸
𝑛. If 𝑓 = 0 a.e on [𝑎, 𝑏], then

𝑓 is 𝑆𝐹𝐻 integrable on [𝑎, 𝑏] and ∫𝑏
𝑎

𝑓(𝑡)d𝑡 = 0.

Theorem 9. Let 𝑓 : [𝑎, 𝑏] → 𝐸𝑛 be 𝑆𝐹𝐻 integrable on [𝑎, 𝑏]
and let 𝐹(𝑥) = ∫

𝑥

𝑎

𝑓(𝑡)d𝑡 for each 𝑥 ∈ [𝑎, 𝑏]. Then

(a) the function 𝐹 is continuous on [𝑎, 𝑏];
(b) the function 𝐹 is differentiable a.e on [𝑎, 𝑏] and 𝐹󸀠 = 𝑓;
(c) 𝑓 is measurable.

Theorem 10 (controlled convergence theorem; see [20]).
Suppose that {𝑓

𝑛
} is a sequence of SFH integrable functions on

[𝑎, 𝑏] satisfying the following conditions:

(1) 𝑓
𝑛
(𝑥) → 𝑓(𝑥) a.e. in [𝑎, 𝑏] as 𝑛 → ∞;

(2) the primitives 𝐹
𝑛
of 𝑓

𝑛
are 𝐴𝐶𝐺∗ uniformly in 𝑛;

(3) the primitives 𝐹
𝑛
converge uniformly on [𝑎, 𝑏];

then 𝑓 is also SFH integrable on [𝑎, 𝑏] and

lim
𝑛→∞

∫
𝑏

𝑎

𝑓
𝑛
(𝑥) d𝑥 = ∫

𝑏

𝑎

𝑓 (𝑥) d𝑥. (16)
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3. Main Results

In this section we prove some existence theorems for the
problem (4).

For any bounded subset 𝐴 of the Banach space 𝑋, we
denote by 𝛼(𝐴) the Kuratowski measure of noncompactness
of 𝐴; that is, the infimum of all 𝜀 > 0 such that there exists
a finite covering of 𝐴 by sets of diameter less than 𝜀. For the
properties of 𝛼 we refer to [25], for example.

Lemma 11 (see [25]). Let 𝐻 ⊂ 𝐶(𝐼
𝛾
, 𝑋) be a family of strong

equicontinuous functions; then

𝛼
𝑐
(𝐻) = sup

𝑡∈𝐼
𝛾

𝛼 (𝐻 (𝑡)) = 𝛼 (𝐻 (𝐼
𝛾
)) , (17)

where 𝛼
𝑐
(𝐻) denotes the Kuratowski measure of noncompact-

ness in 𝐶(𝐼
𝛾
, 𝑋) and the function 𝑡 → 𝛼(𝐻(𝑡)) is continuous.

Theorem 12 (see [25]). Let 𝐷 be a closed convex subset of 𝑋
and let 𝐹 be a continuous function from 𝐷 into itself. If, for
𝑥 ∈ 𝐷,

𝑉 = con ({𝑥} ∪ 𝐹 (𝑉)) 󳨐⇒ 𝑉 (18)

is relatively compact, then 𝐹 has a fixed point.

Theorem 13. If the fuzzy-number-valued function 𝑓 : 𝐼
𝑎
→

𝐸𝑛 is (𝑆𝐹𝐻) integrable, then

∫
𝐼

𝑓 (𝑡) d𝑡 ∈ |𝐼| ⋅ conv𝑓 (𝐼) , (19)

where conv𝑓(𝐼) is the convex hull of 𝑓(𝐼), 𝐼 is an arbitrary
subinterval of 𝐼

𝑎
, and |𝐼| is the length of 𝐼.

Proof. Because 𝑗 ∘ 𝑓 is abstract (𝐻) integrable in a Banach
Space, by using the mean valued theorem of (𝐻) integrals, we
have

(𝐻)∫
𝐼

𝑗 ∘ 𝑓 (𝑡) d𝑡 ∈ |𝐼| ⋅ conv𝑗 ∘ 𝑓 (𝐼) = |𝐼| ⋅ 𝑗 ∘ conv𝑓 (𝑡) .

(20)

On the other hand, there exists (𝐻) ∫
𝐼

𝑗∘𝑓(𝑡)d𝑡 = 𝑗∘∫
𝐼

𝑓(𝑡)d𝑡.
So, we have 𝑗 ∘ ∫

𝐼

𝑓(𝑡)d𝑡 ∈ |𝐼| ⋅ conv𝑗 ∘ 𝑓(𝐼). And the set
{|𝐼| ⋅ conv𝑓(𝐼)} is a closed convex set; we have

∫
𝐼

𝑓 (𝑡) d𝑡 ∈ |𝐼| ⋅ conv𝑓 (𝐼) . (21)

Definition 14. A fuzzy valued function 𝑓 : 𝐼
𝛼
× 𝐸𝑛 → 𝐸𝑛 is

a Caratheodory function if, for each 𝑥 ∈ 𝐸𝑛, the fuzzy valued
function 𝑓(𝑡, 𝑥) is measurable in 𝑡 ∈ 𝐼

𝛼
, and for almost all

𝑡 ∈ 𝐼
𝛼
, the fuzzy valued function 𝑓(𝑡, 𝑥) is continuous with

respect to 𝑥.

For 𝑥 ∈ 𝐶(𝐼
𝑎
, 𝐸𝑛), we define the norm of 𝑥 by

𝐻(𝑥, 0̃) = sup
𝑡∈𝐼
𝑎

𝐷(𝑥, 0̃) . (22)

Let

𝐵 (𝑝) = {𝑥 ∈ 𝐶 (𝐼
𝑎
, 𝐸

𝑛

) |

𝐻 (𝑥, 0̃) ≤ 𝐻 (𝑓 (⋅) , 0̃) + 𝑝, 𝑝 > 0} .

(23)

Obviously, the set 𝐵(𝑝) is closed and convex in 𝐸𝑛.
We define the operator 𝐹 : 𝐶(𝐼

𝑎
, 𝐸

𝑛

) → 𝐶(𝐼
𝑎
, 𝐸

𝑛

) by

𝐹 (𝑥) (𝑡) = 𝑓 (𝑡) + ∫
𝑎

0

𝑘
1
(𝑡, 𝑠) 𝑥 (𝑠) d𝑠

+ ∫
𝑎

0

𝑘
2
(𝑡, 𝑠) 𝑔 (𝑠, 𝑥 (𝑠)) d𝑠, 𝑡 ∈ 𝐼

𝑎
, 𝑥 ∈ 𝐵 (𝑝) ,

(24)

where integrals are taken in the sense of 𝑆𝐹𝐻. Moreover, let
Γ(𝑝) = {𝐹(𝑥) ∈ 𝐶(𝐼

𝑎
, 𝐸𝑛) | 𝑥 ∈ 𝐵(𝑝)}.

Definition 15. A continuous function 𝑥 : 𝐼
𝑎
→ 𝐸𝑛 is said to

be a solution of the problem (4), if 𝑥(𝑡) satisfies

𝑥 (𝑡) = 𝑓 (𝑡) + ∫
𝑎

0

𝑘
1
(𝑡, 𝑠) 𝑥 (𝑠) d𝑠 + ∫

𝑎

0

𝑘
2
(𝑡, 𝑠) 𝑔 (𝑠, 𝑥 (𝑠)) d𝑠

(25)

or

𝑥 (𝑡) = 𝑓 (𝑡) + (−1) ⋅ ∫
𝑎

0

𝑘
1
(𝑡, 𝑠) 𝑥 (𝑠) d𝑠

+ (−1) ⋅ ∫
𝑎

0

𝑘
2
(𝑡, 𝑠) 𝑔 (𝑠, 𝑥 (𝑠)) d𝑠, 𝑡 ∈ 𝐼

𝑎
.

(26)

Theorem 16. Assume that, for each continuous function 𝑥(𝑡),
𝑔(⋅, 𝑥(⋅)) is (𝑆𝐹𝐻) integrable, and𝑔 is a Caratheodory function.
Let 𝑘

1
, 𝑘

2
: 𝐼

𝑎
× 𝐼

𝑎
→ 𝑅+ be measure functions such that

𝑘
1
(𝑡, ⋅), 𝑘

2
(𝑡, ⋅) are continuous. Moreover, there exists 𝑃

0
> 0

and a Caratheodory function 𝜔 : 𝐼
𝑎
× 𝑅+ → 𝑅+, with

𝛼 (𝑗 ∘ 𝑔 (𝑠, 𝑋)) ≤ 𝜔 (𝑠, 𝛼 (𝑗 ∘ 𝑋)) ,

𝑎.𝑒. 𝑠 ∈ 𝐼
𝑎
, 𝑋 ⊂ 𝐵 (𝑝

0
) ,

(27)

such that the zero function is the unique continuous solution of
the inequality

𝑞 (𝑡) ≤ 2 [∫
𝑐

0

𝑘
1
(𝑡, 𝑠) 𝑞 (𝑡, 𝑠) d𝑠 + ∫

𝑐

0

𝑘
2
(𝑡, 𝑠) 𝜔 (𝑠, 𝑞 (𝑠)) d𝑠] .

(28)

Suppose that Γ(𝑝
0
) is equicontinuous, equibounded, and uni-

formly 𝐴𝐶𝐺∗ on 𝐼
𝑎
. Then there exists at least a solution of the

problem (4) on 𝐼
𝑎
for some 0 < 𝑐 ≤ 𝑎 with continuous initial

function 𝑓.
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Proof. By equicontinuity and equiboundedness of Γ(𝑝
0
),

there exist some numbers 𝑐 (0 < 𝑐 ≤ 𝑎) such that

𝐻(∫
𝑐

0

[𝑘
1
(𝑡, 𝑠) 𝑥 (𝑠) + 𝑘

2
(𝑡, 𝑠) 𝑔 (𝑠, 𝑥 (𝑠))] d𝑠, 0̃)

= sup
𝑡∈𝐼
𝑐

𝐷(∫
𝑐

0

[𝑘
1
(𝑡, 𝑠) 𝑥 (𝑠) + 𝑘

2
(𝑡, 𝑠) 𝑔 (𝑠, 𝑥 (𝑠))] d𝑠, 0̃)

= sup
𝑡∈𝐼
𝑐

max
𝑟∈[0,1]

{
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑐

0

[𝑘
1
(𝑡, 𝑠) 𝑥

+

𝑟
(𝑠)

+ 𝑘
2
(𝑡, 𝑠) 𝑔

+

𝑟
(𝑠, 𝑥 (𝑠))] d𝑠 − 0̃+

𝑟

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑐

0

[𝑘
1
(𝑡, 𝑠) 𝑥

−

𝑟
(𝑠)

+ 𝑘
2
(𝑡, 𝑠) 𝑔

−

𝑟
(𝑠, 𝑥 (𝑠))] d𝑠 − 0̃−

𝑟

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
} ≤ 𝑝

0

(29)

for 𝑡 ∈ 𝐼
𝑐
and 𝑥 ∈ 𝐵(𝑝

0
).

Next, we will prove that the operator 𝐹 is continuous. In
fact, let 𝑥

𝑛
→ 𝑥. Because the function 𝑔 is a Caratheodory

function, by the following equality

𝐻(𝐹 (𝑥
𝑛
) , 𝐹 (𝑥))

= 𝐻(∫
𝑐

0

(𝑘
1
(𝑡, 𝑠) (𝑥

𝑛
(𝑠) − 𝑥 (𝑠)) + 𝑘

2
(𝑡, 𝑠)

× (𝑔 (𝑠, 𝑥
𝑛
(𝑠)) − 𝑔 (𝑠, 𝑥 (𝑠)))) d𝑠, 0̃)

= sup
𝑡∈𝐼
𝑐

𝐷(∫
𝑐

0

(𝑘
1
(𝑡, 𝑠) (𝑥

𝑛
(𝑠) − 𝑥 (𝑠)) + 𝑘

2
(𝑡, 𝑠)

× (𝑔 (𝑠, 𝑥
𝑛
(𝑠)) − 𝑔 (𝑠, 𝑥 (𝑠)))) d𝑠, 0̃)

(30)

andTheorem 10, we have 𝐹(𝑥
𝑛
) → 𝐹(𝑥).

Observe that a fixed point of 𝐹 is the solution of the
problem (4). Now we prove that 𝐹 has a fixed point using
Theorem 12.

Suppose that 𝑉(𝑡) = {V(𝑡) ∈ 𝐸
𝑛 | V ∈ 𝑉} ⊂ 𝐵(𝑝

0
) satisfies

condition 𝑉 = conv({𝑥} ∪ 𝐹(𝑉)) for some 𝑥 ∈ 𝐵(𝑝
0
), 𝑡 ∈ 𝐼

𝑐
.

Let 𝑉 ⊂ 𝐵(𝑝
0
), 𝐹(𝑉) ⊂ Δ(𝑝

0
); then 𝑉 ⊂ 𝑉 is equicontinuous.

By Lemma 11, 𝑡 → V(𝑡) = 𝛼(𝑗 ∘ 𝑉(𝑡)) is continuous on 𝐼
𝑐
.

Let ∫𝑐
0

𝑍(𝑠)d𝑠 = {∫
𝑐

0

𝑥(𝑠)d𝑠 | 𝑥 ∈ 𝑍} for any 𝑍 ∈ 𝐶(𝐼
𝑐
, 𝐸𝑛)

and let ℎ̃ denote the mapping defined by ℎ̃(𝑥(𝑠)) = 𝑔(𝑠, 𝑥(𝑠)),
for each 𝑥 ∈ 𝐵(𝑝

0
), 𝑠 ∈ 𝐼

𝑐
. Obviously, ℎ̃(𝑉(𝑠)) = 𝑔(𝑠, 𝑉(𝑠)),

and

𝐹 (𝑉 (𝑡)) = 𝑓 (𝑡) + ∫
𝑐

0

[𝑘
1
(𝑡, 𝑠) 𝑉 (𝑠) + 𝑘

2
(𝑡, 𝑠) ℎ̃ (𝑉 (𝑠))] d𝑠

(31)

holds ture.

Using (27), Lemma 11, and the properties of measure of
noncompactness 𝛼, we have

𝛼 (𝑗 ∘ 𝐹 (𝑉 (𝑡)))

= 𝛼(𝑗 ∘ (𝑓 (𝑡) + ∫
𝑐

0

[𝑘
1
(𝑡, 𝑠) 𝑉 (𝑠)

+ 𝑘
2
(𝑡, 𝑠) ℎ̃ (𝑉 (𝑠))] d𝑠))

≤ 2𝛼(𝑗 ∘ (∫
𝑐

0

[𝑘
1
(𝑡, 𝑠) 𝑉 (𝑠) + 𝑘

2
(𝑡, 𝑠) ℎ̃ (𝑉 (𝑠))] d𝑠))

≤ 2∫
𝑐

0

[𝑘
1
(𝑡, 𝑠) 𝛼 (𝑗 ∘ 𝑉 (𝑠))

+ 𝑘
2
(𝑡, 𝑠) 𝛼 (𝑗 ∘ 𝑔 (𝑠, 𝑉 (𝑠)))] d𝑠

≤ 2∫
𝑐

0

[𝑘
1
(𝑡, 𝑠) 𝛼 (𝑗 ∘ 𝑉 (𝑠))

+ 𝑘
2
(𝑡, 𝑠) 𝜔 (𝑠, 𝛼 (𝑗 ∘ 𝑉 (𝑠)))] d𝑠.

(32)

Because 𝑉 = conv ({𝑥} ∪ 𝐹(𝑉)), we have

V (𝑡) ≤ 2 [∫
𝑐

0

𝑘
1
(𝑡, 𝑠) V (𝑠) d𝑠 + ∫

𝑐

0

𝑘
2
(𝑡, 𝑠) 𝜔 (𝑠, V (𝑠)) d𝑠] .

(33)

By assumption, because the zero function is unique contin-
uous solution of the last inequality, so we have V(𝑡) = 𝛼(𝑗 ∘

𝑉(𝑡)) = 0. By Arzelá-AscoliTheorem,𝑉 is relatively compact.
So, by Theorem 12, 𝐹 has a fixed point which is a solution of
problem (4).

Next, we give another existence theorem for problem (4).
Let 𝛾(𝐾) be the spectral radius of the integral operator𝐾

defined by

𝐾 (𝑢) (𝑡) = ∫
𝑎

0

(𝑘
1
(𝑡, 𝑠) + 𝑘

2
(𝑡, 𝑠)) 𝑢 (𝑠) d𝑠,

𝑢 ∈ 𝐵 (𝑝
0
) , 𝑡 ∈ 𝐼

𝛼
.

(34)

Theorem 17. Assume that, for each continuous function 𝑥(𝑡),
𝑔(⋅, 𝑥(⋅)) is (𝑆𝐹𝐻) integrable, and 𝑔 is a Caratheodory function
and 𝑘

1
, 𝑘

2
: 𝐼

𝑎
× 𝐼

𝑎
→ 𝑅+ are measure functions such that

𝑘
1
(𝑡, ⋅), 𝑘

2
(𝑡, ⋅) are continuous. Moreover, there exists 𝑃

0
> 0

and 𝐿 > 0 such that

𝛼 (𝑗 ∘ 𝑔 (𝐼, 𝑋)) ≤ 𝐿𝛼 (𝑗 ∘ 𝑋) (35)

for each 𝐼 ⊂ 𝐼
𝑎
, 𝑋 ⊂ 𝐵(𝑝

0
). Suppose that Γ(𝑝

0
) is equi-

continuous, equibounded, and uniformly𝐴𝐶𝐺∗ on 𝐼
𝑎
and (1+

𝐿)𝛾(𝐾) < 1. Then there exists at least a solution of the problem
(4) on 𝐼

𝑎
for some 0 < 𝑐 ≤ 𝑎 with continuous initial function

𝑓.

Proof. By equicontinuity and equiboundedness of Γ(𝑝
0
),

there exist some numbers 𝑐 (0 < 𝑐 ≤ 𝑎) such that

𝐻(∫
𝑐

0

(𝑘
1
(𝑡, 𝑠) + 𝑘

2
(𝑡, 𝑠)) 𝑢 (𝑠) d𝑠, 0̃) ≤ 𝑝

0
(36)
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for 𝑡 ∈ 𝑝
0
and 𝑥 ∈ 𝐵(𝑝

0
). By assumption, the operator 𝐹 is

well defined and maps 𝐵(𝑝
0
) into 𝐵(𝑝

0
). Now, we show that

the operator 𝐹 is continuous. In fact, let 𝑥
𝑛
→ 𝑥. Because the

function 𝑔 is a Caratheodory function, by following equality

𝐻(𝐹 (𝑥
𝑛
) , 𝐹 (𝑥))

= 𝐻(∫
𝑐

0

(𝑘
1
(𝑡, 𝑠) (𝑥

𝑛
(𝑠) − 𝑥 (𝑠)) + 𝑘

2
(𝑡, 𝑠)

× (𝑔 (𝑠, 𝑥
𝑛
(𝑠)) − 𝑔 (𝑠, 𝑥 (𝑠)))) d𝑠, 0̃)

= sup
𝑡∈𝐼
𝑐

𝐷(∫
𝑐

0

(𝑘
1
(𝑡, 𝑠) (𝑥

𝑛
(𝑠) − 𝑥 (𝑠)) + 𝑘

2
(𝑡, 𝑠)

× (𝑔 (𝑠, 𝑥
𝑛
(𝑠)) − 𝑔 (𝑠, 𝑥 (𝑠)))) d𝑠, 0̃)

(37)

andTheorem 10, we have 𝐹(𝑥
𝑛
) → 𝐹(𝑥).

Observe that a fixed point of 𝐹 is the solution of the
problem (4). Now we prove that 𝐹 has a fixed point using
Theorem 12.

Suppose that 𝑉(𝑡) = {V(𝑡) ∈ 𝐸
𝑛 | V ∈ 𝑉} ⊂ 𝐵(𝑝

0
) satisfies

condition 𝑉 = conv({𝑥} ∪ 𝐹(𝑉)) for some 𝑥 ∈ 𝐵(𝑝
0
), 𝑡 ∈ 𝐼

𝑐
.

Let 𝑉 ⊂ 𝐵(𝑝
0
), 𝐹(𝑉) ⊂ Δ(𝑝

0
); then 𝑉 ⊂ 𝑉 is equicontinuous.

By Lemma 11, 𝑡 → V(𝑡) = 𝛼(𝑗 ∘ 𝑉(𝑡)) is continuous on 𝐼
𝑐
.

We divide the interval 𝐼
𝑐
: 0 = 𝑡

0
< 𝑡

1
< 𝑡

2
< ⋅ ⋅ ⋅ < 𝑡

𝑚
= 𝑐,

where 𝑡
𝑖
= 𝑖𝑐/𝑚, 𝑖 = 0, 1, . . . , 𝑚. Let 𝑉([𝑡

𝑖
, 𝑡

𝑖+1
]) = {𝑢(𝑠) ∈

𝐸𝑛 : 𝑢 ∈ 𝑉, 𝑡
𝑖
≤ 𝑠 ≤ 𝑡

𝑡+1
, 𝑖 = 0, 1, . . . , 𝑚 − 1}. By Lemma 11 and

the continuity of V there exists 𝑠
𝑖
∈ 𝑇

𝑖
= [𝑡

𝑖
, 𝑡

𝑖+1
] such that

𝛼 (𝑗 ∘ 𝑉 ([𝑡
𝑖
, 𝑡

𝑖+1
])) = sup {𝛼 (𝑗 ∘ 𝑉 (𝑠)) : 𝑡

𝑖
≤ 𝑠 ≤ 𝑡

𝑡+1
}

= V (𝑠
𝑖
) .

(38)

In addition, by the definition of operator 𝐹 and
Theorem 16 we have
𝐹 (𝑢) (𝑡)

= 𝑓 (𝑡) +

𝑚−1

∑
𝑖=0

∫
𝑡
𝑖
+1

𝑡
𝑖

[𝑘
1
(𝑡, 𝑠) 𝑢 (𝑠)

+ 𝑘
2
(𝑡, 𝑠) 𝑔 (𝑠, 𝑢 (𝑠))] d𝑠

∈ 𝑓 (𝑡) +

𝑚−1

∑
𝑖=0

(𝑡
𝑖−1

− 𝑡
𝑖
)

× conv [𝑘
1
(𝑡, 𝑇

𝑖
) 𝑉 (𝑇

𝑖
)

+ 𝑘
2
(𝑡, 𝑇

𝑖
) 𝑔 (𝑇

𝑖
, 𝑉 (𝑇

𝑖
))]

(39)

for all 𝑢 ∈ 𝑉, where 𝑘
𝑚
(𝑡, 𝑇

𝑖
) = {𝑘

𝑚
(𝑡, 𝑠), 𝑡, 𝑠 ∈ 𝑇

𝑖
} and 𝑔(𝑇

𝑖
,

𝑉(𝑇
𝑖
)) = {𝑔(𝑡, 𝑥(𝑡)) : 𝑡 ∈ 𝑇

𝑖
, 𝑥 ∈ 𝑉}. So, we have

𝐹 (𝑉) (𝑡)

⊂ 𝑓 (𝑡) +

𝑚−1

∑
𝑖=0

(𝑡
𝑖−1

− 𝑡
𝑖
) conv [𝑘

1
(𝑡, 𝑇

𝑖
) 𝑉 (𝑇

𝑖
)

+ 𝑘
2
(𝑡, 𝑇

𝑖
) 𝑔 (𝑇

𝑖
, 𝑉 (𝑇

𝑖
))] .

(40)

Using (35), (38) and the properties of measure of non-
compactness 𝛼, we have

𝛼 (𝑗 ∘ 𝐹 (𝑉) (𝑡))

≤

𝑚−1

∑
𝑖=0

(𝑡
𝑖+1

− 𝑡
𝑖
) [𝑘

1
(𝑡, 𝑇

𝑖
) 𝑗 ∘ V (𝑠

𝑖
) + 𝑘

2
(𝑡, 𝑇

𝑖
) 𝐿 ⋅ 𝑗 ∘ V (𝑠

𝑖
)]

=

𝑚−1

∑
𝑖=0

(𝑡
𝑖+1

− 𝑡
𝑖
) 𝑘

1
(𝑡, 𝑇

𝑖
) 𝑗 ∘ V (𝑠

𝑖
)

+ 𝐿

𝑚−1

∑
𝑖=0

(𝑡
𝑖+1

− 𝑡
𝑖
) 𝑘

2
(𝑡, 𝑇

𝑖
) 𝑗 ∘ V (𝑠

𝑖
)

≤

𝑚−1

∑
𝑖=0

(𝑡
𝑖+1

− 𝑡
𝑖
) sup
𝑠
𝑖
∈𝑇
𝑖

𝑘
1
(𝑡, 𝑠

𝑖
) 𝑗 ∘ V (𝑠

𝑖
)

+ 𝐿 ⋅

𝑚−1

∑
𝑖=0

(𝑡
𝑖+1

− 𝑡
𝑖
) sup
𝑠
𝑖
∈𝑇
𝑖

𝑘
2
(𝑡, 𝑠

𝑖
) 𝑗 ∘ V (𝑠

𝑖
)

=

𝑚−1

∑
𝑖=0

(𝑡
𝑖+1

− 𝑡
𝑖
) 𝑘

1
(𝑡, 𝑝

𝑖
) 𝑗 ∘ V (𝑠

𝑖
)

+ 𝐿 ⋅

𝑚−1

∑
𝑖=0

(𝑡
𝑖+1

− 𝑡
𝑖
) 𝑘

2
(𝑡, 𝑞

𝑖
) 𝑗 ∘ V (𝑠

𝑖
) ,

(41)

where 𝑠
𝑖
, 𝑝

𝑖
, 𝑞

𝑖
∈ 𝑇

𝑖
; so we get

𝛼 (𝑗 ∘ 𝐹 (𝑉) (𝑡))

≤

𝑚−1

∑
𝑖=0

(𝑡
𝑖+1

− 𝑡
𝑖
) 𝑘

1
(𝑡, 𝑝

𝑖
) 𝑗 ∘ V (𝑝

𝑖
)

+

𝑚−1

∑
𝑖=0

(𝑡
𝑖+1

− 𝑡
𝑖
) [𝑘

1
(𝑡, 𝑝

𝑖
) 𝑗 ∘ (V (𝑠

𝑖
) − V (𝑝

𝑖
))]

+ 𝐿

𝑚−1

∑
𝑖=0

(𝑡
𝑖+1

− 𝑡
𝑖
) 𝑘

2
(𝑡, 𝑞

𝑖
) 𝑗 ∘ V (𝑞

𝑖
)

+ 𝐿 ⋅

𝑚−1

∑
𝑖=0

(𝑡
𝑖+1

− 𝑡
𝑖
) [𝑘

2
(𝑡, 𝑞

𝑖
) 𝑗 ∘ (V (𝑠

𝑖
) − V (𝑞

𝑖
))]

=

𝑚−1

∑
𝑖=0

(𝑡
𝑖+1

− 𝑡
𝑖
) 𝑘

1
(𝑡, 𝑝

𝑖
) 𝑗 ∘ V (𝑝

𝑖
)

+
𝑐

𝑚

𝑚−1

∑
𝑖=0

[𝑘
1
(𝑡, 𝑝

𝑖
) 𝑗 ∘ (V (𝑠

𝑖
) − V (𝑝

𝑖
))]

+ 𝐿 ⋅

𝑚−1

∑
𝑖=0

(𝑡
𝑖+1

− 𝑡
𝑖
) 𝑘

2
(𝑡, 𝑞

𝑖
) 𝑗 ∘ V (𝑞

𝑖
)

+
𝐿 ⋅ 𝑐

𝑚

𝑚−1

∑
𝑖=0

[𝑘
2
(𝑡, 𝑞

𝑖
) 𝑗 ∘ (V (𝑠

𝑖
) − V (𝑞

𝑖
))] .

(42)
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By continuity of V we have V(𝑠
𝑖
) → V(𝑝

𝑖
) < 𝜀

1
and

V(𝑠
𝑖
) → V(𝑞

𝑖
) < 𝜀

2
as𝑚 → ∞. So, we have

𝛼 (𝑗 ∘ 𝐹 (𝑉) (𝑡))

< ∫
𝑐

0

𝑘
1
(𝑡, 𝑠) V (𝑠) d𝑠 + 𝑐 ⋅ sup

𝑝∈𝐼
𝑐

𝑘
1
(𝑡, 𝑝) 𝜀

1

+ 𝐿 ⋅ ∫
𝑐

0

𝑘
2
(𝑡, 𝑠) 𝑗 ∘ V (𝑠) d𝑠 + 𝐿 ⋅ 𝑐 ⋅ sup

𝑞∈𝐼
𝑐

𝑘
2
(𝑡, 𝑞) 𝜀

2
.

(43)

Therefore, we have

𝛼 (𝑗 ∘ 𝐹 (𝑉) (𝑡)) ≤ (1 + 𝐿)

⋅ 𝑗 ∘ ∫
𝑐

0

[𝑘
1
(𝑡, 𝑠) + 𝑘

2
(𝑡, 𝑠)] V (𝑠) d𝑠

(44)

for 𝑡 ∈ 𝐼
𝑐
. Since 𝑉 = conv({𝑢} ∪ 𝐹(𝑉)), by the properties of

measure of noncompactness 𝛼, we have

𝛼 (𝑗 ∘ 𝑉 (𝑡)) ≤ 𝛼 (𝑗 ∘ (𝐹 (𝑉) (𝑡))) , (45)

and so in view of (44) it follows that

V (𝑡) ≤ (1 + 𝐿) ∫
𝑐

0

[𝑘
1
(𝑡, 𝑠) + 𝑘

2
(𝑡, 𝑠)] V (𝑠) d𝑠 (46)

for 𝑡 ∈ 𝐼
𝑐
. Because this inequality holds for all 𝑡 ∈ 𝐼

𝑐
and

(1 + 𝐿)𝛾(𝐾) < 1, by applying Gronwall’s inequality, we get
that 𝛼(𝑗 ∘ 𝑉(𝑡)) = 0 for 𝑡 ∈ 𝐼

𝑐
. By Arzelá-Ascoli Theorem, 𝑉

is relatively compact. So, by Theorem 12, 𝐹 has a fixed point
which is a solution of problem (4).

4. Conclusion

In this paper, we deal with the existence problems of discon-
tinuous fuzzy integral equations involving the strong fuzzy
Henstock integral in fuzzy number space. The functions of
the equations are supposed to be discontinuous with respect
to some variables and satisfy nonabsolute fuzzy integrability.
Our result improves the result given in [15, 26] (where
uniform continuity was required), as well as those referred
to therein.
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