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We consider the dead-core problem for the fast diffusion equation with spatially dependent coefficient and show that the temporal
dead-core rate is non-self-similar.The proof is based on the standard compactness arguments with the uniqueness of the self-similar
solutions and the precise estimates on the single-point final dead-core profile.

1. Introduction

In this paper, we study the porous medium equation with the
following initial-boundary condition:

𝑢
𝑡
= (𝑢
𝑚
)
𝑥𝑥
− 𝑥
𝑞
𝑢
𝑝
, (𝑥, 𝑡) ∈ (0, 1) × (0, 𝑇) ,

𝑢
𝑥
(0, 𝑡) = 0, 𝑢 (1, 𝑡) = 𝑘, 𝑡 ∈ (0, 𝑇) ,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , 𝑥 ∈ [0, 1] ,

(1)

where 0 < 𝑝 < 𝑚 < 1 and −1 < 𝑞 < 0. Assume 𝑘 > 0 and that
the initial data 𝑢

0
satisfies

𝑢
0
> 0 in [0, 1] , 𝑢



0
(0) = 0, 𝑢

0
(1) = 𝑘. (2)

We set
𝜃 (𝑡) := min

0≤𝑥≤1

𝑢 (𝑥, 𝑡) (3)

and denote

𝑇 = 𝑇 (𝑢
0
) := inf {𝑡 > 0; 𝜃 (𝑡) = 0} > 0. (4)

Moreover, we denote

𝛽 =

𝑞 + 2

2 (1 − 𝑝) + 𝑞 (1 − 𝑚)

. (5)

It is called that 𝑢 develops a dead-core in a finite time if 𝑇 <

∞, and it is shown that 𝑢 develops a dead-core in finite time
for certain initial-boundary data (see [1, Theorem 1.1]).

Suppose that 𝑢 develops a dead-core in the finite time 𝑇.
Ourmain purpose of this paper is to study the temporal dead-
core rate as 𝑡 → 𝑇. For our main results on the asymptotic
dead-core behaviour, we will assume that 𝑢

0
satisfies the

following conditions:

𝑢
0
∈ 𝐶
2
([0, 1]) , (𝑢

𝑚

0
)


≤ 𝑥
𝑞
𝑢
𝑝

0
in (0, 1] ,

𝑢
0
is nondecreasing in 𝑥 and 𝑇 (𝑢

0
) < ∞.

(6)

It then follows from the strong maximum principle that 𝑢
𝑡
<

0 in𝑄
𝑇
:= (0, 1) × (0, 𝑇) and 𝑢

𝑥
> 0 in𝑄

𝑇
. Here, we introduce

the following self-similar transformation:

𝑦 =

𝑥

(𝑇 − 𝑡)
𝛼
, 𝑠 = − ln (𝑇 − 𝑡) ,

V (𝑦, 𝑠) = [
𝑢 (𝑥, 𝑡)

(𝑇 − 𝑡)
𝛽
]

𝑚

,

(7)

where 𝛼 = (𝑚 − 𝑝)/[2(1 − 𝑝) + 𝑞(1 − 𝑚)]. Then V satisfies
1

𝑚

V(1/𝑚)−1V
𝑠

= V
𝑦𝑦
−

𝛼

𝑚

𝑦V(1/𝑚)−1V
𝑦
+ 𝛽V1/𝑚 − 𝑦𝑞V𝑝/𝑚, in Ω,

V
𝑦
(0, 𝑠) = 0, V (𝑒𝛼𝑠, 𝑠) = 𝑘𝑚𝑒𝛽𝑚𝑠, 𝑠 > 𝑠

0
,

V (𝑦, 𝑠
0
) = V
0
(𝑦) = 𝑇

−𝛽𝑚
𝑢
𝑚

0
(𝑦𝑇
𝛼
) , 𝑦 ∈ [0, 𝑇

−𝛼
] ,

(8)

whereΩ := {(𝑦, 𝑠) | 0 < 𝑦 < 𝑒
𝛼𝑠
, 𝑠 > 𝑠

0
= − ln𝑇}.
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The dead-core problem for the homogeneous equation

𝑢
𝑡
= Δ𝑢
𝑚
− 𝑢
𝑝 (9)

in the general higher spatial dimensional case has been
studied extensively in the past years. We refer the reader to,
for example, [2–9] and the references therein. In particular,
for the slow diffusion (i.e., 0 < 𝑝 < 1 < 𝑚) and 𝑚 + 𝑝 ≥ 2

case, the self-similar singularity of dead-core rate (𝑇−𝑡)1/(1−𝑝)
was shown in [5] for certain class of initial data. On the other
hand, for the fast diffusion case (i.e., 0 < 𝑝 < 𝑚 < 1) or
semilinear case (i.e., 𝑚 = 1), it is shown that the temporal
dead-core rate is non-self-similar in the sense that it is always
faster than the self-similar rate.Moreover, the exact dead-core
rates (depending on the initial data) have been derived for
the semilinear heat equation in [10] for radial symmetric case.
Other singularity formation mechanisms in related reaction-
diffusion equations and reaction-convection equations, such
as type II blowup and gradient blowup, also exhibit non-self-
similar behaviours, respectively.We refer to [11, 12] for type II
blowup and to [13–21] for gradient blowup for recent related
results.

To study the dead-core rate for (1) with a spatially
dependent absorption term, we assume further that 𝑞 ∈

(−1, 0) and 𝑞 ≥ −2𝑝/𝑚.
Let

𝑉
0
(𝑦) := 𝐶

0
𝑦
𝑚(𝑞+2)/(𝑚−𝑝)

, 𝑦 > 0,

𝐶
0
:= 𝐶
0
(𝑝,𝑚, 𝑞) = [

(𝑚 − 𝑝)
2

𝑚(𝑚 + 𝑝 + 𝑚𝑞) (𝑞 + 2)

]

𝑚/(𝑚−𝑝)

> 0.

(10)

By a limiting process with some a priori estimates, we prove
the following main theorem of this paper.

Theorem 1. Assume that 0 < 𝑝 < 𝑚 < 1, 𝑝 + 𝑚 > 1, and
−1 < 𝑞 < 0 such that 𝑞 ≥ −2𝑝/𝑚 and that (6) holds. Then we
have lim

𝑠→∞
V(𝑦, 𝑠) = 𝑉

0
(𝑦) uniformly for 𝑦 ∈ [0,𝑀] for any

𝑀 > 0. Moreover,

lim
𝑡→𝑇

−

(𝑇 − 𝑡)
−𝛽
𝜃 (𝑡) = 0. (11)

Note that the function 𝑉
0
is a stationary solution of the

equation in (8) in (0,∞) with 𝑉(0) = 0. As a consequence,
Theorem 1 implies that the dead-core rate is non-self-similar.
Also, there is no constant stationary solution of (8) due to
the spatially dependent nonlinearity. Indeed, we prove in
Section 2 that the only nontrivial nondecreasing nonnegative
stationary solution of (8) in (0,∞)with polynomial bound is
𝑉
0
.
One of the reasons to consider the dead-core problem

with variable coefficient is to investigate the effect of degener-
acy on the dead-core phenomenon. In fact, a related blow-up
problem for the singular equation

𝑥
𝑞
𝑢
𝑡
= 𝑢
𝑥𝑥
+ 𝑢
𝑝
, 0 < 𝑥 < 1, 𝑡 > 0, (12)

with 𝑞 > 0, 𝑝 > 1 and the Dirichlet boundary condition, has
been studied by Floater [22] and Lacey [23]. Equation (12)

arises from Ockendon’s model for the flow in a channel of a
fluid whose viscosity is temperature dependent (see [22, 23]).
More generally,Wang and Zheng [24] investigated the critical
Fujita exponent, that is, 𝑝

𝑐
= 𝑚 + (2 + 𝜆

2
)/(𝑁 + 𝜆

1
),

for the initial-value problem of the degenerate and singular
nonlinear parabolic equation:

|𝑥|
𝜆
1

𝑢
𝑡
= Δ𝑢
𝑚
+ |𝑥|
𝜆
2

𝑢
𝑝
, 𝑥 ∈ R

𝑁
, 𝑡 > 0, (13)

with a nonnegative initial value, where 𝑝 > 𝑚 ≥ 1 and 0 ≤
𝜆
1
≤ 𝜆
2
< 𝑝(𝜆

1
+ 1) − 1.

There are certain difficulties in dealing with the spatially
dependent absorption term. For example, (1) is not transla-
tion invariant due to the spatially dependent nonlinearity. In
fact, Wu and Zhang [25] studied the semilinear case of (1)
with 𝑚 = 1 and proved that the temporal dead-core rate
is non-self-similar, but they did not get the uniqueness of
dead-core points. In the present paper, based on Lemma 3.1
in [1] which is derived by using an integral form of maximum
principles, we will obtain a precise estimate on dead-core
profile and prove that the dead-core is a single point and
show that the exponent 𝑞 essentially affects the asymptotic
behaviours of dead-core. Therefore, the proofs in this paper
are more delicate than those in [6, 25].

This paper is organized as follows. The uniqueness of
stationary solution of (8) is proved in Section 2. In Section 3,
we derive some a priori estimates. Finally, we prove the main
theorem (Theorem 1) in Section 4.

2. Uniqueness of Self-Similar Solutions

In this section, we will prove that the only nontrivial nonde-
creasing nonnegative stationary solution of (8) in (0,∞)with
polynomial bound is 𝑉

0
.

Lemma 2. Let 𝑉 ∈ 𝐶
2
(0,∞) be a solution of the stationary

equation of (8):

𝑉
𝑦𝑦
−

𝛼

𝑚

𝑦𝑉
(1/𝑚)−1

𝑉
𝑦
+ 𝛽𝑉
1/𝑚

− 𝑦
𝑞
𝑉
𝑝/𝑚

= 0, 𝑦 > 0, (14)

such that𝑉 > 0,𝑉 ≥ 0, and𝑉 is polynomially bounded. Then
𝑉 = 𝑉

0
.

Proof. Set

𝑊(𝑦) = 𝑉
𝜏
(𝑦) with 𝜏 =

2 (𝑚 − 𝑝)

𝑚 (𝑞 + 2)

, 𝑦 > 0, (15)

for a given positive solution𝑉of (14).Then, at any point𝑦 > 0
with𝑊(𝑦) > 0,𝑊 satisfies the equation

𝑊

−

𝛼

𝑚

𝑦𝑊
(1−𝑚)/𝑚𝜏

𝑊

+ 𝜏𝛽𝑊

((1−𝑚)/𝑚𝜏)+1
+

1 − 𝜏

𝜏

(𝑊

)

2

𝑊

= 𝜏𝑦
𝑞
𝑊
−𝑞/2

, 𝑦 > 0.

(16)
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Differentiating (16) once, we obtain

𝑊

−

𝛼

𝑚

𝑦𝑊
(1−𝑚)/𝑚𝜏

𝑊

+ [(

1 − 𝑚

𝑚

+ 𝜏)𝛽 −

𝛼

𝑚

]

×𝑊
(1−𝑚)/𝑚𝜏

𝑊

−

(1 − 𝑚) 𝛼

𝑚
2
𝜏

𝑦𝑊
(1−(𝜏+1)𝑚)/𝑚𝜏

(𝑊

)

2

= 𝑞𝜏𝑦
𝑞−1
𝑊
−(𝑞/2)−1

(𝑊 −

𝑦𝑊


2

)

−

1 − 𝜏

𝜏

𝑊

[2𝑊𝑊


− (𝑊

)

2

]

𝑊
2

(17)

for 𝑦 > 0. As in [6], we introduce the functions

𝐻 := 𝑊 −

𝑦

2

𝑊

, 𝑍 := |𝐻|

1/𝜏
. (18)

After a calculation similar to [6], by using (17) we obtain, for
𝑦 ∈ 𝐷,

𝐷 := {𝑦 > 0𝑊(𝑦) > 0, 𝐻 (𝑦) ̸= 0} ; (19)

the function 𝑍 satisfies

𝑍

−

𝛼

𝑚

𝑦𝑊
(1−𝑚)/𝑚𝜏

𝑍

=

1

𝜏

|𝐻|
(1/𝜏)−2

× { −

𝑞𝜏

2

𝑦
𝑞
𝑊
−(𝑞/2)−1

(𝑊 −

𝑦

2

𝑊

)

2

+

2𝑝 + 𝑚𝑞

8 (𝑚 − 𝑝)

[

[

𝑊

+ 𝑦(

𝑊𝑊

− (𝑊

)

2

𝑊

)
]

]

2

+

(1 − 𝑚) 𝛽

2𝑚

𝑦𝑊
(1−(𝜏+1)𝑚)/𝑚𝜏

(𝑊 −

𝑦𝑊


2

)

2

𝑊

} .

(20)

Assume that 2𝑝 + 𝑚𝑞 ≥ 0; that is, for the given 𝑝,𝑚 ∈ (0, 1)

such that 0 < 𝑝 < 𝑚 < 1, we require

𝑞 ∈ [

−2𝑝

𝑚

, 0) ⊂ (−2, 0) . (21)

Then we deduce from (20) that (𝑒−𝜌(𝑦)𝑍)


≥ 0 in 𝐷,
where 𝜌(𝑦) := ∫𝑦

0
(𝛼/𝑚)𝑠𝑊

(1−𝑚)/𝑚𝜏
(𝑠)𝑑𝑠. From this, using the

polynomial bound of 𝑉 (and so is 𝑍) we can argue as the
arguments used in [6] to prove that 𝐷 = {𝑦 > 0 | 𝐻(𝑦) ̸= 0}

and𝑍 is a constant function defined in (0,∞). Since the proof
is very similar to that in [6], we safely omit the details here.
Hence𝐻 is constant in (0,∞). By an integration, we end up
with that𝑊(𝑦) = 𝐴 + 𝐵𝑦

2 for 𝑦 ∈ (0,∞) for some constants
𝐴 and 𝐵.

Next, we plug the expression 𝑉(𝑦) = (𝐴 + 𝐵𝑦
2
)
1/𝜏 into

(14). Then we can easily derive that

𝐴 = 0, 𝐵 = [

(𝑚 − 𝑝)
2

𝑚(𝑚 + 𝑝 + 𝑚𝑞) (𝑞 + 2)

]

2/(𝑞+2)

. (22)

This proves that 𝑉
0
is the only positive solution of (8) in

(0,∞) such that it grows at most polynomially.

3. A Priori Estimates

Wewill derive some a priori estimates in this section. Suppose
that the solution 𝑢 of (1)-(2) with (6) develops a dead-core in
the finite time 𝑇. We have the following precise estimates on
the single-point final dead-core profile near 𝑥 = 0.

Lemma 3. Assume that 0 < 𝑝 < 𝑚 < 1, 𝑝 + 𝑚 > 1, −1 < 𝑞 <
0, and the assumptions of (2) and (6) hold. Then there exist
𝑐, 𝐶 > 0 such that

𝑐𝑥
(𝑞+2)/(𝑚−𝑝)

≤ 𝑢 (𝑥, 𝑇) ≤ 𝐶𝑥
(𝑞+2)/(𝑚−𝑝)

, 0 ≤ 𝑥 ≤ 1. (23)

Proof. By Lemma 3.1 in [1], for any fixed 𝑡
0
∈ (0, 𝑇), there

exists 0 < 𝜀 ≤ (𝑝 +𝑚 − 1)/[(2𝑝 +𝑚 − 1)(𝑞 + 1)] such that the
auxiliary function

𝐽 := (𝑢
𝑚
)
𝑥
− 𝜀𝑥
𝑞+1
𝑢
𝑝 (24)

satisfies 𝐽 ≥ 0 in [0, 1]× (𝑡
0
, 𝑇). Integrating 𝐽 ≥ 0 on [0, 𝑥], we

get 𝑢(𝑥, 𝑡) ≥ 𝑐𝑥
(𝑞+2)/(𝑚−𝑝), (𝑥, 𝑡) ∈ (0, 1) × (𝑡

0
, 𝑇). The lower

estimate immediately follows by letting 𝑡 → 𝑇, where 𝑐 :=
𝑐(𝜀) = {𝜀(𝑚 − 𝑝)/[𝑚(𝑞 + 2)]}

1/(𝑚−𝑝). Furthermore, using self-
similar variables, we have, for the fixed 𝑡

0
∈ (0, 𝑇),

V (𝑦, 𝑠) ≥ 𝑐∗𝑦𝑚(𝑞+2)/(𝑚−𝑝) for 0 < 𝑦 < 𝑒𝛼𝑠,

− ln (𝑇 − 𝑡
0
) < 𝑠 < ∞,

(25)

where 𝑐∗ > 0. On the other hand, since 𝑢
𝑡
< 0 and 𝑢

𝑥
> 0

in 𝑄
𝑇
, we have (𝑢𝑚)

𝑥𝑥
< 𝑥
𝑞
𝑢
𝑝. Let 𝑧 = 𝑢

𝑚. Then from 𝑧
𝑥
=

𝑚𝑢
𝑚−1

𝑢
𝑥
, 0 < 𝑢 ≤ 𝑘 in 𝑄

𝑇
and

𝑧
𝑥𝑥
(𝑥, 𝑡) < 𝑥

𝑞
𝑧
𝑟
(𝑥, 𝑡) with 𝑟 =

𝑝

𝑚

, (𝑥, 𝑡) ∈ 𝑄
𝑇
. (26)

Integrating the inequality 𝑧
𝑥𝑥
(𝑥, 𝑡) < 𝑥

𝑞
𝑧
𝑟
(𝑥, 𝑡) using 𝑧

𝑥
≥ 0,

we obtain

𝑧
𝑥
(𝑥, 𝑡) = ∫

𝑥

0

𝑧
𝑥𝑥
(𝑦, 𝑡) 𝑑𝑦 ≤ ∫

𝑥

0

𝑦
𝑞
𝑧
𝑟
(𝑦, 𝑡) 𝑑𝑦

≤ 𝑧
𝑟
(𝑥, 𝑡) ∫

𝑥

0

𝑦
𝑞
𝑑𝑦 ≤

𝑥
𝑞+1

𝑞 + 1

𝑧
𝑟
(𝑥, 𝑡) .

(27)

Hence 𝑧1−𝑟(𝑥, 𝑡) − 𝑧1−𝑟(0, 𝑡) ≤ ((1 − 𝑟)/(𝑞 + 1)(𝑞 + 2))𝑥
𝑞+2.

Consequently,

𝑢 (𝑥, 𝑡) ≤ [𝑢(0, 𝑡)
𝑚−𝑝

+

𝑚 − 𝑝

𝑚(𝑞 + 1)(𝑞 + 2)

𝑥
𝑞+2
]

1/(𝑚−𝑝)

(28)

for (𝑥, 𝑡) ∈ (0, 1)×(0, 𝑇]. In terms of self-similar variables, we
deduce from (27) and (28) that

V
𝑦
(𝑦, 𝑠) ≤ 𝐶

1
𝑦
𝑞+1V𝑝/𝑚 (𝑦, 𝑠) , (29)

V (𝑦, 𝑠) ≤ [V(𝑚−𝑝)/𝑚 (0, 𝑠) + 𝐶
2
𝑦
𝑞+2
]

𝑚/(𝑚−𝑝) (30)

for 0 < 𝑦 < 𝑒
𝛼𝑠
, 𝑠 ≥ 𝑠

0
for some positive constants 𝐶

1
and

𝐶
2
.
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To derive an upper bound for V(0, 𝑠), we note that
𝑢
𝑥𝑥
(0, 𝑡) > 0 for all 𝑡 ∈ (0, 𝑇] by the Hopf boundary point

lemma. Then 𝑢
𝑥𝑥
(0, 𝑡) ≥ 𝑐 for all 𝑡 ∈ [𝑇/2, 𝑇] for some

small positive constant 𝑐. Since 𝑢
𝑥
is uniformly bounded, it

follows from the regularity of 𝑢 that 𝑢
𝑥𝑥
(𝑥, 𝑡) > 0 for (𝑥, 𝑡) ∈

[0, 𝛿] × [𝑇/2, 𝑇] for some small positive constant 𝛿. Hence
from (1) it follows that

𝑢
𝑡
(𝑥, 𝑡) ≥ −𝑥

𝑞
𝑢
𝑝
(𝑥, 𝑡) for (𝑥, 𝑡) ∈ (0, 𝛿] × [𝑇

2

, 𝑇] .

(31)

By an integration from 𝑡 ∈ [𝑇/2, 𝑇) to 𝑇, we deduce that

𝑢 (𝑥, 𝑡) ≤ 𝐶
3
𝑥
𝑞/(1−𝑝)

(𝑇 − 𝑡)
1/(1−𝑝)

for (𝑥, 𝑡) ∈ (0, 𝛿] × [𝑇
2

, 𝑇]

(32)

for some positive constant 𝐶
3
= 𝐶
3
(𝑝). Recall that V is

increasing in 𝑦. Taking 𝑥(𝑡) = (𝑇 − 𝑡)
𝛼 for 0 < 𝑇 − 𝑡 ≪ 1,

we conclude from (32) that V(0, 𝑠) ≤ V(1, 𝑠) ≤ 𝐶
3
for 𝑠 ≫ 1

and so we obtain the following estimate:

V (0, 𝑠) ≤ 𝐶
4

for 𝑠 ≥ 𝑠
0

(33)

for some positive constant 𝐶
4
. In particular, (33) and (30)

imply that V grows at most polynomially:

V (𝑦, 𝑠) ≤ [𝐶(𝑚−𝑝)/𝑚
4

+ 𝐶
2
𝑦
𝑞+2
]

𝑚/(𝑚−𝑝)

for 0 < 𝑦 < 𝑒𝛼𝑠, 𝑠 ≥ 𝑠
0
.

(34)

Since 𝑢(0, 𝑇) = 0, we also obtain from (28) that

𝑢 (𝑥, 𝑇) ≤ 𝐶𝑥
(𝑞+2)/(𝑚−𝑝)

, 𝑥 ∈ [0, 1] , (35)

where 𝐶 := {(𝑚 − 𝑝)/[𝑚(𝑞 + 1)(𝑞 + 2)]}
1/(𝑚−𝑝). This gives an

upper bound for the dead-core profile.

4. Proof of Theorem 1

In this section, we study the asymptotic behaviour of V(𝑦, 𝑠)
as 𝑠 → ∞. For this, we define the energy functional by

𝐸 (𝑠) := ∫

𝑅(𝑠)

0

Φ(𝑦, V (𝑦, 𝑠) , V
𝑦
(𝑦, 𝑠)) 𝑑𝑦, (36)

where 𝑅(𝑠) := 𝑒𝛼𝑠,

Φ(𝑦, V, 𝑤) := ∫

𝑤

0

(𝑤 − 𝜎) 𝑃 (𝑦, V, 𝜎) 𝑑𝜎

− ∫

V

𝜅

𝑔 (𝑦, 𝜇) 𝑃 (𝑦, 𝜇, 0) 𝑑𝜇,

(37)

and 𝑃(𝑦, V, 𝑤) := exp{(−𝛼/𝑚) ∫𝑦
0
𝜉𝜓(𝜉; 𝑦, V, 𝑤)(1/𝑚)−1𝑑𝜉}.

Moreover, 𝜓 is defined as the solution of the problem:

𝜓
𝜉𝜉
−

𝛼

𝑚

𝜉𝜓
(1/𝑚)−1

𝜓
𝜉
+ 𝑔 (𝜉, 𝜓) = 0, 𝜉 < 𝑦,

𝜓 (𝑦; 𝑦, V, 𝑤) = V, 𝜓
𝜉
(𝑦; 𝑦, V, 𝑤) = 𝑤,

(38)

where V > 0, 𝑤 ∈ R and 𝑔(𝜉, V) is a smooth cut-off function
(defined as in [6]) of 𝑔(𝑦, V) := 𝛽V1/𝑚 − 𝑦𝑞V𝑝/𝑚 on R. Since
𝑞 ∈ (−1, 0), the function 𝑦𝑞 is integrable at 𝑦 = 0 and so 𝐸(𝑠)
is well defined. Following [6], we know that the solution 𝜓
of (38) can be continued backward to 𝜉 = 0. Moreover, by a
simple computation, we obtain that

𝑑𝐸

𝑑𝑠

(𝑠) = −

1

𝑚

∫

𝑅(𝑠)

0

𝑃 (𝑦, V (𝑦, 𝑠) , V
𝑦
(𝑦, 𝑠)) V(1/𝑚)−1

× V2
𝑠
(𝑦, 𝑠) 𝑑𝑦 + 𝐽 (𝑠) ,

(39)

where 𝐽 satisfies the property ∫∞
𝑠
0

|𝐽(𝑠)|𝑑𝑠 < ∞. From this,
we have (𝑑/𝑑𝑠)[𝐸(𝑠) − ∫𝑠

𝑠
0

𝐽(𝛾)𝑑𝛾] ≤ 0 and therefore for any
𝑠 > 𝑠
0
,

𝐸 (𝑠) ≤ 𝐸 (𝑠
0
) + ∫

𝑠

𝑠
0

𝐽 (𝛾) 𝑑𝛾 ≤ 𝐸 (𝑠
0
)

+ ∫

∞

𝑠
0

𝐽 (𝛾) 𝑑𝛾 ≡ 𝐶 < ∞.

(40)

On the other hand, due to (25), we also obtain from (36) that

1

𝑚

∫

∞

𝑠
0

∫

𝑅(𝑠)

0

𝑃 (𝑦, V (𝑦, 𝑠) , V
𝑦
(𝑦, 𝑠)) V(1/𝑚)−1

× V2
𝑠
(𝑦, 𝑠) 𝑑𝑦 𝑑𝑠 ≤ 𝐶 < ∞.

(41)

Note that 𝑃(𝑦, V, 𝑤) is bounded below away from 0 for 𝑦, V, 𝑤
in bounded sets. Also, by (25), (29), and (34), we can derive
for 0 < 𝜆 < 1,𝑀 > 𝑒

𝛼𝑠
0 and some 𝑠

𝑀

∫

∞

𝑠
𝑀

∫

𝑀

𝜆

V2
𝑠
(𝑦, 𝑠) 𝑑𝑦 𝑑𝑠 < ∞. (42)

Then by a standard limiting process, that is, compactness
arguments, we can show that for any sequence {𝑠

𝑗
} tending

to infinity the limit function V
∞
(𝑦, 𝑠) := lim

𝑗→∞
V(𝑦, 𝑠+𝑠

𝑗
) is

such that V
∞
(𝑦, 𝑠) = V

∞
(𝑦) and is a nontrivial nondecreasing

nonnegative stationary solution of (8) in (0,∞). Then the
uniqueness of self-similar solutions gives that V

∞
= 𝑉
0
.

Therefore, the conclusion follows from (25) and (34) and
Lemma 2. This completes the proof of Theorem 1.

Remark 4. We note that when 𝑞 < 0 we here only consider
the special case of −1 < 𝑞 < 0 which can ensure
the existence of smooth classical solutions by the parabolic
regularity theory. For the case of 𝑞 = 0, Guo et al. [6]
have studied the existence of the non-self-similar dead-core
rate of the solution. However, if 𝑞 > 0, from the proof of
Theorem 1.1 in [1] (or Theorem 2.1 in [25] for the semilinear
equation) we know that the dead-core would not occur at
the origin, but it may occur at some point away from the
origin if the solution 𝑢 is not strictly increasing in 𝑥. Also,
it is very interesting whether the non-self-similar dead-core
rate exists in this case. We leave this open question to the
interested readers. Furthermore, in the higher dimensional
space, it is worth to study whether assumptions could make
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the solution 𝑢 of problem (1) develop a dead-core at the origin
or not. Recently, there are some interesting results of blow-
up problems related to these dead-core questions; we refer
to [26] and the references therein for the reaction-diffusion
equation with more general variable coefficient.
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